from datasets import load_dataset from tqdm.auto import tqdm from speech_collator import SpeechCollator import json from torch.utils.data import DataLoader import torch from vocex import Vocex import matplotlib.pyplot as plt import seaborn as sns import numpy as np vocex = Vocex.from_pretrained("cdminix/vocex") dataset = load_dataset("libritts-r-aligned.py") # Load the speaker2idx and phone2idx dictionaries with open("data/speaker2idx.json", "r") as f: speaker2idx = json.load(f) idx2speaker = {v: k for k, v in speaker2idx.items()} with open("data/phone2idx.json", "r") as f: phone2idx = json.load(f) idx2phone = {v: k for k, v in phone2idx.items()} collator = SpeechCollator( speaker2idx=speaker2idx, phone2idx=phone2idx, ) dataloader = DataLoader( dataset["dev"], batch_size=1, shuffle=False, collate_fn=collator.collate_fn, num_workers=4, ) def resample(x, vpw=5): return np.interp(np.linspace(0, 1, vpw), np.linspace(0, 1, len(x)), x) mean_pitchs = [] std_pitchs = [] mean_energys = [] std_energys = [] mean_durations = [] std_durations = [] mean_dvecs = [] std_dvecs = [] for item in tqdm(dataloader): result = vocex.model(item["mel"], inference=True) pitch = result["measures"]["pitch"] energy = result["measures"]["energy"] va = result["measures"]["voice_activity_binary"] dvec = result["dvector"] mean_pitch = pitch.mean() std_pitch = pitch.std() mean_energy = energy.mean() std_energy = energy.std() durations = item["phone_durations"].squeeze().numpy() durations = np.log(durations + 1) mean_duration = durations.mean() std_duration = durations.std() mean_pitchs.append(mean_pitch) std_pitchs.append(std_pitch) mean_energys.append(mean_energy) std_energys.append(std_energy) mean_durations.append(mean_duration) std_durations.append(std_duration) mean_dvecs.append(dvec.mean()) std_dvecs.append(dvec.std()) mean_pitch = [float(np.mean(mean_pitchs)), float(np.std(mean_pitchs))] std_pitch = [float(np.mean(std_pitchs)), float(np.std(std_pitchs))] mean_energy = [float(np.mean(mean_energys)), float(np.std(mean_energys))] std_energy = [float(np.mean(std_energys)), float(np.std(std_energys))] mean_duration = [float(np.mean(mean_durations)), float(np.std(mean_durations))] std_duration = [float(np.mean(std_durations)), float(np.std(std_durations))] mean_dvec = [float(np.mean(mean_dvecs)), float(np.std(mean_dvecs))] std_dvec = [float(np.mean(std_dvecs)), float(np.std(std_dvecs))] # save the stats stats = { "mean_pitch": mean_pitch, "std_pitch": std_pitch, "mean_energy": mean_energy, "std_energy": std_energy, "mean_duration": mean_duration, "std_duration": std_duration, "mean_dvec": mean_dvec, "std_dvec": std_dvec, } with open("data/stats.json", "w") as f: json.dump(stats, f) for item in tqdm(dataloader): plt.figure(figsize=(20, 10)) plt.subplot(4, 1, 1) plt.title("Mel spectrogram") plt.imshow(item["mel"].squeeze().numpy().T, aspect="auto", origin="lower") result = vocex.model(item["mel"], inference=True) pitch = result["measures"]["pitch"] energy = result["measures"]["energy"] va = result["measures"]["voice_activity_binary"] mean_pitch = pitch.mean() std_pitch = pitch.std() pitch = (pitch - pitch.mean()) / pitch.std() mean_energy = energy.mean() std_energy = energy.std() energy = (energy - energy.mean()) / energy.std() va = (va - 0.5) * 2 durations = item["phone_durations"].squeeze().numpy() plt.subplot(4, 1, 2) sns.lineplot( x=np.arange(len(pitch[0])), y=pitch[0], color="red", label="Pitch", ) sns.lineplot( x=np.arange(len(energy[0])), y=energy[0], color="blue", label="Energy", ) sns.lineplot( x=np.arange(len(va[0])), y=va[0], color="green", label="Voice activity", ) plt.legend() dur = [d for d in durations if d > 0] current_idx = 0 vpw = 5 # values per window new_repr = np.zeros((len(dur), vpw*3 + 1)) for i, d in enumerate(dur): new_repr[i, 0] = d # get values in duration window pitch_win = pitch[0, current_idx:current_idx+d] energy_win = energy[0, current_idx:current_idx+d] va_win = va[0, current_idx:current_idx+d] current_idx += d # resample to vpw values pitch_win = resample(pitch_win, vpw) energy_win = resample(energy_win, vpw) va_win = resample(va_win, vpw) new_repr[i, 1:vpw+1] = pitch_win new_repr[i, vpw+1:2*vpw+1] = energy_win new_repr[i, 2*vpw+1:3*vpw+1] = va_win new_repr[:, 0] = np.log(new_repr[:, 0] + 1) mean_dur = new_repr[:, 0].mean() std_dur = new_repr[:, 0].std() new_repr[:, 0] = (new_repr[:, 0] - mean_dur) / std_dur plt.subplot(4, 1, 3) # heatmap with log scale phones = [idx2phone[int(p)] for i, p in enumerate(item["phones"][0]) if item["phone_durations"][0][i] > 0] for p_i, p in enumerate(phones): if "[" in p: # make empty symbol for phones with [] phones[p_i] = "" sns.heatmap(new_repr.T, cmap="viridis") # set xticks while making sure they are in the middle of the phone plt.tick_params(axis="x", which="both", bottom=False, top=False, labelbottom=True) plt.xticks(np.arange(len(phones))+0.5, np.arange(len(phones)), rotation=0) plt.yticks([0.5]+list(np.array([1,2,3])*(vpw)-vpw/2+1), ["Duration", "Pitch", "Energy", "Voice activity"], rotation=0) plt.twiny() plt.xticks(np.arange(len(phones))+0.5, phones, rotation=0) plt.xlim(0, len(phones)) # allow some space between this plot and the next one plt.subplots_adjust(hspace=0.5) # reconstruct pitch, energy and va from new_repr r_pitch = np.zeros(len(pitch[0])) r_energy = np.zeros(len(energy[0])) r_va = np.zeros(len(va[0])) current_idx = 0 for i, d in enumerate(dur): # get values in duration window pitch_win = new_repr[i, 1:vpw+1] energy_win = new_repr[i, vpw+1:2*vpw+1] va_win = new_repr[i, 2*vpw+1:3*vpw+1] # resample to d values pitch_win = resample(pitch_win, d) energy_win = resample(energy_win, d) va_win = resample(va_win, d) r_pitch[current_idx:current_idx+d] = pitch_win r_energy[current_idx:current_idx+d] = energy_win r_va[current_idx:current_idx+d] = va_win current_idx += d plt.subplot(4, 1, 4) sns.lineplot( x=np.arange(len(r_pitch)), y=r_pitch, color="red", label="Pitch", ) sns.lineplot( x=np.arange(len(r_energy)), y=r_energy, color="blue", label="Energy", ) sns.lineplot( x=np.arange(len(r_va)), y=r_va, color="green", label="Voice activity", ) plt.legend() plt.savefig("test.png") print("Mean pitch:", mean_pitch) print("Std pitch:", std_pitch) print("Mean energy:", mean_energy) print("Std energy:", std_energy) print("Mean duration:", mean_dur) print("Std duration:", std_dur) break