import json
import gzip
import os
from pathlib import Path
import re
from time import sleep
import datasets
import numpy as np
from tqdm import tqdm
import requests
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
Libriheavy is a labeled version of Librilight.
This (unofficial) huggingface dataset contains the medium (4500 hours) split of the Libriheavy dataset with alignments and mel spectrograms.
"""
_URL = """\
https://github.com/k2-fsa/libriheavy
"""
_CITATION = """\
@article{kang2023libriheavy,
title={Libriheavy: a 50,000 hours asr corpus with punctuation casing and context},
author={Kang, Wei and Yang, Xiaoyu and Yao, Zengwei and Kuang, Fangjun and Yang, Yifan and Guo, Liyong and Lin, Long and Povey, Daniel},
journal={arXiv preprint arXiv:2309.08105},
year={2023}
}
"""
PATH = "./medium_data"
class LibriheavyConfig(datasets.BuilderConfig):
"""BuilderConfig for Libriheavy."""
def __init__(self, **kwargs):
"""BuilderConfig for Libriheavy.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(LibriheavyConfig, self).__init__(**kwargs)
class Libriheavy(datasets.GeneratorBasedBuilder):
"""Libriheavy dataset."""
BUILDER_CONFIGS = [
LibriheavyConfig(name="libriheavy", version=datasets.Version("1.0.0"), description="Libriheavy dataset."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"speaker_name": datasets.Value("string"),
"speaker_vec": datasets.Sequence(datasets.Value("float32")),
"audio": datasets.Value("string"),
"text": datasets.Value("string"),
"word_segments": datasets.Sequence(
{
"start": datasets.Value("float32"),
"end": datasets.Value("float32"),
"word": datasets.Value("string"),
}
),
"phone_segments": datasets.Sequence(
{
"start": datasets.Value("float32"),
"end": datasets.Value("float32"),
"phone": datasets.Value("string"),
}
),
"mel_spectrogram": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))),
"attributes": datasets.Features(
{
"pitch": datasets.Sequence(datasets.Value("float32")),
"energy": datasets.Sequence(datasets.Value("float32")),
"snr": datasets.Sequence(datasets.Value("float32")),
"srmr": datasets.Sequence(datasets.Value("float32")),
}
),
"overall_attributes": datasets.Features(
{
"pitch": datasets.Value("float32"),
"energy": datasets.Value("float32"),
"snr": datasets.Value("float32"),
"srmr": datasets.Value("float32"),
}
),
}
),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# first, we load speaker_list.json
speaker_list = f"{PATH}/speaker_list.json"
speaker_list = dl_manager.download_and_extract(speaker_list)
with open(speaker_list, "r") as f:
speaker_list = json.load(f)
# now we load the individual speaker metadata
speaker_metadata = {}
for speaker_id, metadata_path in tqdm(speaker_list.items()):
hf_home = os.environ.get("HF_HOME", "~/.cache/huggingface")
metadata_cache = f"{hf_home}/libriheavy_metadata"
# we always cache the speaker metadata, as it is small
if os.path.exists(f"{metadata_cache}/{speaker_id}.json"):
with open(f"{metadata_cache}/{speaker_id}.json", "r") as f:
speaker_metadata[speaker_id] = json.load(f)
else:
Path(metadata_cache).mkdir(parents=True, exist_ok=True)
metadata_path = f"{PATH}/{speaker_id}/{metadata_path}"
metadata_path = dl_manager.download_and_extract(metadata_path)
with open(metadata_path, "r") as f:
speaker_metadata[speaker_id] = json.load(f)
try:
speaker_name = requests.get(f"https://librivox.org/reader/{speaker_id}").text
speaker_name = re.findall("
([^<>]+)
", speaker_name)[0]
sleep(0.5)
except IndexError:
print(f"No name found for speaker with id {speaker_id}")
speaker_name = "None"
speaker_metadata[speaker_id]["name"] = speaker_name
with open(f"{metadata_cache}/{speaker_id}.json", "w") as f:
