import os import datasets # import pandas as pd from sklearn.model_selection import train_test_split from textgrid import textgrid import soundfile as sf import re import json def cleanup_string(line): words_to_remove = ['(ppo)','(ppc)', '(ppb)', '(ppl)', '','','', '', '', '', '', '', '', '', '', ''] formatted_line = re.sub(r'\s+', ' ', line).strip().lower() #detect all word that matches words in the words_to_remove list for word in words_to_remove: if re.search(word,formatted_line): # formatted_line = re.sub(word,'', formatted_line) formatted_line = formatted_line.replace(word,'') formatted_line = re.sub(r'\s+', ' ', formatted_line).strip().lower() # print("*** removed words: " + formatted_line) #detect '\[(.*?)\].' e.g. 'Okay [ah], why did I gamble?' #remove [ ] and keep text within if re.search('\[(.*?)\]', formatted_line): formatted_line = re.sub('\[(.*?)\]', r'\1', formatted_line).strip() #print("***: " + formatted_line) #detect '\((.*?)\).' e.g. 'Okay (um), why did I gamble?' #remove ( ) and keep text within if re.search('\((.*?)\)', formatted_line): formatted_line = re.sub('\((.*?)\)', r'\1', formatted_line).strip() # print("***: " + formatted_line) #detect '\'(.*?)\'' e.g. 'not 'hot' per se' #remove ' ' and keep text within if re.search('\'(.*?)\'', formatted_line): formatted_line = re.sub('\'(.*?)\'', r'\1', formatted_line).strip() #print("***: " + formatted_line) #remove punctation '''!()-[]{};:'"\, <>./?@#$%^&*_~''' punctuation = '''!–;"\,./?@#$%^&*~''' punctuation_list = str.maketrans("","",punctuation) formatted_line = re.sub(r'-', ' ', formatted_line) formatted_line = re.sub(r'_', ' ', formatted_line) formatted_line = formatted_line.translate(punctuation_list) formatted_line = re.sub(r'\s+', ' ', formatted_line).strip().lower() #print("***: " + formatted_line) return formatted_line _DESCRIPTION = """\ The National Speech Corpus (NSC) is the first large-scale Singapore English corpus spearheaded by the Info-communications and Media Development Authority (IMDA) of Singapore. """ _CITATION = """\ """ _CHANNEL_CONFIGS = sorted([ "Audio Same CloseMic", "Audio Separate IVR", "Audio Separate StandingMic" ]) _HOMEPAGE = "https://www.imda.gov.sg/how-we-can-help/national-speech-corpus" _LICENSE = "" _PATH_TO_DATA = './IMDA - National Speech Corpus/PART3' # _PATH_TO_DATA = './PART1/DATA' INTERVAL_MAX_LENGTH = 25 class Minds14Config(datasets.BuilderConfig): """BuilderConfig for xtreme-s""" def __init__( self, channel, description, homepage, path_to_data ): super(Minds14Config, self).__init__( name=channel, version=datasets.Version("1.0.0", ""), description=self.description, ) self.channel = channel self.description = description self.homepage = homepage self.path_to_data = path_to_data def _build_config(channel): return Minds14Config( channel=channel, description=_DESCRIPTION, homepage=_HOMEPAGE, path_to_data=_PATH_TO_DATA, ) # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class NewDataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [] for channel in _CHANNEL_CONFIGS + ["all"]: BUILDER_CONFIGS.append(_build_config(channel)) # BUILDER_CONFIGS = [_build_config(name) for name in _CHANNEL_CONFIGS + ["all"]] DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset task_templates = None features = datasets.Features( { "audio": datasets.features.Audio(sampling_rate=16000), "transcript": datasets.Value("string"), "mic": datasets.Value("string"), "audio_name": datasets.Value("string"), "interval": datasets.Value("string") } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. supervised_keys=("audio", "transcript"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, task_templates=task_templates, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name mics = ( _CHANNEL_CONFIGS if self.config.channel == "all" else [self.config.channel] ) with (os.path.join(self.config.path_to_data, "directory_list.json"), "r") as f: directory_dict = json.load(f) train_audio_list = [] test_audio_list = [] for mic in mics: audio_list = [] if mic == "Audio Same CloseMic": audio_list = [x for x in directory_dict[mic] if (x[-5] == 1) ] train, test = train_test_split(audio_list, test_size=0.3, random_state=42, shuffle=True) for path in train: train_audio_list.append(os.path.join(self.config.path_to_data, mic, path)) s = list(path) s[-5] = "2" train_audio_list.append(os.path.join(self.config.path_to_data, mic, "".join(s))) for