Chris Oswald commited on
Commit
c4ed090
·
1 Parent(s): af71e33

converted data types

Browse files
Files changed (1) hide show
  1. SPIDER.py +62 -42
SPIDER.py CHANGED
@@ -15,6 +15,7 @@
15
 
16
  # Import packages
17
  import csv
 
18
  import os
19
  from typing import Dict, List, Mapping, Optional, Sequence, Set, Tuple, Union
20
 
@@ -64,7 +65,9 @@ MAX_IVD = 9
64
  DEFAULT_SCAN_TYPES = ['t1', 't2', 't2_SPACE']
65
  DEFAULT_RESIZE = (512, 512, 30)
66
  DEMO_SUBSET_N = 10
67
-
 
 
68
  _CITATION = """\
69
  @misc{vandergraaf2023lumbar,
70
  title={Lumbar spine segmentation in MR images: a dataset and a public benchmark},
@@ -197,46 +200,47 @@ class SPIDER(datasets.GeneratorBasedBuilder):
197
  "mask": datasets.Array3D(shape=self.config.resize_shape, dtype='uint8'),
198
  "image_path": datasets.Value("string"),
199
  "mask_path": datasets.Value("string"),
200
- "metadata": {
201
- "num_vertebrae": datasets.Value("int16"),
202
- "num_discs": datasets.Value("int16"),
203
- "sex": datasets.Value("string"),
204
- "birth_date": datasets.Value("date32"),
205
- "AngioFlag": datasets.Value("string"),
206
- "BodyPartExamined": datasets.Value("string"),
207
- "DeviceSerialNumber": datasets.Value("string"),
208
- "EchoNumbers": datasets.Value("float32"),
209
- "EchoTime": datasets.Value("float32"),
210
- "EchoTrainLength": datasets.Value("float32"),
211
- "FlipAngle": datasets.Value("float32"),
212
- "ImagedNucleus": datasets.Value("string"),
213
- "ImagingFrequency": datasets.Value("float32"),
214
- "InPlanePhaseEncodingDirection": datasets.Value("string"),
215
- "MRAcquisitionType": datasets.Value("string"),
216
- "MagneticFieldStrength": datasets.Value("float32"),
217
- "Manufacturer": datasets.Value("string"),
218
- "ManufacturerModelName": datasets.Value("string"),
219
- "NumberOfPhaseEncodingSteps": datasets.Value("int32"),
220
- "PercentPhaseFieldOfView": datasets.Value("float64"),
221
- "PercentSampling": datasets.Value("float64"),
222
- "PhotometricInterpretation": datasets.Value("string"),
223
- "PixelBandwidth": datasets.Value("int32"),
224
- "PixelSpacing": datasets.Sequence(datasets.Value("float32")),
225
- "RepetitionTime": datasets.Value("float64"),
226
- "SAR": datasets.Value("float64"),
227
- "SamplesPerPixel": datasets.Value("int32"),
228
- "ScanningSequence": datasets.Value("string"),
229
- "SequenceName": datasets.Value("string"),
230
- "SeriesDescription": datasets.Value("string"),
231
- "SliceThickness": datasets.Value("float32"),
232
- "SoftwareVersions": datasets.Sequence(datasets.Value("string")),
233
- "SpacingBetweenSlices": datasets.Value("float32"),
234
- "SpecificCharacterSet": datasets.Value("string"),
235
- "TransmitCoilName": datasets.Value("string"),
236
- "WindowCenter": datasets.Value("float32"),
237
- "WindowWidth": datasets.Value("float32"),
238
- "OrigSubset":datasets.Value("string"),
239
- },
 
240
  "rad_gradings": {
241
  "IVD label": datasets.Sequence(datasets.Value("string")),
242
  "Modic": datasets.Sequence(datasets.Value("string")),
@@ -356,7 +360,7 @@ class SPIDER(datasets.GeneratorBasedBuilder):
356
  # Import patient/scanner data and radiological gradings data
357
  overview_data = import_csv_data(paths_dict['overview'])
358
  grades_data = import_csv_data(paths_dict['gradings'])
359
-
360
  # Convert overview data list of dicts to dict of dicts
361
  exclude_vars = ['new_file_name', 'subset'] # Original data only lists train and validate
362
  overview_dict = {}
@@ -367,6 +371,22 @@ class SPIDER(datasets.GeneratorBasedBuilder):
367
  }
368
  overview_dict[key]['OrigSubset'] = item['subset'] # Change name to original subset
369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370
  # Merge patient records for radiological gradings data
371
  grades_dict = {}
372
  for patient_id in patient_ids:
 
15
 
16
  # Import packages
17
  import csv
18
+ import json
19
  import os
20
  from typing import Dict, List, Mapping, Optional, Sequence, Set, Tuple, Union
21
 
