File size: 3,207 Bytes
05d234f 84b0494 f32287d 05d234f 84b0494 05d234f 84b0494 05d234f 84b0494 05d234f 84b0494 05d234f 84b0494 05d234f 25ce9d5 05d234f 1c611e3 05d234f 1c611e3 05d234f 1c611e3 05d234f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
configs:
- config_name: default
data_files:
- split: train_en
path: "dataset/en/en_train.jsonl"
language:
- en
- ja
- el
- es
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
task_categories:
- text-classification
pretty_name: xtopic
---
# Dataset Card for "cardiffnlp/tweet_topic_multilingual"
## Dataset Description
- **Dataset:** X-Topic
- **Domain:** X (Twitter)
- **Number of Class:** 19
### Dataset Summary
This is the official repository of X-Topic ([Multilingual Topic Classification in X: Dataset and Analysis](https://arxiv.org/abs/2410.03075), EMNLP 2024), a topic classification dataset based on X (formerly Twitter), featuring 19 topic labels.
The classification task is multi-label, with tweets available in four languages: English, Japanese, Spanish, and Greek.
The dataset comprises 4,000 tweets (1,000 per language), collected between September 2021 and August 2022.
The dataset uses the same taxonomy as [TweetTopic](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi).
## Dataset Structure
### Data Splits
The dataset includes the following splits:
- **en**: English
- **es**: Spanish
- **ja**: Japanese
- **gr**: Greek
- **en_2022**: English data from 2022 (TweetTopic)
- **mix**: Mixed-language data
- **mix_2022**: Mixed-language data including (TweetTopic) from 2022
- **Cross-validation splits:**
- **en_cross_validation_0** to **en_cross_validation_4**: English cross-validation splits
- **es_cross_validation_0** to **es_cross_validation_4**: Spanish cross-validation splits
- **ja_cross_validation_0** to **ja_cross_validation_4**: Japanese cross-validation splits
- **gr_cross_validation_0** to **gr_cross_validation_4**: Greek cross-validation splits
### Data Instances
An example of `train` looks as follows.
```python
{
"id": 1470030676816797696,
"text": "made a matcha latte, black tea and green juice until i break my fast at 1!! my body and skin are thanking me",
"label": [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"label_name": ["Diaries & Daily Life", "Fitness & Health", "Food & Dining"],
"label_name_flatten": "Diaries & Daily Life, Fitness & Health, Food & Dining"
}
```
### Labels
| <span style="font-weight:normal">0: arts_&_culture</span> | <span style="font-weight:normal">5: fashion_&_style</span> | <span style="font-weight:normal">10: learning_&_educational</span> | <span style="font-weight:normal">15: science_&_technology</span> |
|-----------------------------|---------------------|----------------------------|--------------------------|
| 1: business_&_entrepreneurs | 6: film_tv_&_video | 11: music | 16: sports |
| 2: celebrity_&_pop_culture | 7: fitness_&_health | 12: news_&_social_concern | 17: travel_&_adventure |
| 3: diaries_&_daily_life | 8: food_&_dining | 13: other_hobbies | 18: youth_&_student_life |
| 4: family | 9: gaming | 14: relationships | |
Annotation instructions for English can be found [here](https://docs.google.com/document/d/1IaIXZYof3iCLLxyBdu_koNmjy--zqsuOmxQ2vOxYd_g/edit?usp=sharing).
## Citation Information
**TBA**
|