Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
asahi417 commited on
Commit
3b4461e
·
1 Parent(s): de90a13

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -18
README.md CHANGED
@@ -57,25 +57,25 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
57
 
58
  ### Data Splits
59
 
60
- | split | number of texts | description |
61
- |:--------------------------|-----:|:-----|
62
- | test | 1693 | alias of `temporal_2021_test` |
63
- | train | 2858 | alias of `temporal_2020_train` |
64
- | validation | 352 | alias of `temporal_2020_validation` |
65
- | temporal_2020_test | 376 | test set in 2020 period of temporal split |
66
- | temporal_2021_test | 1693 | test set in 2021 period of temporal split |
67
- | temporal_2020_train | 2858 | training set in 2020 period of temporal split |
68
- | temporal_2021_train | 1516 | training set in 2021 period of temporal split |
69
- | temporal_2020_validation | 352 | validation set in 2020 period of temporal split |
70
- | temporal_2021_validation | 189 | validation set in 2021 period of temporal split |
71
- | random_train | 2830 | training set of random split (mix of 2020 and 2021) |
72
- | random_validation | 354 | validation set of random split (mix of 2020 and 2021) |
73
- | coling2022_random_test | 3399 | test set of random split used in COLING 2022 Tweet Topic paper |
74
- | coling2022_random_train | 3598 | training set of random split used in COLING 2022 Tweet Topic paper |
75
- | coling2022_temporal_test | 3399 | test set of temporal split used in COLING 2022 Tweet Topic paper |
76
- | coling2022_temporal_train | 3598 | training set of temporal split used in COLING 2022 Tweet Topic paper|
77
 
78
- For the temporal-shift setting, we recommend to train models on `train` (`temporal_2020_train`) with `validation` (`temporal_2020_validation`) and evaluate on `test` (`temporal_2021_test`).
79
  For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`).
80
  To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (note that the coling2022 split does not have validation set).
81
 
 
57
 
58
  ### Data Splits
59
 
60
+ | split | number of texts | description |
61
+ |:----------------------------|-----:|:-----|
62
+ | `test` | 1693 | alias of `temporal_2021_test` |
63
+ | `train` | 2858 | alias of `temporal_2020_train` |
64
+ | `validation` | 352 | alias of `temporal_2020_validation` |
65
+ | `temporal_2020_test` | 376 | test set in 2020 period of temporal split |
66
+ | `temporal_2021_test` | 1693 | test set in 2021 period of temporal split |
67
+ | `temporal_2020_train` | 2858 | training set in 2020 period of temporal split |
68
+ | `temporal_2021_train` | 1516 | training set in 2021 period of temporal split |
69
+ | `temporal_2020_validation` | 352 | validation set in 2020 period of temporal split |
70
+ | `temporal_2021_validation` | 189 | validation set in 2021 period of temporal split |
71
+ | `random_train` | 2830 | training set of random split (mix of 2020 and 2021) |
72
+ | `random_validation` | 354 | validation set of random split (mix of 2020 and 2021) |
73
+ | `coling2022_random_test` | 3399 | test set of random split used in COLING 2022 Tweet Topic paper |
74
+ | `coling2022_random_train` | 3598 | training set of random split used in COLING 2022 Tweet Topic paper |
75
+ | `coling2022_temporal_test` | 3399 | test set of temporal split used in COLING 2022 Tweet Topic paper |
76
+ | `coling2022_temporal_train` | 3598 | training set of temporal split used in COLING 2022 Tweet Topic paper|
77
 
78
+ For the temporal-shift setting, we recommend to train models on `train` (or `temporal_2020_train`) with `validation` (or `temporal_2020_validation`) and evaluate on `test` (or `temporal_2021_test`).
79
  For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`).
80
  To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (note that the coling2022 split does not have validation set).
81