 
65
  DEFAULT_SCAN_TYPES = ['t1', 't2', 't2_SPACE']
66
  DEFAULT_RESIZE = (512, 512, 30)
67
  DEMO_SUBSET_N = 10
68
+ with open("TextFiles/var_types.json", "r") as io:
69
+ VAR_TYPES = json.load(io)
70
+
71
  _CITATION = """\
72
  @misc{vandergraaf2023lumbar,
73
  title={Lumbar spine segmentation in MR images: a dataset and a public benchmark},
 
200
  "mask": datasets.Array3D(shape=self.config.resize_shape, dtype='uint8'),
201
  "image_path": datasets.Value("string"),
202
  "mask_path": datasets.Value("string"),
203
+ "metadata": {k:datasets.Value(v) for k,v in VAR_TYPES['metadata'].items()},
204
+ # {
205
+ # "num_vertebrae": datasets.Value("int16"),
206
+ # "num_discs": datasets.Value("int16"),
207
+ # "sex": datasets.Value("string"),
208
+ # "birth_date": datasets.Value("string"),
209
+ # "AngioFlag": datasets.Value("string"),
210
+ # "BodyPartExamined": datasets.Value("string"),
211
+ # "DeviceSerialNumber": datasets.Value("string"),
212
+ # "EchoNumbers": datasets.Value("float32"),
213
+ # "EchoTime": datasets.Value("float32"),
214
+ # "EchoTrainLength": datasets.Value("float32"),
215
+ # "FlipAngle": datasets.Value("float32"),
216
+ # "ImagedNucleus": datasets.Value("string"),
217
+ # "ImagingFrequency": datasets.Value("float32"),
218
+ # "InPlanePhaseEncodingDirection": datasets.Value("string"),
219
+ # "MRAcquisitionType": datasets.Value("string"),
220
+ # "MagneticFieldStrength": datasets.Value("float32"),
221
+ # "Manufacturer": datasets.Value("string"),
222
+ # "ManufacturerModelName": datasets.Value("string"),
223
+ # "NumberOfPhaseEncodingSteps": datasets.Value("int32"),
224
+ # "PercentPhaseFieldOfView": datasets.Value("float64"),
225
+ # "PercentSampling": datasets.Value("float64"),
226
+ # "PhotometricInterpretation": datasets.Value("string"),
227
+ # "PixelBandwidth": datasets.Value("int32"),
228
+ # "PixelSpacing": datasets.Sequence(datasets.Value("float32")),
229
+ # "RepetitionTime": datasets.Value("float64"),
230
+ # "SAR": datasets.Value("float64"),
231
+ # "SamplesPerPixel": datasets.Value("int32"),
232
+ # "ScanningSequence": datasets.Value("string"),
233
+ # "SequenceName": datasets.Value("string"),
234
+ # "SeriesDescription": datasets.Value("string"),
235
+ # "SliceThickness": datasets.Value("float32"),
236
+ # "SoftwareVersions": datasets.Sequence(datasets.Value("string")),
237
+ # "SpacingBetweenSlices": datasets.Value("float32"),
238
+ # "SpecificCharacterSet": datasets.Value("string"),
239
+ # "TransmitCoilName": datasets.Value("string"),
240
+ # "WindowCenter": datasets.Value("float32"),
241
+ # "WindowWidth": datasets.Value("float32"),
242
+ # "OrigSubset":datasets.Value("string"),
243
+ # },
244
  "rad_gradings": {
245
  "IVD label": datasets.Sequence(datasets.Value("string")),
246
  "Modic": datasets.Sequence(datasets.Value("string")),
 
360
  # Import patient/scanner data and radiological gradings data
361
  overview_data = import_csv_data(paths_dict['overview'])
362
  grades_data = import_csv_data(paths_dict['gradings'])
363
+
364
  # Convert overview data list of dicts to dict of dicts
365
  exclude_vars = ['new_file_name', 'subset'] # Original data only lists train and validate
366
  overview_dict = {}
 
371
  }
372
  overview_dict[key]['OrigSubset'] = item['subset'] # Change name to original subset
373
 
374
+ # Convert overview data types
375
+ cast_overview_dict = {}
376
+ for scan_id, scan_metadata in overview_dict.items():
377
+ cast_dict = {}
378
+ for key, value in scan_metadata.items():
379
+ if key in VAR_TYPES['metadata']:
380
+ new_type = VAR_TYPES['metadata'][key]
381
+ if new_type != "string":
382
+ cast_dict[key] = eval(f'np.{new_type}({value})')
383
+ else:
384
+ cast_dict[key] = str(value)
385
+ else:
386
+ cast_dict[key] = value
387
+ cast_overview_dict[scan_id] = cast_dict
388
+ overview_dict = cast_overview_dict
389
+
390
  # Merge patient records for radiological gradings data
391
  grades_dict = {}
392
  for patient_id in patient_ids: