|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Twitter Sentiment Analysis Training Corpus (Dataset)""" |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
from datasets import load_dataset |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{thinknook:dataset, |
|
title = {Twitter Sentiment Analysis Training Corpus (Dataset)}, |
|
author={Ibrahim Naji}, |
|
year={2012} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Twitter Sentiment Analysis Dataset contains 1,578,627 classified tweets, each row is marked as 1 for positive sentiment and 0 for negative sentiment. |
|
The dataset is based on data from the following two sources: |
|
|
|
University of Michigan Sentiment Analysis competition on Kaggle |
|
Twitter Sentiment Corpus by Niek Sanders |
|
|
|
Finally, I randomly selected a subset of them, applied a cleaning process, and divided them between the test and train subsets, keeping a balance between |
|
the number of positive and negative tweets within each of these subsets. |
|
""" |
|
|
|
|
|
_URL = "https://raw.githubusercontent.com/cblancac/SentimentAnalysisBert/main/data/" |
|
_URLS = { |
|
"train": _URL + "train_150k.txt", |
|
"test": _URL + "test_62k.txt", |
|
} |
|
|
|
_HOMEPAGE = "https://raw.githubusercontent.com/cblancac/SentimentAnalysisBert/main" |
|
|
|
|
|
def _define_columns(example): |
|
text_splited = example["text"].split('\t') |
|
return {"text": text_splited[1].strip(), "feeling": int(text_splited[0])} |
|
|
|
|
|
class NewDataset(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"feeling": datasets.Value("int32") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
homepage=_HOMEPAGE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_dir_files = dl_manager.download_and_extract(_URLS) |
|
data_dir = '/'.join(data_dir_files["train"].split('/')[:-1]) |
|
|
|
data = load_dataset("text", data_files=data_dir_files) |
|
data = data.map(_define_columns) |
|
|
|
texts_dataset_clean = data["train"].train_test_split(train_size=0.8, seed=42) |
|
|
|
texts_dataset_clean["validation"] = texts_dataset_clean.pop("test") |
|
|
|
texts_dataset_clean["test"] = data["test"] |
|
texts_dataset_clean |
|
|
|
for split, dataset in texts_dataset_clean.items(): |
|
dataset.to_json(data_dir + "/" + f"twitter-sentiment-analysis-{split}.jsonl") |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-train.jsonl")}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-validation.jsonl")}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "twitter-sentiment-analysis-test.jsonl")}), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
yield key, { |
|
"text": data["text"], |
|
"feeling": data["feeling"], |
|
} |