antypasd commited on
Commit
52e2e2b
1 Parent(s): 1d84d4a

added sentiment data

Browse files
data/tweet_sentiment/test.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/tweet_sentiment/train.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/tweet_sentiment/validation.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
process/tweet_sentiment.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Original data: https://alt.qcri.org/semeval2017/task4/index.php?id=results
2
+ import pandas as pd
3
+ from glob import glob
4
+ import urllib
5
+
6
+
7
+ # format text
8
+ def clean_text(text):
9
+ text = text.replace('\n', ' ').replace('\r', ' ').replace('\t', ' ')
10
+
11
+ new_text = []
12
+ for t in text.split():
13
+ # MAKE SURE to check lowercase
14
+ t = '@user' if t.startswith('@') and len(t) > 1 and t.replace(
15
+ '@', '').lower() not in verified_users else t
16
+ t = '\{URL\}' if t.startswith('http') else t
17
+ new_text.append(t)
18
+
19
+ return ' '.join(new_text)
20
+
21
+
22
+ # test set
23
+ with open('./SemEval2017-task4-test.subtask-CE.english.txt') as f:
24
+ test_lines = f.readlines()
25
+ test = [x.split('\t') for x in test_lines]
26
+ test = pd.DataFrame(test, columns=['id', 'topic', 'gold_label', 'text'])
27
+
28
+ # validation set
29
+ fnames = ['twitter-2016dev-CE.txt', 'twitter-2016devtest-CE.txt']
30
+
31
+ validation_lines = []
32
+ for input_f in fnames:
33
+ with open(input_f) as f:
34
+ lines = f.readlines()
35
+ validation_lines.extend(lines)
36
+
37
+ validation = [x.split('\t') for x in validation_lines]
38
+ validation = pd.DataFrame(
39
+ validation, columns=['id', 'topic', 'gold_label', 'text'])
40
+
41
+ # train set
42
+ fnames = ['./twitter-2016train-CE.txt', './twitter-2016test-CE.txt']
43
+
44
+ train_lines = []
45
+ for input_f in fnames:
46
+ with open(input_f) as f:
47
+ lines = f.readlines()
48
+ train_lines.extend(lines)
49
+
50
+ train = [x.split('\t') for x in train_lines]
51
+ train = pd.DataFrame(
52
+ train, columns=['id', 'topic', 'gold_label', 'text'])
53
+
54
+ # clean text
55
+ verified_users = urllib.request.urlopen(
56
+ 'https://raw.githubusercontent.com/cardiffnlp/timelms/main/data/verified_users.v091122.txt').readlines()
57
+ verified_users = [x.decode().strip('\n').lower() for x in verified_users]
58
+
59
+ train['text'] = train['text'].apply(clean_text)
60
+ validation['text'] = validation['text'].apply(clean_text)
61
+ test['text'] = test['text'].apply(clean_text)
62
+
63
+ # save splits
64
+ cols_to_keep = ['gold_label', 'topic', 'text']
65
+ train[cols_to_keep].to_json(
66
+ '../data/tweet_sentiment/train.jsonl', lines=True, orient='records')
67
+ validation[cols_to_keep].to_json(
68
+ '../data/tweet_sentiment/validation.jsonl', lines=True, orient='records')
69
+ test[cols_to_keep].to_json(
70
+ '../data/tweet_sentiment/test.jsonl', lines=True, orient='records')
super_tweet_eval.py CHANGED
@@ -133,6 +133,24 @@ _TWEET_DISAMBIGUATION_CITATION = """\
133
  """
134
  _TWEET_EMOJI_DESCRIPTION = """TBA"""
135
  _TWEET_EMOJI_CITATION = """TBA"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
 
137
 
138
  class SuperTweetEvalConfig(datasets.BuilderConfig):
@@ -227,6 +245,13 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
227
  citation=_TWEET_EMOJI_CITATION,
228
  features=['gold_label', 'text'],
229
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_emoji",
 
 
 
 
 
 
 
230
  )
231
  ]
232
 
@@ -270,6 +295,11 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
270
  if self.config.name == "tweet_emoji":
271
  features["gold_label"] = datasets.Value("int32")
272
  features["text"] = datasets.Value("string")
 
 
 
 
 
273
 
274
  return datasets.DatasetInfo(
275
  description=_SUPER_TWEET_EVAL_DESCRIPTION + "\n" + self.config.description,
 
133
  """
134
  _TWEET_EMOJI_DESCRIPTION = """TBA"""
135
  _TWEET_EMOJI_CITATION = """TBA"""
136
+ _TWEET_SENTIMENT_DESCRIPTION = """TBA"""
137
+ _TWEET_SENTIMENT_CITATION = """\
138
+ @inproceedings{rosenthal-etal-2017-semeval,
139
+ title = "{S}em{E}val-2017 Task 4: Sentiment Analysis in {T}witter",
140
+ author = "Rosenthal, Sara and
141
+ Farra, Noura and
142
+ Nakov, Preslav",
143
+ booktitle = "Proceedings of the 11th International Workshop on Semantic Evaluation ({S}em{E}val-2017)",
144
+ month = aug,
145
+ year = "2017",
146
+ address = "Vancouver, Canada",
147
+ publisher = "Association for Computational Linguistics",
148
+ url = "https://aclanthology.org/S17-2088",
149
+ doi = "10.18653/v1/S17-2088",
150
+ pages = "502--518",
151
+ abstract = "This paper describes the fifth year of the Sentiment Analysis in Twitter task. SemEval-2017 Task 4 continues with a rerun of the subtasks of SemEval-2016 Task 4, which include identifying the overall sentiment of the tweet, sentiment towards a topic with classification on a two-point and on a five-point ordinal scale, and quantification of the distribution of sentiment towards a topic across a number of tweets: again on a two-point and on a five-point ordinal scale. Compared to 2016, we made two changes: (i) we introduced a new language, Arabic, for all subtasks, and (ii) we made available information from the profiles of the Twitter users who posted the target tweets. The task continues to be very popular, with a total of 48 teams participating this year.",
152
+ }
153
+ """
154
 
155
 
156
  class SuperTweetEvalConfig(datasets.BuilderConfig):
 
245
  citation=_TWEET_EMOJI_CITATION,
246
  features=['gold_label', 'text'],
247
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_emoji",
248
+ ),
249
+ SuperTweetEvalConfig(
250
+ name="tweet_sentiment",
251
+ description=_TWEET_SENTIMENT_DESCRIPTION,
252
+ citation=_TWEET_SENTIMENT_CITATION,
253
+ features=['gold_label', 'topic', 'text'],
254
+ data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_emoji",
255
  )
256
  ]
257
 
 
295
  if self.config.name == "tweet_emoji":
296
  features["gold_label"] = datasets.Value("int32")
297
  features["text"] = datasets.Value("string")
298
+ if self.config.name == "tweet_sentiment":
299
+ features["gold_label"] = datasets.Value("int32")
300
+ features["text"] = datasets.Value("string")
301
+ features["topic"] = datasets.Value("string")
302
+
303
 
304
  return datasets.DatasetInfo(
305
  description=_SUPER_TWEET_EVAL_DESCRIPTION + "\n" + self.config.description,