init
Browse files
data/tweet_similarity/test.jsonl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:340f81539bdd3f8206935ef19c81e617fee8def21eecf805f95d7a7a9e15f36a
|
3 |
+
size 119831
|
data/tweet_similarity/train.jsonl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce1ce50aee71149badb4201d21e253234d9d392ca2c01852881006bff8ad2434
|
3 |
+
size 123024
|
data/tweet_similarity/validation.jsonl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19fb76ae152732ada11cf063a987e77ee1f7ee19ca12db28b4208f13f16fddd5
|
3 |
+
size 26642
|
super_tweet_eval.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
import json
|
3 |
import datasets
|
4 |
|
5 |
-
_VERSION = "0.0.
|
6 |
_SUPER_TWEET_EVAL_CITATION = """TBA"""
|
7 |
_SUPER_TWEET_EVAL_DESCRIPTION = """TBA"""
|
8 |
_TWEET_TOPIC_DESCRIPTION = """
|
@@ -136,42 +136,42 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
|
|
136 |
name="tweet_topic",
|
137 |
description=_TWEET_TOPIC_DESCRIPTION,
|
138 |
citation=_TWEET_TOPIC_CITATION,
|
139 |
-
features=["text", "
|
140 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_topic",
|
141 |
),
|
142 |
SuperTweetEvalConfig(
|
143 |
name="tweet_ner7",
|
144 |
description=_TWEET_NER7_DESCRIPTION,
|
145 |
citation=_TWEET_NER7_CITATION,
|
146 |
-
features=["
|
147 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_ner7",
|
148 |
),
|
149 |
SuperTweetEvalConfig(
|
150 |
name="tweet_qa",
|
151 |
description=_TWEET_QA_DESCRIPTION,
|
152 |
citation=_TWEET_QA_CITATION,
|
153 |
-
features=["text", "
|
154 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_qa",
|
155 |
),
|
156 |
SuperTweetEvalConfig(
|
157 |
name="tweet_intimacy",
|
158 |
description=_TWEET_INTIMACY_DESCRIPTION,
|
159 |
citation=_TWEET_INTIMACY_CITATION,
|
160 |
-
features=["text", "
|
161 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_intimacy",
|
162 |
),
|
163 |
SuperTweetEvalConfig(
|
164 |
name="tweet_similarity",
|
165 |
description=_TWEET_SIMILARITY_DESCRIPTION,
|
166 |
citation=_TWEET_SIMILARITY_CITATION,
|
167 |
-
features=["text_1", "text_2", "
|
168 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_similarity",
|
169 |
),
|
170 |
SuperTweetEvalConfig(
|
171 |
name="tempo_wic",
|
172 |
description=_TEMPO_WIC_DESCRIPTION,
|
173 |
citation=_TEMPO_WIC_CITATION,
|
174 |
-
features=['label_binary', '
|
175 |
'text_1', 'text_1_tokenized', 'token_idx_1', 'text_start_1', 'text_end_1', 'date_1',
|
176 |
'text_2', 'text_2_tokenized', 'token_idx_2', 'text_start_2', 'text_end_2', 'date_2'],
|
177 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tempo_wic",
|
@@ -186,17 +186,17 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
|
|
186 |
"family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
|
187 |
"learning_&_educational", "music", "news_&_social_concern", "other_hobbies", "relationships",
|
188 |
"science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"]
|
189 |
-
features["
|
190 |
if self.config.name == "tweet_ner7":
|
191 |
names = [
|
192 |
'B-corporation', 'B-creative_work', 'B-event', 'B-group', 'B-location', 'B-person', 'B-product',
|
193 |
'I-corporation', 'I-creative_work', 'I-event', 'I-group', 'I-location', 'I-person', 'I-product', 'O']
|
194 |
-
features["
|
195 |
features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
|
196 |
if self.config.name in ["tweet_intimacy", "tweet_similarity"]:
|
197 |
-
features["
|
198 |
if self.config.name == "tempo_wic":
|
199 |
-
features["
