|
import json |
|
import gzip |
|
import os |
|
from pathlib import Path |
|
import re |
|
from time import sleep |
|
|
|
import datasets |
|
import numpy as np |
|
from tqdm import tqdm |
|
import requests |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
Libriheavy is a labeled version of Librilight. |
|
This (unofficial) huggingface dataset contains the medium (4500 hours) split of the Libriheavy dataset with alignments and mel spectrograms. |
|
""" |
|
|
|
_URL = """\ |
|
https://github.com/k2-fsa/libriheavy |
|
""" |
|
|
|
_CITATION = """\ |
|
@article{kang2023libriheavy, |
|
title={Libriheavy: a 50,000 hours asr corpus with punctuation casing and context}, |
|
author={Kang, Wei and Yang, Xiaoyu and Yao, Zengwei and Kuang, Fangjun and Yang, Yifan and Guo, Liyong and Lin, Long and Povey, Daniel}, |
|
journal={arXiv preprint arXiv:2309.08105}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
PATH = "./medium_data" |
|
|
|
class LibriheavyConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Libriheavy.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Libriheavy. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(LibriheavyConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Libriheavy(datasets.GeneratorBasedBuilder): |
|
"""Libriheavy dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
LibriheavyConfig(name="libriheavy", version=datasets.Version("1.0.0"), description="Libriheavy dataset."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"speaker_name": datasets.Value("string"), |
|
"speaker_vec": datasets.Sequence(datasets.Value("float32")), |
|
"audio": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"word_segments": datasets.Sequence( |
|
{ |
|
"start": datasets.Value("float32"), |
|
"end": datasets.Value("float32"), |
|
"word": datasets.Value("string"), |
|
} |
|
), |
|
"phone_segments": datasets.Sequence( |
|
{ |
|
"start": datasets.Value("float32"), |
|
"end": datasets.Value("float32"), |
|
"phone": datasets.Value("string"), |
|
} |
|
), |
|
"mel_spectrogram": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"attributes": datasets.Features( |
|
{ |
|
"pitch": datasets.Sequence(datasets.Value("float32")), |
|
"energy": datasets.Sequence(datasets.Value("float32")), |
|
"snr": datasets.Sequence(datasets.Value("float32")), |
|
"srmr": datasets.Sequence(datasets.Value("float32")), |
|
} |
|
), |
|
"overall_attributes": datasets.Features( |
|
{ |
|
"pitch": datasets.Value("float32"), |
|
"energy": datasets.Value("float32"), |
|
"snr": datasets.Value("float32"), |
|
"srmr": datasets.Value("float32"), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
speaker_list = f"{PATH}/speaker_list.json" |
|
speaker_list = dl_manager.download_and_extract(speaker_list) |
|
with open(speaker_list, "r") as f: |
|
speaker_list = json.load(f) |
|
|
|
speaker_metadata = {} |
|
for speaker_id, metadata_path in tqdm(speaker_list.items()): |
|
hf_home = os.environ.get("HF_HOME", "~/.cache/huggingface") |
|
metadata_cache = f"{hf_home}/libriheavy_metadata" |
|
|
|
if os.path.exists(f"{metadata_cache}/{speaker_id}.json"): |
|
with open(f"{metadata_cache}/{speaker_id}.json", "r") as f: |
|
speaker_metadata[speaker_id] = json.load(f) |
|
else: |
|
Path(metadata_cache).mkdir(parents=True, exist_ok=True) |
|
metadata_path = f"{PATH}/{speaker_id}/{metadata_path}" |
|
metadata_path = dl_manager.download_and_extract(metadata_path) |
|
with open(metadata_path, "r") as f: |
|
speaker_metadata[speaker_id] = json.load(f) |
|
try: |
|
speaker_name = requests.get(f"https://librivox.org/reader/{speaker_id}").text |
|
speaker_name = re.findall("<h1>([^<>]+)</h1>", speaker_name)[0] |
|
sleep(0.5) |
|
except IndexError: |
|
print(f"No name found for speaker with id {speaker_id}") |
|
speaker_name = "None" |
|
speaker_metadata[speaker_id]["name"] = speaker_name |
|
with open(f"{metadata_cache}/{speaker_id}.json", "w") as f: |
|
json.dump(speaker_metadata[speaker_id], f) |
|
|
|
speaker_chunks = [] |
|
even_speaker_chunks = [] |
|
odd_speaker_chunks = [] |
|
for speaker_id, metadata in speaker_metadata.items(): |
|
for chunk_id, chunk in metadata["chunks"].items(): |
|
chunk_dict = { |
|
"speaker_id": speaker_id, |
|
"speaker_name": metadata["name"], |
|
"id": f"{speaker_id}_{chunk_id}", |
|
"audio": dl_manager.download(f"{PATH}/{speaker_id}/{chunk['npz'].replace('.gz', '')}"), |
|
"text": dl_manager.download(f"{PATH}/{speaker_id}/{chunk['json']}"), |
|
} |
|
speaker_chunks.append(chunk_dict) |
|
if int(chunk_id) % 2 == 0: |
|
even_speaker_chunks.append(chunk_dict) |
|
else: |
|
odd_speaker_chunks.append(chunk_dict) |
|
|
|
np.random.seed(42) |
|
np.random.shuffle(speaker_chunks) |
