corpus-carolina / corpus-carolina.py
guilhermelmello's picture
Add loading script.
09ef168
raw
history blame
6.85 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset
# script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Carolina Corpus"""
from lxml import etree
import os
import datasets
_HOMEPAGE = "https://sites.usp.br/corpuscarolina/"
_DESCRIPTION = """
Carolina is an Open Corpus for Linguistics and Artificial Intelligence with a
robust volume of texts of varied typology in contemporary Brazilian Portuguese
(1970-2021).
"""
_CITATION = r"""
@misc{corpusCarolinaV1.1,
title={
Carolina:
The Open Corpus for Linguistics and Artificial Intelligence},
author={
Finger, Marcelo and
Paixão de Sousa, Maria Clara and
Namiuti, Cristiane and
Martins do Monte, Vanessa and
Costa, Aline Silva and
Serras, Felipe Ribas and
Sturzeneker, Mariana Lourenço and
Guets, Raquel de Paula and
Mesquita, Renata Morais and
Mello, Guilherme Lamartine de and
Crespo, Maria Clara Ramos Morales and
Rocha, Maria Lina de Souza Jeannine and
Brasil, Patrícia and
Silva, Mariana Marques da and
Palma, Mayara Feliciano},
howpublished={\url{https://sites.usp.br/corpuscarolina/corpus}},
year={2022},
note={Version 1.1 (Ada)},
}
"""
_LICENSE = """
The Open Corpus for Linguistics and Artificial Intelligence (Carolina) was
compiled for academic purposes, namely linguistic and computational analysis.
It is composed of texts assembled in various digital repositories, whose
licenses are multiple and therefore should be observed when making use of the
corpus. The Carolina headers are licensed under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International."
"""
def _taxonomies():
"""Creates a map between taxonomy code and name
Returns
-------
dict
The dictionary of codes and names.
"""
return dict(
dat="datasets and other corpora",
jud="judicial branch",
leg="legislative branch",
pub="public domain works",
soc="social media",
uni="university_domains",
wik="wikis",
)
_VERSION = "1.1.0"
_CORPUS_URL = "corpus/{taxonomy}/"
_CHECKSUM_FNAME = _CORPUS_URL + "checksum.sha256"
class CarolinaConfig(datasets.BuilderConfig):
"""Carolina Configuration."""
def __init__(self, taxonomy: str = None, **kwargs):
"""BuilderConfig for Carolina
Parameters
----------
taxonomy : str
The taxonomy code (3 letters). The code defines the taxonomy
to download. If `None`, all taxonomies will be downloaded.
**kwargs
Arguments passed to super.
"""
# validates taxonomy
if taxonomy is None:
taxonomy = "all"
elif taxonomy != "all" and taxonomy not in _taxonomies():
raise ValueError(f"Invalid taxonomy: {taxonomy}")
# custom name and description
description = "Carolina corpus."
if taxonomy == "all":
name = "carolina"
description += " Using all taxonomies."
else:
name = _taxonomies()[taxonomy]
description += f" Using taxonomy {taxonomy}"
super(CarolinaConfig, self).__init__(
name=name, description=description, **kwargs)
# Carolina attributes
self.taxonomy = taxonomy
self.version = datasets.Version(_VERSION)
class Carolina(datasets.GeneratorBasedBuilder):
"""Carolina Downloader and Builder"""
BUILDER_CONFIG_CLASS = CarolinaConfig
def _info(self):
features = datasets.Features({
"meta": datasets.Value("string"),
"text": datasets.Value("string")
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage=_HOMEPAGE,
citation=_CITATION,
features=features,
license=_LICENSE
)
def _split_generators(self, dl_manager):
# list taxonomies to download
if self.config.taxonomy == "all":
taxonomies = _taxonomies().values()
else:
taxonomies = [_taxonomies()[self.config.taxonomy]]
zip_urls = dict()
for taxonomy in taxonomies:
# download checksum file
checksum_path = _CHECKSUM_FNAME.format(taxonomy=taxonomy)
checksum_path = dl_manager.download(checksum_path)
tax_url = _CORPUS_URL.format(taxonomy=taxonomy)
# extract and build zip urls
with open(checksum_path, encoding="utf-8") as cfile:
for line in cfile:
fname = line.split()[1]
if fname.endswith(".xml.zip"):
zip_url = tax_url + fname # download url
fname = os.path.split(fname)[1] # removes subdirs
fname = fname[:-4] # removes .zip
zip_urls[fname] = zip_url # xml -> zip url
# extractions are made in cache folders and
# the path returned is the folder path, not the
# extracted file (or files). It is necessary to
# build the xml file path. It is made using the
# zip_urls dict structure.
extracted = dl_manager.download_and_extract(zip_urls)
xml_files = [os.path.join(v, k) for k, v in extracted.items()]
xml_files = sorted(xml_files)
return [
datasets.SplitGenerator(
name="corpus",
gen_kwargs={"filepaths": xml_files}
)
]
def _generate_examples(self, filepaths):
TEI_NS = "{http://www.tei-c.org/ns/1.0}"
parser_params = dict(
huge_tree=True,
encoding="utf-8",
tag=f"{TEI_NS}TEI"
)
_key = 0
for path in filepaths:
# parse xml file
for _, tei in etree.iterparse(path, **parser_params):
header = tei.find(f"{TEI_NS}teiHeader")
example = {
"meta": etree.tostring(
header, encoding="utf-8").decode("utf-8"),
"text": tei.find(f".//{TEI_NS}body/{TEI_NS}p").text
}
yield _key, example
_key += 1