|
200 |
features["token_idx_1"] = datasets.Value("int32")
|
201 |
features["token_idx_2"] = datasets.Value("int32")
|
202 |
features["text_start_1"] = datasets.Value("int32")
|
|
|
2 |
import json
|
3 |
import datasets
|
4 |
|
5 |
+
_VERSION = "0.0.9"
|
6 |
_SUPER_TWEET_EVAL_CITATION = """TBA"""
|
7 |
_SUPER_TWEET_EVAL_DESCRIPTION = """TBA"""
|
8 |
_TWEET_TOPIC_DESCRIPTION = """
|
|
|
136 |
name="tweet_topic",
|
137 |
description=_TWEET_TOPIC_DESCRIPTION,
|
138 |
citation=_TWEET_TOPIC_CITATION,
|
139 |
+
features=["text", "gold_label_list", "date"],
|
140 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_topic",
|
141 |
),
|
142 |
SuperTweetEvalConfig(
|
143 |
name="tweet_ner7",
|
144 |
description=_TWEET_NER7_DESCRIPTION,
|
145 |
citation=_TWEET_NER7_CITATION,
|
146 |
+
features=["text", "text_tokenized", "gold_label_sequence", "date"],
|
147 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_ner7",
|
148 |
),
|
149 |
SuperTweetEvalConfig(
|
150 |
name="tweet_qa",
|
151 |
description=_TWEET_QA_DESCRIPTION,
|
152 |
citation=_TWEET_QA_CITATION,
|
153 |
+
features=["text", "gold_label_str", "paragraph", "question"],
|
154 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_qa",
|
155 |
),
|
156 |
SuperTweetEvalConfig(
|
157 |
name="tweet_intimacy",
|
158 |
description=_TWEET_INTIMACY_DESCRIPTION,
|
159 |
citation=_TWEET_INTIMACY_CITATION,
|
160 |
+
features=["text", "gold_score"],
|
161 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_intimacy",
|
162 |
),
|
163 |
SuperTweetEvalConfig(
|
164 |
name="tweet_similarity",
|
165 |
description=_TWEET_SIMILARITY_DESCRIPTION,
|
166 |
citation=_TWEET_SIMILARITY_CITATION,
|
167 |
+
features=["text_1", "text_2", "gold_score"],
|
168 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_similarity",
|
169 |
),
|
170 |
SuperTweetEvalConfig(
|
171 |
name="tempo_wic",
|
172 |
description=_TEMPO_WIC_DESCRIPTION,
|
173 |
citation=_TEMPO_WIC_CITATION,
|
174 |
+
features=['label_binary', 'word',
|
175 |
'text_1', 'text_1_tokenized', 'token_idx_1', 'text_start_1', 'text_end_1', 'date_1',
|
176 |
'text_2', 'text_2_tokenized', 'token_idx_2', 'text_start_2', 'text_end_2', 'date_2'],
|
177 |
data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tempo_wic",
|
|
|
186 |
"family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
|
187 |
"learning_&_educational", "music", "news_&_social_concern", "other_hobbies", "relationships",
|
188 |
"science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"]
|
189 |
+
features["gold_label_list"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
|
190 |
if self.config.name == "tweet_ner7":
|
191 |
names = [
|
192 |
'B-corporation', 'B-creative_work', 'B-event', 'B-group', 'B-location', 'B-person', 'B-product',
|
193 |
'I-corporation', 'I-creative_work', 'I-event', 'I-group', 'I-location', 'I-person', 'I-product', 'O']
|
194 |
+
features["gold_label_sequence"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
|
195 |
features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
|
196 |
if self.config.name in ["tweet_intimacy", "tweet_similarity"]:
|
197 |
+
features["gold_score"] = datasets.Value("float32")
|
198 |
if self.config.name == "tempo_wic":
|
199 |
+
features["gold_label_binary"] = datasets.Value("int32")
|
200 |
features["token_idx_1"] = datasets.Value("int32")
|
201 |
features["token_idx_2"] = datasets.Value("int32")
|
202 |
features["text_start_1"] = datasets.Value("int32")
|