Datasets:

Size:
n<1K
ArXiv:
License:
File size: 12,442 Bytes
b09dc83
 
 
cb70f80
b09dc83
 
cb70f80
b09dc83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3b05c5
 
 
 
 
 
 
b09dc83
 
a3b05c5
b09dc83
a3b05c5
b09dc83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb70f80
 
 
 
b09dc83
 
cb70f80
 
 
b09dc83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb70f80
b09dc83
 
 
 
 
 
 
 
cb70f80
 
 
b09dc83
 
cb70f80
b09dc83
cb70f80
b09dc83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb70f80
 
 
 
 
 
 
 
 
b09dc83
cb70f80
 
b09dc83
 
 
 
 
 
 
 
 
 
 
 
 
cb70f80
 
 
 
 
 
 
 
 
 
 
b09dc83
 
cb70f80
 
b09dc83
 
 
 
 
 
 
 
 
cb70f80
b09dc83
cb70f80
 
 
 
b09dc83
 
 
cb70f80
b09dc83
 
 
 
 
 
 
 
 
 
 
cb70f80
 
 
 
 
 
b09dc83
 
 
 
 
 
 
 
cb70f80
 
 
 
b09dc83
 
 
cb70f80
 
 
b09dc83
 
 
cb70f80
 
 
b09dc83
 
 
cb70f80
 
 
b09dc83
cb70f80
 
 
 
b09dc83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb70f80
 
b09dc83
 
 
cb70f80
 
 
 
 
 
 
 
 
b09dc83
cb70f80
 
 
 
 
 
 
 
 
b09dc83
cb70f80
 
 
 
 
 
 
 
 
b09dc83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import os
import csv
import random
import librosa
import datasets
import numpy as np
from tqdm import tqdm
from glob import glob

_NAMES = {
    "chanyin": 0,
    "dianyin": 6,
    "shanghua": 2,
    "xiahua": 3,
    "huazhi": 4,
    "guazou": 4,
    "lianmo": 4,
    "liantuo": 4,
    "yaozhi": 5,
    "boxian": 1,
}

_NAME = [
    "chanyin",  # Vibrato
    "boxian",  # Plucks
    "shanghua",  # Upward Portamento
    "xiahua",  # Downward Portamento
    "huazhi/guazou/lianmo/liantuo",  # Glissando
    "yaozhi",  # Tremolo
    "dianyin",  # Point Note
]

_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}"

_DOMAIN = f"{_HOMEPAGE}/resolve/master/data"

_URLS = {
    "audio": f"{_DOMAIN}/audio.zip",
    "mel": f"{_DOMAIN}/mel.zip",
    "label": f"{_DOMAIN}/label.zip",
}

_TIME_LENGTH = 3  # seconds
_SAMPLE_RATE = 44100
_HOP_LENGTH = 512  # SAMPLE_RATE * ZHEN_LENGTH // 1000


class Guzheng_Tech99(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            features=(
                datasets.Features(
                    {
                        "audio": datasets.Audio(sampling_rate=44100),
                        "mel": datasets.Image(),
                        "label": datasets.Sequence(
                            feature={
                                "onset_time": datasets.Value("float32"),
                                "offset_time": datasets.Value("float32"),
                                "IPT": datasets.ClassLabel(num_classes=7, names=_NAME),
                                "note": datasets.Value("int8"),
                            }
                        ),
                    }
                )
                if self.config.name == "default"
                else datasets.Features(
                    {
                        "mel": datasets.features.Array3D(
                            dtype="float32", shape=(128, 258, 1)
                        ),
                        "cqt": datasets.features.Array3D(
                            dtype="float32", shape=(88, 258, 1)
                        ),
                        "chroma": datasets.features.Array3D(
                            dtype="float32", shape=(12, 258, 1)
                        ),
                        "label": datasets.features.Array2D(
                            dtype="float32", shape=(7, 258)
                        ),
                    }
                )
            ),
            homepage=_HOMEPAGE,
            license="CC-BY-NC-ND",
            version="1.2.0",
        )

    def _RoW_norm(self, data):
        common_sum = 0
        square_sum = 0
        tfle = 0
        for i in range(len(data)):
            tfle += (data[i].sum(-1).sum(0) != 0).astype("float").sum()
            common_sum += data[i].sum(-1).sum(-1)
            square_sum += (data[i] ** 2).sum(-1).sum(-1)

        common_avg = common_sum / tfle
        square_avg = square_sum / tfle
        std = np.sqrt(square_avg - common_avg**2)
        return common_avg, std

    def _norm(self, data):
        size = data.shape
        avg, std = self._RoW_norm(data)
        avg = np.tile(avg.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
        std = np.tile(std.reshape((1, -1, 1, 1)), (size[0], 1, size[2], size[3]))
        return (data - avg) / std

    def _load(self, wav_dir, csv_dir, groups):
        def files(wav_dir, csv_dir, group):
            flacs = sorted(glob(os.path.join(wav_dir, group, "*.flac")))
            if len(flacs) == 0:
                flacs = sorted(glob(os.path.join(wav_dir, group, "*.wav")))

            csvs = sorted(glob(os.path.join(csv_dir, group, "*.csv")))
            files = list(zip(flacs, csvs))
            if len(files) == 0:
                raise RuntimeError(f"Group {group} is empty")

            result = []
            for audio_path, csv_path in files:
                result.append((audio_path, csv_path))

            return result

        def logMel(y, sr=_SAMPLE_RATE):
            # 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
            mel = librosa.feature.melspectrogram(
                y=y,
                sr=sr,
                hop_length=_HOP_LENGTH,
                fmin=27.5,
            )
            return librosa.power_to_db(mel, ref=np.max)

        # Returns the CQT of the input audio
        def logCQT(y, sr=_SAMPLE_RATE):
            # 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
            cqt = librosa.cqt(
                y,
                sr=sr,
                hop_length=_HOP_LENGTH,
                fmin=27.5,
                n_bins=88,
                bins_per_octave=12,
            )
            return (
                (1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(cqt), ref=np.max)
            ) + 1.0

        def logChroma(y, sr=_SAMPLE_RATE):
            # 帧长为32ms (1000ms/(16000/512) = 32ms), D2的频率是73.418
            chroma = librosa.feature.chroma_stft(
                y=y,
                sr=sr,
                hop_length=_HOP_LENGTH,
            )
            return (
                (1.0 / 80.0) * librosa.core.amplitude_to_db(np.abs(chroma), ref=np.max)
            ) + 1.0

        def chunk_data(f):
            x = []
            xdata = np.transpose(f)
            s = _SAMPLE_RATE * _TIME_LENGTH // _HOP_LENGTH
            length = int(np.ceil((int(len(xdata) / s) + 1) * s))
            app = np.zeros((length - xdata.shape[0], xdata.shape[1]))
            xdata = np.concatenate((xdata, app), 0)
            for i in range(int(length / s)):
                data = xdata[int(i * s) : int(i * s + s)]
                x.append(np.transpose(data[:s, :]))

            return np.array(x)

        def load_all(audio_path, csv_path, hop=_HOP_LENGTH, n_IPTs=7, technique=_NAMES):
            # Load audio features: The shape of cqt (88, 8520), 8520 is the number of frames on the time axis
            y, sr = librosa.load(audio_path, sr=_SAMPLE_RATE)
            mel = logMel(y, sr)
            cqt = logCQT(y, sr)
            chroma = logChroma(y, sr)
            # Load the ground truth label
            n_steps = cqt.shape[1]
            IPT_label = np.zeros([n_IPTs, n_steps], dtype=int)
            with open(csv_path, "r", encoding="utf-8") as f:  # csv file for each audio
                reader = csv.DictReader(f, delimiter=",")
                for label in reader:  # each note
                    onset = float(label["onset_time"])
                    offset = float(label["offset_time"])
                    IPT = int(technique[label["IPT"]])
                    left = int(round(onset * _SAMPLE_RATE / hop))
                    frame_right = int(round(offset * _SAMPLE_RATE / hop))
                    frame_right = min(n_steps, frame_right)
                    IPT_label[IPT, left:frame_right] = 1

            return dict(
                audio_path=audio_path,
                csv_path=csv_path,
                mel=mel,
                cqt=cqt,
                chroma=chroma,
                IPT_label=IPT_label,
            )

        data = []
        # print(f"Loading {len(groups)} group{'s' if len(groups) > 1 else ''} ")
        for group in groups:
            for input_files in files(wav_dir, csv_dir, group):
                data.append(load_all(*input_files))

