|
from datasets import load_dataset |
|
from tqdm.auto import tqdm |
|
from speech_collator import SpeechCollator |
|
import json |
|
from torch.utils.data import DataLoader |
|
import torch |
|
from vocex import Vocex |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import numpy as np |
|
|
|
vocex = Vocex.from_pretrained("cdminix/vocex") |
|
|
|
|
|
dataset = load_dataset("libritts-r-aligned.py") |
|
|
|
|
|
with open("data/speaker2idx.json", "r") as f: |
|
speaker2idx = json.load(f) |
|
idx2speaker = {v: k for k, v in speaker2idx.items()} |
|
with open("data/phone2idx.json", "r") as f: |
|
phone2idx = json.load(f) |
|
idx2phone = {v: k for k, v in phone2idx.items()} |
|
|
|
collator = SpeechCollator( |
|
speaker2idx=speaker2idx, |
|
phone2idx=phone2idx, |
|
) |
|
|
|
dataloader = DataLoader( |
|
dataset["dev"], |
|
batch_size=1, |
|
shuffle=False, |
|
collate_fn=collator.collate_fn, |
|
num_workers=4, |
|
) |
|
|
|
def resample(x, vpw=5): |
|
return np.interp(np.linspace(0, 1, vpw), np.linspace(0, 1, len(x)), x) |
|
|
|
mean_pitchs = [] |
|
std_pitchs = [] |
|
mean_energys = [] |
|
std_energys = [] |
|
mean_durations = [] |
|
std_durations = [] |
|
mean_dvecs = [] |
|
std_dvecs = [] |
|
|
|
for item in tqdm(dataloader): |
|
result = vocex.model(item["mel"], inference=True) |
|
pitch = result["measures"]["pitch"] |
|
energy = result["measures"]["energy"] |
|
va = result["measures"]["voice_activity_binary"] |
|
dvec = result["dvector"] |
|
mean_pitch = pitch.mean() |
|
std_pitch = pitch.std() |
|
mean_energy = energy.mean() |
|
std_energy = energy.std() |
|
durations = item["phone_durations"].squeeze().numpy() |
|
durations = np.log(durations + 1) |
|
mean_duration = durations.mean() |
|
std_duration = durations.std() |
|
mean_pitchs.append(mean_pitch) |
|
std_pitchs.append(std_pitch) |
|
mean_energys.append(mean_energy) |
|
std_energys.append(std_energy) |
|
mean_durations.append(mean_duration) |
|
std_durations.append(std_duration) |
|
mean_dvecs.append(dvec.mean()) |
|
std_dvecs.append(dvec.std()) |
|
|
|
mean_pitch = [float(np.mean(mean_pitchs)), float(np.std(mean_pitchs))] |
|
std_pitch = [float(np.mean(std_pitchs)), float(np.std(std_pitchs))] |
|
mean_energy = [float(np.mean(mean_energys)), float(np.std(mean_energys))] |
|
std_energy = [float(np.mean(std_energys)), float(np.std(std_energys))] |
|
mean_duration = [float(np.mean(mean_durations)), float(np.std(mean_durations))] |
|
std_duration = [float(np.mean(std_durations)), float(np.std(std_durations))] |
|
mean_dvec = [float(np.mean(mean_dvecs)), float(np.std(mean_dvecs))] |
|
std_dvec = [float(np.mean(std_dvecs)), float(np.std(std_dvecs))] |
|
|
|
|
|
stats = { |
|
"mean_pitch": mean_pitch, |
|
"std_pitch": std_pitch, |
|
"mean_energy": mean_energy, |
|
"std_energy": std_energy, |
|
"mean_duration": mean_duration, |
|
"std_duration": std_duration, |
|
"mean_dvec": mean_dvec, |
|
"std_dvec": std_dvec, |
|
} |
|
|
|
with open("data/stats.json", "w") as f: |
|
json.dump(stats, f) |
|
|
|
for item in tqdm(dataloader): |
|
plt.figure(figsize=(20, 10)) |
|
plt.subplot(4, 1, 1) |
|
plt.title("Mel spectrogram") |
|
plt.imshow(item["mel"].squeeze().numpy().T, aspect="auto", origin="lower") |
|
result = vocex.model(item["mel"], inference=True) |
|
pitch = result["measures"]["pitch"] |
|
energy = result["measures"]["energy"] |
|
va = result["measures"]["voice_activity_binary"] |