path in test: test_audio_list.append(os.path.join(self.config.path_to_data, mic, path)) s = list(path) s[-5] = "2" test_audio_list.append(os.path.join(self.config.path_to_data, mic, "".join(s))) elif mic == "Audio Separate IVR": audio_list = [x.split("\\")[0] for x in directory_dict[mic]] train, test = train_test_split(audio_list, test_size=0.3, random_state=42, shuffle=True) for folder in train: audios = [os.path.join(self.config.path_to_data, mic, x) for x in directory_dict[mic] if (x.split("\\")[0]==folder)] train_audio_list.extend(audios) for folder in test: audios = [os.path.join(self.config.path_to_data, mic, x) for x in directory_dict[mic] if (x.split("\\")[0]==folder)] test_audio_list.extend(audios) elif mic == "Audio Separate StandingMic": audio_list = [x[:14] for x in directory_dict[mic]] audio_list = list(set(audio_list)) train, test = train_test_split(audio_list, test_size=0.3, random_state=42, shuffle=True) for folder in train: audios = [os.path.join(self.config.path_to_data, mic, x) for x in directory_dict[mic] if (x[:14]==folder)] train_audio_list.extend(audios) for folder in test: audios = [os.path.join(self.config.path_to_data, mic, x) for x in directory_dict[mic] if (x[:14]==folder)] test_audio_list.extend(audios) print(f"train_audio_list: { train_audio_list}") print(f"test_audio_list: { test_audio_list}") # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ # "path_to_data": os.path.join(self.config.path_to_data, "Audio Same CloseMic"), "audio_list": train_audio_list, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ # "path_to_data": os.path.join(self.config.path_to_data, "Audio Same CloseMic"), "audio_list": test_audio_list, }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples( self, audio_list, ): id_ = 0 for audio_path in audio_list: file = os.path.split(audio_path)[-1] folder = os.path.split(os.path.split(audio_path)[0])[-1] # get script_path if folder.split("_")[0] == "conf": # mic == "Audio Separate IVR" script_path = os.path.join(self.config.path_to_data, "Scripts Separate", folder+"_"+file[:-4]+".TextGrid") elif folder.split()[1] == "Same": # mic == "Audio Same CloseMic IVR" script_path = os.path.join(self.config.path_to_data, "Scripts Same", file[:-4]+".TextGrid") elif folder.split()[1] == "Separate": # mic == "Audio Separate StandingMic": script_path = os.path.join(self.config.path_to_data, "Scripts Separate", file[:-4]+".TextGrid") # LOAD TRANSCRIPT # script_path = os.path.join(self.config.path_to_data, 'Scripts Same', '3000-1.TextGrid') # check that the textgrid file can be read try: tg = textgrid.TextGrid.fromFile(script_path) except: print(f"error reading textgrid file") continue # LOAD AUDIO # archive_path = os.path.join(path_to_data, '3000-1.wav') # check that archive path exists, else will not open the archive if os.path.exists(audio_path): # read into a numpy array using soundfile data, sr = sf.read(audio_path) result = {} i = 0 intervalLength = 0 intervalStart = 0 transcript_list = [] filepath = os.path.join(self.config.path_to_data, 'tmp_clip.wav') while i < (len(tg[0])-1): transcript = cleanup_string(tg[0][i].mark) if intervalLength == 0 and len(transcript) == 0: intervalStart = tg[0][i].maxTime i+=1 continue intervalLength += tg[0][i].maxTime-tg[0][i].minTime if intervalLength > INTERVAL_MAX_LENGTH: print(f"INTERVAL LONGER THAN {intervalLength}") result["transcript"] = transcript result["interval"] = "start:"+str(tg[0][i].minTime)+", end:"+str(tg[0][i].maxTime) result["audio"] = {"path": audio_path, "bytes": data[int(tg[0][i].minTime*sr):int(tg[0][i].maxTime*sr)], "sampling_rate":sr} yield id_, result id_+= 1 intervalLength = 0 else: if (intervalLength + tg[0][i+1].maxTime-tg[0][i+1].minTime) < INTERVAL_MAX_LENGTH: if len(transcript) != 0: transcript_list.append(transcript) i+=1 continue if len(transcript) == 0: spliced_audio = data[int(intervalStart*sr):int(tg[0][i].minTime*sr)] else: transcript_list.append(transcript) spliced_audio = data[int(intervalStart*sr):int(tg[0][i].maxTime*sr)] sf.write(filepath, spliced_audio, sr) result["interval"] = "start:"+str(intervalStart)+", end:"+str(tg[0][i].maxTime) result["audio"] = {"path": filepath, "bytes": spliced_audio, "sampling_rate":sr} result["transcript"] = ' '.join(transcript_list) yield id_, result id_+= 1 intervalLength=0 intervalStart=tg[0][i].maxTime transcript_list = [] i+=1