import pandas as pd from datasets import load_dataset table = [] task_description = { 'tweet_intimacy': "regression on a single text", 'tweet_ner7': "sequence labeling", 'tweet_qa': "generation", 'tweet_similarity': "regression on two texts", 'tweet_topic': "multi-label classification" } for task in ['tweet_intimacy', 'tweet_ner7', 'tweet_qa', 'tweet_similarity', 'tweet_topic']: data = load_dataset("cardiffnlp/super_tweet_eval", task) tmp_table = {"task": task, "description": task_description[task]} tmp_table['number of instances'] = " / ".join([str(len(data[s])) for s in ['train', 'validation', 'test']]) table.append(tmp_table) df = pd.DataFrame(table) print(df.to_markdown(index=False))