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={"speaker_chunks": speaker_chunks, "split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name="validation", |
|
gen_kwargs={"speaker_chunks": speaker_chunks, "split": "validation"} |
|
), |
|
datasets.SplitGenerator( |
|
name="even", |
|
gen_kwargs={"speaker_chunks": even_speaker_chunks, "split": "even"} |
|
), |
|
datasets.SplitGenerator( |
|
name="odd", |
|
gen_kwargs={"speaker_chunks": odd_speaker_chunks, "split": "odd"} |
|
), |
|
datasets.SplitGenerator( |
|
name="even100", |
|
gen_kwargs={"speaker_chunks": even_speaker_chunks, "split": "even", "hours": 100} |
|
), |
|
datasets.SplitGenerator( |
|
name="odd100", |
|
gen_kwargs={"speaker_chunks": odd_speaker_chunks, "split": "odd", "hours": 100} |
|
), |
|
datasets.SplitGenerator( |
|
name="even500", |
|
gen_kwargs={"speaker_chunks": even_speaker_chunks, "split": "even", "hours": 500} |
|
), |
|
datasets.SplitGenerator( |
|
name="odd500", |
|
gen_kwargs={"speaker_chunks": odd_speaker_chunks, "split": "odd", "hours": 500} |
|
), |
|
datasets.SplitGenerator( |
|
name="even1000", |
|
gen_kwargs={"speaker_chunks": even_speaker_chunks, "split": "even", "hours": 1000} |
|
), |
|
datasets.SplitGenerator( |
|
name="odd1000", |
|
gen_kwargs={"speaker_chunks": odd_speaker_chunks, "split": "odd", "hours": 1000} |
|
), |
|
] |
|
|
|
def _generate_examples(self, speaker_chunks, split, hours=None): |
|
"""Yields examples.""" |
|
hours_streamed = 0 |
|
finish_stream = False |
|
if hours is None: |
|
hours = float("inf") |
|
for chunk in speaker_chunks: |
|
if finish_stream: |
|
break |
|
retry = 0 |
|
while retry < 10: |
|
try: |
|
npz = dict(np.load(chunk["audio"], allow_pickle=True)) |
|
break |
|
except Exception as e: |
|
print(e, "retrying in 60s") |
|
sleep(60) |
|
retry += 1 |
|
utterances = npz.keys() |
|
with gzip.open(chunk["text"], "rt") as f: |
|
text = json.load(f) |
|
if split in ["train", "even", "odd"]: |
|
for utterance_id, utterance in text.items(): |
|
|
|
if utterance_id == sorted(list(text.keys()))[-1]: |
|
continue |
|
npz_item = npz[str(utterance_id)].item() |
|
result = { |
|
"id": chunk["speaker_id"] + "_" + utterance_id, |
|
"speaker_id": chunk["speaker_id"], |
|
"speaker_name": chunk["speaker_name"], |
|
"speaker_vec": npz_item["d_vector"][0], |
|
"audio": chunk["audio"], |
|
"text": " ".join([segment[2] for segment in utterance["word_segments"] if "<" not in segment[2]]), |
|
"word_segments": [ |
|
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"] |
|
], |
|
"phone_segments": [ |
|
{"start": segment[0], "end": segment[1], "phone": segment[2]} for segment in utterance["phone_segments"] |
|
], |
|
"mel_spectrogram": npz_item["mel"][0][0], |
|
"attributes": { |
|
"pitch": npz_item["pitch"][0], |
|
"energy": npz_item["energy"][0], |
|
"snr": npz_item["snr"][0], |
|
"srmr": npz_item["srmr"][0], |
|
}, |
|
"overall_attributes": { |
|
"pitch": npz_item["overall_pitch"], |
|
"energy": npz_item["overall_energy"], |
|
"snr": npz_item["overall_snr"], |
|
"srmr": npz_item["overall_srmr"], |
|
}, |
|
} |
|
hours_streamed += (utterance["word_segments"][-1][1] - utterance["word_segments"][0][0]) / 3600 |
|
yield chunk["speaker_id"] + "_" + utterance_id, result |
|
if hours_streamed >= hours: |
|
finish_stream = True |
|
break |
|
else: |
|
|
|
utterance_id = sorted(list(text.keys()))[-1] |
|
utterance = text[utterance_id] |
|
npz_item = npz[str(utterance_id)].item() |
|
result = { |
|
"id": chunk["speaker_id"] + "_" + utterance_id, |
|
"speaker_id": chunk["speaker_id"], |
|
"speaker_vec": npz_item["d_vector"][0], |
|
"speaker_name": chunk["speaker_name"], |
|
"audio": chunk["audio"], |
|
"text": " ".join([segment[2] for segment in utterance["word_segments"] if "<" not in segment[2]]), |
|
"word_segments": [ |
|
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"] |
|
], |
|
"phone_segments": [ |
|
{"start": segment[0], "end": segment[1], "phone": segment[2]} for segment in utterance["phone_segments"] |
|
], |
|
"mel_spectrogram": npz_item["mel"][0][0], |
|
"attributes": { |
|
"pitch": npz_item["pitch"][0], |
|
"energy": npz_item["energy"][0], |
|
"snr": npz_item["snr"][0], |
|
"srmr": npz_item["srmr"][0], |
|
}, |
|
"overall_attributes": { |
|
"pitch": npz_item["overall_pitch"], |
|
"energy": npz_item["overall_energy"], |
|
"snr": npz_item["overall_snr"], |
|
"srmr": npz_item["overall_srmr"], |
|
}, |
|
} |
|
hours_streamed += (utterance["word_segments"][-1][1] - utterance["word_segments"][0][0]) / 3600 |
|
yield chunk["speaker_id"] + "_" + utterance_id, result |
|
if hours_streamed >= hours: |
|
finish_stream = True |
|
break |