|
{"id":1,"name":"1","problem":"1. $\\left(2^{\\sqrt{3}} \\times 4\\right)^{\\sqrt{3} - 2}$ μ κ°μ? [2μ ] \\begin{itemize} \\item[1] \\frac{1}{4} \\item[2] \\frac{1}{2} \\item[3] 1 \\item[4] 2 \\item[5] 4 \\end{itemize}","answer":2,"score":2,"review":null} |
|
{"id":2,"name":"2","problem":"2. ν¨μ $f(x) = x^3 + 3x^2 + x - 1$ μ λνμ¬ $f'(1)$μ κ°μ? [2μ ] \\begin{itemize} \\item[1] 6 \\item[2] 7 \\item[3] 8 \\item[4] 9 \\item[5] 10 \\end{itemize}","answer":5,"score":2,"review":null} |
|
{"id":3,"name":"3","problem":"3. λ±μ°¨μμ΄ $\\{a_n\\}$μ λνμ¬ \\[ a_2 = 6, \\quad a_4 + a_6 = 36 \\] μΌ λ, $a_{10}$μ κ°μ? [3μ ] \\begin{itemize} \\item[1] 30 \\item[2] 32 \\item[3] 34 \\item[4] 36 \\item[5] 38 \\end{itemize}","answer":5,"score":3,"review":null} |
|
{"id":4,"name":"4","problem":"4. ν¨μ $( y = f(x) )$κ° λ€μκ³Ό κ°μ΄ μ μλμ΄ μλ€.\n\n\\[\nf(x) =\n\\begin{cases}\n-x+2, & x < -1, \\\\\n2, & x = -1, \\\\\n(3*x+3)/2, & -1 < x < 1, \\\\\n1, & 1 \\leq x < 2, \\\\\n3, & x = 2, \\\\\n1, & x \\geq 2.\n\\end{cases}\n\\]\n\n\\[ \\lim_{x \\to -1-} f(x) + \\lim_{x \\to 2} f(x) \\text{μ κ°μ? [3μ ]} \\]\n\n\\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":4,"score":3,"review":"Removed figure and the statement referring to the figure. The figure is needed to solve the problem, so we paraphrased the figure into text."} |
|
{"id":5,"name":"5","problem":"5. 첫째νμ΄ 1μΈ μμ΄ $\\{a_n\\}$μ΄ λͺ¨λ μμ°μ $n$μ λνμ¬ \\[ a_{n+1} = \\begin{cases} 2a_n & (a_n < 7) \\\\ a_n - 7 & (a_n \\geq 7) \\end{cases} \\] μΌ λ, $\\sum_{k=1}^{8} a_k$μ κ°μ? [3μ ] \\begin{itemize} \\item[1] 30 \\item[2] 32 \\item[3] 34 \\item[4] 36 \\item[5] 38 \\end{itemize}","answer":1,"score":3,"review":null} |
|
{"id":6,"name":"6","problem":"6. λ°©μ μ $( 2x^3 - 3x^2 - 12x + k = 0 )$μ΄ μλ‘ λ€λ₯Έ μΈ μ€κ·Όμ κ°λλ‘ νλ μ μ $k$μ κ°μλ? [3μ ] \\begin{itemize} \\item[1] 20 \\item[2] 23 \\item[3] 26 \\item[4] 29 \\item[5] 32 \\end{itemize}","answer":3,"score":3,"review":null} |
|
{"id":7,"name":"7","problem":"7. $( \\pi < \\theta < \\frac{3}{2}\\pi )$μΈ $\\theta$μ λνμ¬ $\\tan \\theta - \\frac{6}{\\tan \\theta} = 1$μΌ λ, $ \\sin \\theta + \\cos \\theta $μ κ°μ? [3μ ] \\begin{itemize} \\item[1] -\\frac{2\\sqrt{10}}{5} \\item[2] -\\frac{\\sqrt{10}}{5} \\item[3] 0 \\item[4] \\frac{\\sqrt{10}}{5} \\item[5] \\frac{2\\sqrt{10}}{5} \\end{itemize}","answer":1,"score":3,"review":null} |
|
{"id":8,"name":"8","problem":"8. 곑μ $( y = x^2 - 5x )$μ μ§μ $( y = x )$λ‘ λλ¬μΈμΈ λΆλΆμ λμ΄λ₯Ό μ§μ $( x = k )$κ° μ΄λ±λΆν λ, μμ $k$μ κ°μ? [3μ ] \\begin{itemize} \\item[1] 3 \\item[2] \\frac{13}{4} \\item[3] \\frac{7}{2} \\item[4] \\frac{15}{4} \\item[5] 4 \\end{itemize}","answer":1,"score":3,"review":null} |
|
{"id":9,"name":"9","problem":"9. μ§μ $( y = 2x + k )$ κ° λ ν¨μ \\[ y = \\left( \\frac{2}{3} \\right)^{x+3} + 1, \\quad y = \\left( \\frac{2}{3} \\right)^{x+1} + \\frac{8}{3} \\] μ κ·Έλνμ λ§λλ μ μ κ°κ° $( \\mathrm{P} )$, $( \\mathrm{Q} )$λΌ νμ. $\\overline{\\mathrm{PQ}} = \\sqrt{5}$μΌ λ, μμ $k$μ κ°μ? [4μ ] \\begin{itemize} \\item[1] \\frac{31}{6} \\item[2] \\frac{16}{3} \\item[3] \\frac{11}{2} \\item[4] \\frac{17}{3} \\item[5] \\frac{35}{6} \\end{itemize}","answer":4,"score":4,"review":"Removed figure."} |
