import pandas as pd import urllib # format text def clean_text(text): text = text.replace('\n', ' ').replace('\r', ' ').replace('\t', ' ') new_text = [] for t in text.split(): # MAKE SURE to check lowercase t = '@user' if t.startswith('@') and len(t) > 1 and t.replace( '@', '').lower() not in verified_users else t t = '{URL}' if t.startswith('http') else t new_text.append(t) return ' '.join(new_text) train = pd.read_csv('./emotion/2018-E-c-En-train.txt', sep='\t') validation = pd.read_csv('./emotion/2018-E-c-En-dev.txt', sep='\t') test = pd.read_csv('./emotion/2018-E-c-En-test-gold.txt', sep='\t') sem_emotions = train.columns.difference(['ID', 'Tweet', 'split', 'dataset']) # keep class mapping with open('../data/tweet_emotion/map.txt', 'w') as f: for idx, em in enumerate(sem_emotions): f.write(f'{em},{idx}\n') cols_to_keep = ['text', 'gold_label_list'] # get list of verified users verified_users = urllib.request.urlopen( 'https://raw.githubusercontent.com/cardiffnlp/timelms/main/data/verified_users.v091122.txt').readlines() verified_users = [x.decode().strip('\n').lower() for x in verified_users] # clean datasets train['gold_label_list'] = train[sem_emotions].values.tolist() train['text'] = train['Tweet'] train['text'] = train['text'].apply(clean_text) train[cols_to_keep].to_json('../data/tweet_emotion/train.jsonl', lines=True, orient='records') validation['gold_label_list'] = validation[sem_emotions].values.tolist() validation['text'] = validation['Tweet'] validation['text'] = validation['text'].apply(clean_text) validation[cols_to_keep].to_json('../data/tweet_emotion/validation.jsonl', lines=True, orient='records') test['gold_label_list'] = test[sem_emotions].values.tolist() test['text'] = test['Tweet'] test['text'] = test['text'].apply(clean_text) test[cols_to_keep].to_json('../data/tweet_emotion/test.jsonl', lines=True, orient='records')