asahi417 commited on
Commit
9400377
1 Parent(s): 1039c6b
data/tweet_similarity/test.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a5c31b7cce0d06ff40439aa844ae22a2df45639c88e4ec6557361806282e515e
3
- size 120281
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:340f81539bdd3f8206935ef19c81e617fee8def21eecf805f95d7a7a9e15f36a
3
+ size 119831
data/tweet_similarity/train.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa89770bccfa511dd49b155fbf1814c0b5846bfb20aa2755ce21aa19c3517a8f
3
- size 123474
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce1ce50aee71149badb4201d21e253234d9d392ca2c01852881006bff8ad2434
3
+ size 123024
data/tweet_similarity/validation.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bd915d3a8f9b22727afcd37b54afb499952efda8e5d0c9e9dea5effbb350b197
3
- size 26742
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19fb76ae152732ada11cf063a987e77ee1f7ee19ca12db28b4208f13f16fddd5
3
+ size 26642
super_tweet_eval.py CHANGED
@@ -2,7 +2,7 @@
2
  import json
3
  import datasets
4
 
5
- _VERSION = "0.0.8"
6
  _SUPER_TWEET_EVAL_CITATION = """TBA"""
7
  _SUPER_TWEET_EVAL_DESCRIPTION = """TBA"""
8
  _TWEET_TOPIC_DESCRIPTION = """
@@ -136,42 +136,42 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
136
  name="tweet_topic",
137
  description=_TWEET_TOPIC_DESCRIPTION,
138
  citation=_TWEET_TOPIC_CITATION,
139
- features=["text", "label_list", "id", "date"],
140
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_topic",
141
  ),
142
  SuperTweetEvalConfig(
143
  name="tweet_ner7",
144
  description=_TWEET_NER7_DESCRIPTION,
145
  citation=_TWEET_NER7_CITATION,
146
- features=["text_tokenized", "label_sequence", "id", "date"],
147
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_ner7",
148
  ),
149
  SuperTweetEvalConfig(
150
  name="tweet_qa",
151
  description=_TWEET_QA_DESCRIPTION,
152
  citation=_TWEET_QA_CITATION,
153
- features=["text", "label_str", "paragraph", "question"],
154
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_qa",
155
  ),
156
  SuperTweetEvalConfig(
157
  name="tweet_intimacy",
158
  description=_TWEET_INTIMACY_DESCRIPTION,
159
  citation=_TWEET_INTIMACY_CITATION,
160
- features=["text", "label_float"],
161
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_intimacy",
162
  ),
163
  SuperTweetEvalConfig(
164
  name="tweet_similarity",
165
  description=_TWEET_SIMILARITY_DESCRIPTION,
166
  citation=_TWEET_SIMILARITY_CITATION,
167
- features=["text_1", "text_2", "label_float"],
168
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_similarity",
169
  ),
170
  SuperTweetEvalConfig(
171
  name="tempo_wic",
172
  description=_TEMPO_WIC_DESCRIPTION,
173
  citation=_TEMPO_WIC_CITATION,
174
- features=['label_binary', 'id', 'word',
175
  'text_1', 'text_1_tokenized', 'token_idx_1', 'text_start_1', 'text_end_1', 'date_1',
176
  'text_2', 'text_2_tokenized', 'token_idx_2', 'text_start_2', 'text_end_2', 'date_2'],
177
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tempo_wic",
@@ -186,17 +186,17 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
186
  "family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
187
  "learning_&_educational", "music", "news_&_social_concern", "other_hobbies", "relationships",
188
  "science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"]
189
- features["label_list"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
190
  if self.config.name == "tweet_ner7":
191
  names = [
192
  'B-corporation', 'B-creative_work', 'B-event', 'B-group', 'B-location', 'B-person', 'B-product',
193
  'I-corporation', 'I-creative_work', 'I-event', 'I-group', 'I-location', 'I-person', 'I-product', 'O']
194
- features["label_sequence"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
195
  features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
196
  if self.config.name in ["tweet_intimacy", "tweet_similarity"]:
197
- features["label_float"] = datasets.Value("float32")
198
  if self.config.name == "tempo_wic":
199
- features["label_binary"] = datasets.Value("int32")
200
  features["token_idx_1"] = datasets.Value("int32")
201
  features["token_idx_2"] = datasets.Value("int32")
202
  features["text_start_1"] = datasets.Value("int32")
 
