|
import json |
|
import os |
|
import pandas as pd |
|
|
|
os.makedirs("data/tempo_wic", exist_ok=True) |
|
|
|
for s in ['train', 'validation', 'test']: |
|
if s == 'test': |
|
with open(f"misc/TempoWiC/data/test-codalab-10k.data.jl") as f: |
|
data = pd.DataFrame([json.loads(i) for i in f.read().split("\n") if len(i) > 0]) |
|
df = pd.read_csv(f"misc/TempoWiC/data/test.gold.tsv", sep="\t") |
|
else: |
|
with open(f"misc/TempoWiC/data/{s}.data.jl") as f: |
|
data = pd.DataFrame([json.loads(i) for i in f.read().split("\n") if len(i) > 0]) |
|
df = pd.read_csv(f"misc/TempoWiC/data/{s}.labels.tsv", sep="\t") |
|
df.columns = ["id", "label"] |
|
df.index = df.pop("id") |
|
data = data[[i in df.index for i in data['id']]] |
|
data['label'] = [df.loc[i].values[0] for i in data['id'] if i in df.index] |
|
assert len(df) == len(data) |
|
|
|
data_jl = [] |
|
for _, i in data.iterrows(): |
|
i = i.to_dict() |
|
tmp = {"word": i["word"], "gold_label_binary": i["label"]} |
|
tmp.update({f"{k}_1": v for k, v in i['tweet1'].items()}) |
|
tmp['text_1_tokenized'] = tmp.pop('tokens_1') |
|
tmp.update({f"{k}_2": v for k, v in i['tweet2'].items()}) |
|
tmp['text_2_tokenized'] = tmp.pop('tokens_2') |
|
tmp.pop("id") |
|
tmp.pop("text_start_1") |
|
tmp.pop("text_end_1") |
|
tmp.pop("text_start_2") |
|
tmp.pop("text_end_2") |
|
data_jl.append(tmp) |
|
|
|
with open(f"data/tempo_wic/{s}.jsonl", "w") as f: |
|
f.write("\n".join([json.dumps(i) for i in data_jl])) |
|
|