|
import json |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
_CITATION = None |
|
|
|
|
|
_DESCRIPTION = """ |
|
WCEP10 dataset for summarization. |
|
From paper: "A Large-Scale Multi-Document Summarization Dataset from the Wikipedia |
|
Current Events Portal" by D. Gholipour et al." |
|
From paper: "PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document |
|
Summarization" by W. Xiao et al." |
|
|
|
""" |
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/abs-2005-10070, |
|
author = {Demian Gholipour Ghalandari and |
|
Chris Hokamp and |
|
Nghia The Pham and |
|
John Glover and |
|
Georgiana Ifrim}, |
|
title = {A Large-Scale Multi-Document Summarization Dataset from the Wikipedia |
|
Current Events Portal}, |
|
journal = {CoRR}, |
|
volume = {abs/2005.10070}, |
|
year = {2020}, |
|
url = {https://arxiv.org/abs/2005.10070}, |
|
eprinttype = {arXiv}, |
|
eprint = {2005.10070}, |
|
timestamp = {Fri, 22 May 2020 16:21:28 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2005-10070.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
|
|
|
|
@article{DBLP:journals/corr/abs-2110-08499, |
|
author = {Wen Xiao and |
|
Iz Beltagy and |
|
Giuseppe Carenini and |
|
Arman Cohan}, |
|
title = {{PRIMER:} Pyramid-based Masked Sentence Pre-training for Multi-document |
|
Summarization}, |
|
journal = {CoRR}, |
|
volume = {abs/2110.08499}, |
|
year = {2021}, |
|
url = {https://arxiv.org/abs/2110.08499}, |
|
eprinttype = {arXiv}, |
|
eprint = {2110.08499}, |
|
timestamp = {Fri, 22 Oct 2021 13:33:09 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2110-08499.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
_ABSTRACT = "summary" |
|
_ARTICLE = "document" |
|
|
|
class WCEP10SummarizationConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for WCEP10Summarization.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for WCEP10Summarization. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(WCEP10SummarizationConfig, self).__init__(**kwargs) |
|
|
|
|
|
class WCEP10SummarizationDataset(datasets.GeneratorBasedBuilder): |
|
"""WCEP10Summarization Dataset.""" |
|
|
|
_TRAIN_FILE = "train.zip" |
|
_VAL_FILE = "val.zip" |
|
_TEST_FILE = "test.zip" |
|
|
|
BUILDER_CONFIGS = [ |
|
WCEP10SummarizationConfig( |
|
name="newline", |
|
version=datasets.Version("1.0.0"), |
|
description="WCEP10 dataset for summarization, concat sections", |
|
), |
|
WCEP10SummarizationConfig( |
|
name="roberta", |
|
version=datasets.Version("1.0.0"), |
|
description="WCEP10 dataset for summarization, document", |
|
), |
|
WCEP10SummarizationConfig( |
|
name="bert", |
|
version=datasets.Version("1.0.0"), |
|
description="WCEP10 dataset for summarization, document", |
|
), |
|
WCEP10SummarizationConfig( |
|
name="list", |
|
version=datasets.Version("1.0.0"), |
|
description="WCEP10 dataset for summarization, document", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "roberta" |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
_ARTICLE: datasets.Sequence(datasets.Value("string")) if self.config.name == "list" else datasets.Value("string"), |
|
_ABSTRACT: datasets.Value("string"), |
|
|
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/allenai/PRIMER", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
train_path = os.path.join(dl_manager.download_and_extract(self._TRAIN_FILE), "train.txt") |
|
val_path = os.path.join(dl_manager.download_and_extract(self._VAL_FILE), "val.txt") |
|
test_path = os.path.join(dl_manager.download_and_extract(self._TEST_FILE), "test.txt") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate WCEP10Summarization examples.""" |
|
if self.config.name == "newline": |
|
join_ = "\n" |
|
elif self.config.name == "roberta": |
|
join_ = "</s>" |
|
elif self.config.name == "bert": |
|
join_ = "[SEP]" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
|
|
""" |
|
'summary': str, |
|
'document': List[str], |
|
""" |
|
document = data["document"] |
|
if self.config.name != "list": |
|
document = join_.join(document) |
|
summary = data["summary"] |
|
yield id_, {"document": document, "summary": summary} |
|
|