|
mean_pitch = pitch.mean() |
|
std_pitch = pitch.std() |
|
pitch = (pitch - pitch.mean()) / pitch.std() |
|
mean_energy = energy.mean() |
|
std_energy = energy.std() |
|
energy = (energy - energy.mean()) / energy.std() |
|
va = (va - 0.5) * 2 |
|
durations = item["phone_durations"].squeeze().numpy() |
|
plt.subplot(4, 1, 2) |
|
sns.lineplot( |
|
x=np.arange(len(pitch[0])), |
|
y=pitch[0], |
|
color="red", |
|
label="Pitch", |
|
) |
|
sns.lineplot( |
|
x=np.arange(len(energy[0])), |
|
y=energy[0], |
|
color="blue", |
|
label="Energy", |
|
) |
|
sns.lineplot( |
|
x=np.arange(len(va[0])), |
|
y=va[0], |
|
color="green", |
|
label="Voice activity", |
|
) |
|
plt.legend() |
|
dur = [d for d in durations if d > 0] |
|
current_idx = 0 |
|
vpw = 5 |
|
new_repr = np.zeros((len(dur), vpw*3 + 1)) |
|
for i, d in enumerate(dur): |
|
new_repr[i, 0] = d |
|
|
|
pitch_win = pitch[0, current_idx:current_idx+d] |
|
energy_win = energy[0, current_idx:current_idx+d] |
|
va_win = va[0, current_idx:current_idx+d] |
|
current_idx += d |
|
|
|
pitch_win = resample(pitch_win, vpw) |
|
energy_win = resample(energy_win, vpw) |
|
va_win = resample(va_win, vpw) |
|
new_repr[i, 1:vpw+1] = pitch_win |
|
new_repr[i, vpw+1:2*vpw+1] = energy_win |
|
new_repr[i, 2*vpw+1:3*vpw+1] = va_win |
|
new_repr[:, 0] = np.log(new_repr[:, 0] + 1) |
|
mean_dur = new_repr[:, 0].mean() |
|
std_dur = new_repr[:, 0].std() |
|
new_repr[:, 0] = (new_repr[:, 0] - mean_dur) / std_dur |
|
plt.subplot(4, 1, 3) |
|
|
|
phones = [idx2phone[int(p)] for i, p in enumerate(item["phones"][0]) if item["phone_durations"][0][i] > 0] |
|
for p_i, p in enumerate(phones): |
|
if "[" in p: |
|
|
|
phones[p_i] = "" |
|
sns.heatmap(new_repr.T, cmap="viridis") |
|
|
|
plt.tick_params(axis="x", which="both", bottom=False, top=False, labelbottom=True) |
|
plt.xticks(np.arange(len(phones))+0.5, np.arange(len(phones)), rotation=0) |
|
plt.yticks([0.5]+list(np.array([1,2,3])*(vpw)-vpw/2+1), ["Duration", "Pitch", "Energy", "Voice activity"], rotation=0) |
|
plt.twiny() |
|
plt.xticks(np.arange(len(phones))+0.5, phones, rotation=0) |
|
plt.xlim(0, len(phones)) |
|
|
|
plt.subplots_adjust(hspace=0.5) |
|
|
|
r_pitch = np.zeros(len(pitch[0])) |
|
r_energy = np.zeros(len(energy[0])) |
|
r_va = np.zeros(len(va[0])) |
|
current_idx = 0 |
|
for i, d in enumerate(dur): |
|
|
|
pitch_win = new_repr[i, 1:vpw+1] |
|
energy_win = new_repr[i, vpw+1:2*vpw+1] |
|
va_win = new_repr[i, 2*vpw+1:3*vpw+1] |
|
|
|
pitch_win = resample(pitch_win, d) |
|
energy_win = resample(energy_win, d) |
|
va_win = resample(va_win, d) |
|
r_pitch[current_idx:current_idx+d] = pitch_win |
|
r_energy[current_idx:current_idx+d] = energy_win |
|
r_va[current_idx:current_idx+d] = va_win |
|
current_idx += d |
|
plt.subplot(4, 1, 4) |
|
sns.lineplot( |
|
x=np.arange(len(r_pitch)), |
|
y=r_pitch, |
|
color="red", |
|
label="Pitch", |
|
) |
|
sns.lineplot( |
|
x=np.arange(len(r_energy)), |
|
y=r_energy, |
|
color="blue", |
|
label="Energy", |
|
) |
|
sns.lineplot( |
|
x=np.arange(len(r_va)), |
|
y=r_va, |
|
color="green", |
|
label="Voice activity", |
|
) |
|
plt.legend() |
|
plt.savefig("test.png") |
|
print("Mean pitch:", mean_pitch) |
|
print("Std pitch:", std_pitch) |
|
print("Mean energy:", mean_energy) |
|
print("Std energy:", std_energy) |
|
print("Mean duration:", mean_dur) |
|
print("Std duration:", std_dur) |
|
break |
|
|