        for i, dic in tqdm(enumerate(data), total=len(data), desc="Feature extracting"):
            x_mel = chunk_data(dic["mel"])
            x_cqt = chunk_data(dic["cqt"])
            x_chroma = chunk_data(dic["chroma"])
            y_i = dic["IPT_label"]
            y_i = chunk_data(y_i)
            if i == 0:
                Xtr_mel = x_mel
                Xtr_cqt = x_cqt
                Xtr_chroma = x_chroma
                Ytr_i = y_i

            else:
                Xtr_mel = np.concatenate([Xtr_mel, x_mel], axis=0)
                Xtr_cqt = np.concatenate([Xtr_cqt, x_cqt], axis=0)
                Xtr_chroma = np.concatenate([Xtr_chroma, x_chroma], axis=0)
                Ytr_i = np.concatenate([Ytr_i, y_i], axis=0)

        # Transform the shape of the input
        Xtr_mel = np.expand_dims(Xtr_mel, axis=3)
        Xtr_cqt = np.expand_dims(Xtr_cqt, axis=3)
        Xtr_chroma = np.expand_dims(Xtr_chroma, axis=3)
        # Normalize
        Xtr_mel = self._norm(Xtr_mel)
        Xtr_cqt = self._norm(Xtr_cqt)
        Xtr_chroma = self._norm(Xtr_chroma)
        return [list(Xtr_mel), list(Xtr_cqt), list(Xtr_chroma)], list(Ytr_i)

    def _parse_csv_label(self, csv_file):
        label = []
        with open(csv_file, mode="r", encoding="utf-8") as file:
            for row in csv.DictReader(file):
                label.append(
                    {
                        "onset_time": float(row["onset_time"]),
                        "offset_time": float(row["offset_time"]),
                        "IPT": _NAME[_NAMES[row["IPT"]]],
                        "note": int(row["note"]),
                    }
                )

        return label

    def _split_generators(self, dl_manager):
        audio_files = dl_manager.download_and_extract(_URLS["audio"])
        csv_files = dl_manager.download_and_extract(_URLS["label"])
        trainset, validset, testset = [], [], []
        if self.config.name == "default":
            files = {}
            mel_files = dl_manager.download_and_extract(_URLS["mel"])
            for path in dl_manager.iter_files([audio_files]):
                fname: str = os.path.basename(path)
                if fname.endswith(".flac"):
                    item_id = fname.split(".")[0]
                    files[item_id] = {"audio": path}

            for path in dl_manager.iter_files([mel_files]):
                fname = os.path.basename(path)
                if fname.endswith(".jpg"):
                    item_id = fname.split(".")[0]
                    files[item_id]["mel"] = path

            for path in dl_manager.iter_files([csv_files]):
                fname = os.path.basename(path)
                if fname.endswith(".csv"):
                    item_id = fname.split(".")[0]
                    files[item_id]["label"] = self._parse_csv_label(path)

            for item in files.values():
                if "train" in item["audio"]:
                    trainset.append(item)

                elif "validation" in item["audio"]:
                    validset.append(item)

                elif "test" in item["audio"]:
                    testset.append(item)

        else:
            audio_dir = os.path.join(audio_files, "audio")
            csv_dir = os.path.join(csv_files, "label")
            X_train, Y_train = self._load(audio_dir, csv_dir, ["train"])
            X_valid, Y_valid = self._load(audio_dir, csv_dir, ["validation"])
            X_test, Y_test = self._load(audio_dir, csv_dir, ["test"])
            for i in range(len(Y_train)):
                trainset.append(
                    {
                        "mel": X_train[0][i],
                        "cqt": X_train[1][i],
                        "chroma": X_train[2][i],
                        "label": Y_train[i],
                    }
                )

            for i in range(len(Y_valid)):
                validset.append(
                    {
                        "mel": X_valid[0][i],
                        "cqt": X_valid[1][i],
                        "chroma": X_valid[2][i],
                        "label": Y_valid[i],
                    }
                )

            for i in range(len(Y_test)):
                testset.append(
                    {
                        "mel": X_test[0][i],
                        "cqt": X_test[1][i],
                        "chroma": X_test[2][i],
                        "label": Y_test[i],
                    }
                )

        random.shuffle(trainset)
        random.shuffle(validset)
        random.shuffle(testset)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"files": trainset}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={"files": validset}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"files": testset}
            ),
        ]

    def _generate_examples(self, files):
        for i, path in enumerate(files):
            yield i, path