json.dump(speaker_metadata[speaker_id], f)
speaker_chunks = []
even_speaker_chunks = []
odd_speaker_chunks = []
for speaker_id, metadata in speaker_metadata.items():
for chunk_id, chunk in metadata["chunks"].items():
chunk_dict = {
"speaker_id": speaker_id,
"speaker_name": metadata["name"],
"id": f"{speaker_id}_{chunk_id}",
"audio": dl_manager.download(f"{PATH}/{speaker_id}/{chunk['npz'].replace('.gz', '')}"),
"text": dl_manager.download(f"{PATH}/{speaker_id}/{chunk['json']}"),
}
speaker_chunks.append(chunk_dict)
if int(chunk_id) % 2 == 0:
even_speaker_chunks.append(chunk_dict)
else:
odd_speaker_chunks.append(chunk_dict)
# shuffle the chunks
np.random.seed(42)
np.random.shuffle(speaker_chunks)
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={"speaker_chunks": speaker_chunks, "split": "train"}
),
datasets.SplitGenerator(
name="validation",
gen_kwargs={"speaker_chunks": speaker_chunks, "split": "validation"}
),
datasets.SplitGenerator(
name="even",
gen_kwargs={"speaker_chunks": even_speaker_chunks, "split": "even"}
),
datasets.SplitGenerator(
name="odd",
gen_kwargs={"speaker_chunks": odd_speaker_chunks, "split": "odd"}
),
]
def _generate_examples(self, speaker_chunks, split):
"""Yields examples."""
for chunk in speaker_chunks:
npz = dict(np.load(chunk["audio"], allow_pickle=True))
utterances = npz.keys()
with gzip.open(chunk["text"], "rt") as f:
text = json.load(f)
if split in ["train", "even", "odd"]:
for utterance_id, utterance in text.items():
# skip the last utterance
if utterance_id == sorted(list(text.keys()))[-1]:
continue
npz_item = npz[str(utterance_id)].item()
result = {
"id": chunk["speaker_id"] + "_" + utterance_id,
"speaker_id": chunk["speaker_id"],
"speaker_name": chunk["speaker_name"],
"speaker_vec": npz_item["d_vector"][0],
"audio": chunk["audio"],
"text": " ".join([segment[2] for segment in utterance["word_segments"] if "<" not in segment[2]]),
"word_segments": [
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"]
],
"phone_segments": [
{"start": segment[0], "end": segment[1], "phone": segment[2]} for segment in utterance["phone_segments"]
],
"mel_spectrogram": npz_item["mel"][0][0],
"attributes": {
"pitch": npz_item["pitch"][0],
"energy": npz_item["energy"][0],
"snr": npz_item["snr"][0],
"srmr": npz_item["srmr"][0],
},
"overall_attributes": {
"pitch": npz_item["overall_pitch"],
"energy": npz_item["overall_energy"],
"snr": npz_item["overall_snr"],
"srmr": npz_item["overall_srmr"],
},
}
yield chunk["speaker_id"] + "_" + utterance_id, result
else:
# only use the last utterance
utterance_id = sorted(list(text.keys()))[-1]
utterance = text[utterance_id]
npz_item = npz[str(utterance_id)].item()
result = {
"id": chunk["speaker_id"] + "_" + utterance_id,
"speaker_id": chunk["speaker_id"],
"speaker_vec": npz_item["d_vector"][0],
"speaker_name": chunk["speaker_name"],
"audio": chunk["audio"],
"text": " ".join([segment[2] for segment in utterance["word_segments"] if "<" not in segment[2]]),
"word_segments": [
{"start": segment[0], "end": segment[1], "word": segment[2]} for segment in utterance["word_segments"]
],
"phone_segments": [
{"start": segment[0], "end": segment[1], "phone": segment[2]} for segment in utterance["phone_segments"]
],
"mel_spectrogram": npz_item["mel"][0][0],
"attributes": {
"pitch": npz_item["pitch"][0],
"energy": npz_item["energy"][0],
"snr": npz_item["snr"][0],
"srmr": npz_item["srmr"][0],
},
"overall_attributes": {
"pitch": npz_item["overall_pitch"],
"energy": npz_item["overall_energy"],
"snr": npz_item["overall_snr"],
"srmr": npz_item["overall_srmr"],
},
}
yield chunk["speaker_id"] + "_" + utterance_id, result