WCEP-10 / WCEP-10.py
ccdv's picture
for windows
571ae13
raw
history blame
5.51 kB
import json
import os
import datasets
from datasets.tasks import TextClassification
_CITATION = None
_DESCRIPTION = """
WCEP10 dataset for summarization.
From paper: "A Large-Scale Multi-Document Summarization Dataset from the Wikipedia
Current Events Portal" by D. Gholipour et al."
From paper: "PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document
Summarization" by W. Xiao et al."
"""
_CITATION = """\
@article{DBLP:journals/corr/abs-2005-10070,
author = {Demian Gholipour Ghalandari and
Chris Hokamp and
Nghia The Pham and
John Glover and
Georgiana Ifrim},
title = {A Large-Scale Multi-Document Summarization Dataset from the Wikipedia
Current Events Portal},
journal = {CoRR},
volume = {abs/2005.10070},
year = {2020},
url = {https://arxiv.org/abs/2005.10070},
eprinttype = {arXiv},
eprint = {2005.10070},
timestamp = {Fri, 22 May 2020 16:21:28 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2005-10070.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-2110-08499,
author = {Wen Xiao and
Iz Beltagy and
Giuseppe Carenini and
Arman Cohan},
title = {{PRIMER:} Pyramid-based Masked Sentence Pre-training for Multi-document
Summarization},
journal = {CoRR},
volume = {abs/2110.08499},
year = {2021},
url = {https://arxiv.org/abs/2110.08499},
eprinttype = {arXiv},
eprint = {2110.08499},
timestamp = {Fri, 22 Oct 2021 13:33:09 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2110-08499.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_ABSTRACT = "summary"
_ARTICLE = "document"
class WCEP10SummarizationConfig(datasets.BuilderConfig):
"""BuilderConfig for WCEP10Summarization."""
def __init__(self, **kwargs):
"""BuilderConfig for WCEP10Summarization.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(WCEP10SummarizationConfig, self).__init__(**kwargs)
class WCEP10SummarizationDataset(datasets.GeneratorBasedBuilder):
"""WCEP10Summarization Dataset."""
_TRAIN_FILE = "train.zip"
_VAL_FILE = "val.zip"
_TEST_FILE = "test.zip"
BUILDER_CONFIGS = [
WCEP10SummarizationConfig(
name="newline",
version=datasets.Version("1.0.0"),
description="WCEP10 dataset for summarization, concat sections",
),
WCEP10SummarizationConfig(
name="roberta",
version=datasets.Version("1.0.0"),
description="WCEP10 dataset for summarization, document",
),
WCEP10SummarizationConfig(
name="bert",
version=datasets.Version("1.0.0"),
description="WCEP10 dataset for summarization, document",
),
WCEP10SummarizationConfig(
name="list",
version=datasets.Version("1.0.0"),
description="WCEP10 dataset for summarization, document",
),
]
DEFAULT_CONFIG_NAME = "roberta"
def _info(self):
# Should return a datasets.DatasetInfo object
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
_ARTICLE: datasets.Sequence(datasets.Value("string")) if self.config.name == "list" else datasets.Value("string"),
_ABSTRACT: datasets.Value("string"),
#"id": datasets.Value("string"),
}
),
supervised_keys=None,
homepage="https://github.com/allenai/PRIMER",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_path = os.path.join(dl_manager.download_and_extract(self._TRAIN_FILE), "train.txt")
val_path = os.path.join(dl_manager.download_and_extract(self._VAL_FILE), "val.txt")
test_path = os.path.join(dl_manager.download_and_extract(self._TEST_FILE), "test.txt")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
),
]
def _generate_examples(self, filepath):
"""Generate WCEP10Summarization examples."""
if self.config.name == "newline":
join_ = "\n"
elif self.config.name == "roberta":
join_ = "</s>"
elif self.config.name == "bert":
join_ = "[SEP]"
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
"""
'summary': str,
'document': List[str],
"""
document = data["document"]
if self.config.name != "list":
document = join_.join(document)
summary = data["summary"]
yield id_, {"document": document, "summary": summary}