music_genre / music_genre.py
MuGeminorum
fix thr lv label
36996c5
raw
history blame
5.28 kB
import os
import socket
import random
import datasets
from datasets.tasks import ImageClassification
_NAMES_1 = {
1: "Classic",
2: "Non_classic"
}
_NAMES_2 = {
3: "Symphony",
4: "Opera",
5: "Solo",
6: "Chamber",
7: "Pop",
8: "Dance_and_house",
9: "Indie",
10: "Soul_or_r_and_b",
11: "Rock"
}
_NAMES_3 = {
3: "Symphony",
4: "Opera",
5: "Solo",
6: "Chamber",
12: "Pop_vocal_ballad",
13: "Adult_contemporary",
14: "Teen_pop",
15: "Contemporary_dance_pop",
16: "Dance_pop",
17: "Classic_indie_pop",
18: "Chamber_cabaret_and_art_pop",
10: "Soul_or_r_and_b",
19: "Adult_alternative_rock",
20: "Uplifting_anthemic_rock",
21: "Soft_rock",
22: "Acoustic_pop"
}
_DBNAME = os.path.basename(__file__).split('.')[0]
_HOMEPAGE = f"https://huggingface.co/datasets/ccmusic-database/{_DBNAME}"
_CITATION = """\
@dataset{zhaorui_liu_2021_5676893,
author = {Zhaorui Liu, Monan Zhou, Shenyang Xu, Yuan Wang, Zhaowen Wang, Wei Li and Zijin Li},
title = {CCMUSIC DATABASE: A Music Data Sharing Platform for Computational Musicology Research},
month = {nov},
year = {2021},
publisher = {Zenodo},
version = {1.1},
doi = {10.5281/zenodo.5676893},
url = {https://doi.org/10.5281/zenodo.5676893}
}
"""
_DESCRIPTION = """\
This database contains about 1700 musical pieces (.mp3 format) with lengths of 270-300s that are divided into 17 genres in total.
"""
class music_genre(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"mel": datasets.Image(),
"cqt": datasets.Image(),
"chroma": datasets.Image(),
"fst_level_label": datasets.features.ClassLabel(names=list(_NAMES_1.values())),
"sec_level_label": datasets.features.ClassLabel(names=list(_NAMES_2.values())),
"thr_level_label": datasets.features.ClassLabel(names=list(_NAMES_3.values()))
}
),
supervised_keys=("mel", "sec_level_label"),
homepage=_HOMEPAGE,
license="mit",
citation=_CITATION,
description=_DESCRIPTION,
task_templates=[
ImageClassification(
task="image-classification",
image_column="mel",
label_column="sec_level_label",
)
]
)
def _cdn_url(self, ip='127.0.0.1', port=80):
try:
# easy for local test
with socket.create_connection((ip, port), timeout=5):
return f'http://{ip}/{_DBNAME}/data/genre_data.zip'
except (socket.timeout, socket.error):
return f"{_HOMEPAGE}/resolve/main/data/genre_data.zip"
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(self._cdn_url())
files = dl_manager.iter_files([data_files])
dataset = []
for path in files:
if os.path.basename(path).endswith(".jpg") and 'mel' in path:
dataset.append({
'mel': path,
'cqt': path.replace('\\mel\\', '\\cqt\\').replace('/mel/', '/cqt/'),
'chroma': path.replace('\\mel\\', '\\chroma\\').replace('/mel/', '/chroma/')
})
random.shuffle(dataset)
data_count = len(dataset)
p80 = int(data_count * 0.8)
p90 = int(data_count * 0.9)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dataset[:p80]
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"files": dataset[p80:p90]
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files": dataset[p90:]
},
),
]
def _calc_label(self, path, depth, substr='/mel/'):
spect = substr
dirpath = os.path.dirname(path)
substr_index = dirpath.find(spect)
if substr_index < 0:
spect = spect.replace('/', '\\')
substr_index = dirpath.find(spect)
labstr = dirpath[substr_index + len(spect):]
labs = labstr.split('/')
if len(labs) < 2:
labs = labstr.split('\\')
if depth <= len(labs):
return int(labs[depth - 1].split('_')[0])
else:
return int(labs[-1].split('_')[0])
def _generate_examples(self, files):
for i, path in enumerate(files):
yield i, {
"mel": path['mel'],
"cqt": path['cqt'],
"chroma": path['chroma'],
"fst_level_label": _NAMES_1[self._calc_label(path['mel'], 1)],
"sec_level_label": _NAMES_2[self._calc_label(path['mel'], 2)],
"thr_level_label": _NAMES_3[self._calc_label(path['mel'], 3)]
}