2
  import json
3
  import datasets
4
 
5
+ _VERSION = "0.0.9"
6
  _SUPER_TWEET_EVAL_CITATION = """TBA"""
7
  _SUPER_TWEET_EVAL_DESCRIPTION = """TBA"""
8
  _TWEET_TOPIC_DESCRIPTION = """
 
136
  name="tweet_topic",
137
  description=_TWEET_TOPIC_DESCRIPTION,
138
  citation=_TWEET_TOPIC_CITATION,
139
+ features=["text", "gold_label_list", "date"],
140
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_topic",
141
  ),
142
  SuperTweetEvalConfig(
143
  name="tweet_ner7",
144
  description=_TWEET_NER7_DESCRIPTION,
145
  citation=_TWEET_NER7_CITATION,
146
+ features=["text", "text_tokenized", "gold_label_sequence", "date"],
147
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_ner7",
148
  ),
149
  SuperTweetEvalConfig(
150
  name="tweet_qa",
151
  description=_TWEET_QA_DESCRIPTION,
152
  citation=_TWEET_QA_CITATION,
153
+ features=["text", "gold_label_str", "paragraph", "question"],
154
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_qa",
155
  ),
156
  SuperTweetEvalConfig(
157
  name="tweet_intimacy",
158
  description=_TWEET_INTIMACY_DESCRIPTION,
159
  citation=_TWEET_INTIMACY_CITATION,
160
+ features=["text", "gold_score"],
161
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_intimacy",
162
  ),
163
  SuperTweetEvalConfig(
164
  name="tweet_similarity",
165
  description=_TWEET_SIMILARITY_DESCRIPTION,
166
  citation=_TWEET_SIMILARITY_CITATION,
167
+ features=["text_1", "text_2", "gold_score"],
168
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_similarity",
169
  ),
170
  SuperTweetEvalConfig(
171
  name="tempo_wic",
172
  description=_TEMPO_WIC_DESCRIPTION,
173
  citation=_TEMPO_WIC_CITATION,
174
+ features=['label_binary', 'word',
175
  'text_1', 'text_1_tokenized', 'token_idx_1', 'text_start_1', 'text_end_1', 'date_1',
176
  'text_2', 'text_2_tokenized', 'token_idx_2', 'text_start_2', 'text_end_2', 'date_2'],
177
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tempo_wic",
 
186
  "family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming",
187
  "learning_&_educational", "music", "news_&_social_concern", "other_hobbies", "relationships",
188
  "science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life"]
189
+ features["gold_label_list"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
190
  if self.config.name == "tweet_ner7":
191
  names = [
192
  'B-corporation', 'B-creative_work', 'B-event', 'B-group', 'B-location', 'B-person', 'B-product',
193
  'I-corporation', 'I-creative_work', 'I-event', 'I-group', 'I-location', 'I-person', 'I-product', 'O']
194
+ features["gold_label_sequence"] = datasets.Sequence(datasets.features.ClassLabel(names=names))
195
  features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
196
  if self.config.name in ["tweet_intimacy", "tweet_similarity"]:
197
+ features["gold_score"] = datasets.Value("float32")
198
  if self.config.name == "tempo_wic":
199
+ features["gold_label_binary"] = datasets.Value("int32")
200
  features["token_idx_1"] = datasets.Value("int32")
201
  features["token_idx_2"] = datasets.Value("int32")
202
  features["text_start_1"] = datasets.Value("int32")