|
import os |
|
import socket |
|
import random |
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
_NAMES_1 = { |
|
1: "Classic", |
|
2: "Non_classic" |
|
} |
|
|
|
_NAMES_2 = { |
|
3: "Symphony", |
|
4: "Opera", |
|
5: "Solo", |
|
6: "Chamber", |
|
7: "Pop", |
|
8: "Dance_and_house", |
|
9: "Indie", |
|
10: "Soul_or_r_and_b", |
|
11: "Rock" |
|
} |
|
|
|
_NAMES_3 = { |
|
3: "Symphony", |
|
4: "Opera", |
|
5: "Solo", |
|
6: "Chamber", |
|
12: "Pop_vocal_ballad", |
|
13: "Adult_contemporary", |
|
14: "Teen_pop", |
|
15: "Contemporary_dance_pop", |
|
16: "Dance_pop", |
|
17: "Classic_indie_pop", |
|
18: "Chamber_cabaret_and_art_pop", |
|
10: "Soul_or_r_and_b", |
|
19: "Adult_alternative_rock", |
|
20: "Uplifting_anthemic_rock", |
|
21: "Soft_rock", |
|
22: "Acoustic_pop" |
|
} |
|
|
|
_DBNAME = os.path.basename(__file__).split('.')[0] |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/ccmusic-database/{_DBNAME}" |
|
|
|
_CITATION = """\ |
|
@dataset{zhaorui_liu_2021_5676893, |
|
author = {Zhaorui Liu, Monan Zhou, Shenyang Xu, Yuan Wang, Zhaowen Wang, Wei Li and Zijin Li}, |
|
title = {CCMUSIC DATABASE: A Music Data Sharing Platform for Computational Musicology Research}, |
|
month = {nov}, |
|
year = {2021}, |
|
publisher = {Zenodo}, |
|
version = {1.1}, |
|
doi = {10.5281/zenodo.5676893}, |
|
url = {https://doi.org/10.5281/zenodo.5676893} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This database contains about 1700 musical pieces (.mp3 format) with lengths of 270-300s that are divided into 17 genres in total. |
|
""" |
|
|
|
|
|
class music_genre(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"mel": datasets.Image(), |
|
"cqt": datasets.Image(), |
|
"chroma": datasets.Image(), |
|
"fst_level_label": datasets.features.ClassLabel(names=list(_NAMES_1.values())), |
|
"sec_level_label": datasets.features.ClassLabel(names=list(_NAMES_2.values())), |
|
"thr_level_label": datasets.features.ClassLabel(names=list(_NAMES_3.values())) |
|
} |
|
), |
|
supervised_keys=("mel", "sec_level_label"), |
|
homepage=_HOMEPAGE, |
|
license="mit", |
|
citation=_CITATION, |
|
description=_DESCRIPTION, |
|
task_templates=[ |
|
ImageClassification( |
|
task="image-classification", |
|
image_column="mel", |
|
label_column="sec_level_label", |
|
) |
|
] |
|
) |
|
|
|
def _cdn_url(self, ip='127.0.0.1', port=80): |
|
try: |
|
|
|
with socket.create_connection((ip, port), timeout=5): |
|
return f'http://{ip}/{_DBNAME}/data/genre_data.zip' |
|
except (socket.timeout, socket.error): |
|
return f"{_HOMEPAGE}/resolve/main/data/genre_data.zip" |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = dl_manager.download_and_extract(self._cdn_url()) |
|
files = dl_manager.iter_files([data_files]) |
|
|
|
dataset = [] |
|
for path in files: |
|
if os.path.basename(path).endswith(".jpg") and 'mel' in path: |
|
dataset.append({ |
|
'mel': path, |
|
'cqt': path.replace('\\mel\\', '\\cqt\\').replace('/mel/', '/cqt/'), |
|
'chroma': path.replace('\\mel\\', '\\chroma\\').replace('/mel/', '/chroma/') |
|
}) |
|
|
|
random.shuffle(dataset) |
|
data_count = len(dataset) |
|
p80 = int(data_count * 0.8) |
|
p90 = int(data_count * 0.9) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": dataset[:p80] |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"files": dataset[p80:p90] |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"files": dataset[p90:] |
|
}, |
|
), |
|
] |
|
|
|
def _calc_label(self, path, depth, substr='/mel/'): |
|
spect = substr |
|
dirpath = os.path.dirname(path) |
|
substr_index = dirpath.find(spect) |
|
if substr_index < 0: |
|
spect = spect.replace('/', '\\') |
|
substr_index = dirpath.find(spect) |
|
|
|
labstr = dirpath[substr_index + len(spect):] |
|
labs = labstr.split('/') |
|
if len(labs) < 2: |
|
labs = labstr.split('\\') |
|
|
|
if depth <= len(labs): |
|
return int(labs[depth - 1].split('_')[0]) |
|
else: |
|
return int(labs[-1].split('_')[0]) |
|
|
|
def _generate_examples(self, files): |
|
for i, path in enumerate(files): |
|
yield i, { |
|
"mel": path['mel'], |
|
"cqt": path['cqt'], |
|
"chroma": path['chroma'], |
|
"fst_level_label": _NAMES_1[self._calc_label(path['mel'], 1)], |
|
"sec_level_label": _NAMES_2[self._calc_label(path['mel'], 2)], |
|
"thr_level_label": _NAMES_3[self._calc_label(path['mel'], 3)] |
|
} |
|
|