|
{"id":10,"name":"10","problem":"10. μΌμ°¨ν¨μ $( f(x) )$μ λνμ¬ κ³‘μ $( y = f(x) )$ μμ μ $( 0, 0 )$μμμ μ μ κ³Ό 곑μ $( y = x f(x) )$ μμ μ $( 1, 2 )$μμμ μ μ μ΄ μΌμΉν λ, $f'(2)$μ κ°μ? [4μ ] \\begin{itemize} \\item[1] -18 \\item[2] -17 \\item[3] -16 \\item[4] -15 \\item[5] -14 \\end{itemize}","answer":5,"score":4,"review":null} |
|
{"id":11,"name":"11","problem":"11. μμ $a$μ λνμ¬ μ§ν© $\\left\\{ x \\ \\middle| \\ -\\frac{a}{2} < x \\leq a, \\ x \\neq \\frac{a}{2} \\right\\}$ μμ μ μλ ν¨μ \\[ f(x) = \\tan \\frac{\\pi x}{a} \\] κ° μλ€. κ·Έλ¦Όκ³Ό κ°μ΄ ν¨μ $y = f(x)$μ κ·Έλν μμ μΈ μ $( \\mathrm{O, A, B} )$λ₯Ό μ§λλ μ§μ μ΄ μλ€. μ $( \\mathrm{A} )$λ₯Ό μ§λκ³ $x$μΆμ ννν μ§μ μ΄ ν¨μ $y = f(x)$μ κ·Έλνμ λ§λλ μ μ€ $( \\mathrm{A} )$κ° μλ μ μ $( \\mathrm{C} )$λΌ νμ. μΌκ°ν $( \\mathrm{ABC} )$κ° μ μΌκ°νμΌ λ, μΌκ°ν $( \\mathrm{ABC} )$μ λμ΄λ? (λ¨, $( \\mathrm{O} )$λ μμ μ΄λ€.) [4μ ] \\begin{itemize} \\item[1] \\frac{3\\sqrt{3}}{2} \\item[2] \\frac{17\\sqrt{3}}{12} \\item[3] \\frac{4\\sqrt{3}}{3} \\item[4] \\frac{5\\sqrt{3}}{4} \\item[5] \\frac{7\\sqrt{3}}{6} \\end{itemize}","answer":3,"score":4,"review":"Removed figure and the statement referring to the figure."} |
|
{"id":12,"name":"12","problem":"12. μ€μ μ 체μ μ§ν©μμ μ°μμΈ ν¨μ $f(x)$κ° λͺ¨λ μ€μ $x$μ λνμ¬ \\[ \\{f(x)\\}^3 - \\{f(x)\\}^2 - x^2 f(x) + x^2 = 0 \\] μ λ§μ‘±μν¨λ€. ν¨μ $f(x)$μ μ΅λκ°μ΄ 1μ΄κ³ μ΅μκ°μ΄ 0μΌ λ, \\[ f\\left( -\\frac{4}{3} \\right) + f(0) + f\\left( \\frac{1}{2} \\right) \\] μ κ°μ? [4μ ] \\begin{itemize} \\item[1] \\frac{1}{2} \\item[2] 1 \\item[3] \\frac{3}{2} \\item[4] 2 \\item[5] \\frac{5}{2} \\end{itemize}","answer":3,"score":4,"review":null} |
|
{"id":13,"name":"13","problem":"13. λ μμ $( a, b \\ (1 < a < b) )$μ λνμ¬ μ’ννλ©΄ μμ λ μ $(a, \\log_2 a), \\ (b, \\log_2 b)$λ₯Ό μ§λλ μ§μ μ $y$μ νΈκ³Ό λ μ $(a, \\log_4 a), \\ (b, \\log_4 b)$λ₯Ό μ§λλ μ§μ μ $y$μ νΈμ΄ κ°λ€. ν¨μ $f(x) = a^{bx} + b^{ax}$μ λνμ¬ $f(1) = 40$μΌ λ, $f(2)$μ κ°μ? [4μ ] \\begin{itemize} \\item[1] 760 \\item[2] 800 \\item[3] 840 \\item[4] 880 \\item[5] 920 \\end{itemize}","answer":2,"score":4,"review":null} |
|
{"id":14,"name":"14","problem":"14. μμ§μ μλ₯Ό μμ§μ΄λ μ $\\mathrm{P}$μ μκ° $t$μμμ μμΉ $x(t)$κ° λ μμ $a$, $b$μ λνμ¬ \\[ x(t) = t(t - 1)(at + b) \\quad (a \\neq 0) \\] μ΄λ€. μ $\\mathrm{P}$μ μκ° $t$μμμ μλ $v(t)$κ° $\\int_0^1 |v(t)| \\, dt = 2$λ₯Ό λ§μ‘±μν¬ λ, μλ γ±, γ΄, γ· μ€μμ μ³μ κ²λ§μ μλ λλ‘ κ³ λ₯Έ κ²μ? [4μ ]\n\n\\begin{itemize} \\item[γ±.] $\\int_0^1 v(t) \\, dt = 0$ \\item[γ΄.] $|x(t_1)| > 1$μΈ $t_1$μ΄ μ΄λ¦°κ΅¬κ° $(0, 1)$μ μ‘΄μ¬νλ€. \\item[γ·.] $0 \\leq t \\leq 1$μΈ λͺ¨λ $t$μ λνμ¬ $|x(t)| < 1$μ΄λ©΄ $x(t_2) = 0$μΈ $t_2$κ° μ΄λ¦°κ΅¬κ° $(0, 1)$μ μ‘΄μ¬νλ€. \\end{itemize}\n\n\\begin{itemize} \\item[1] γ± \\item[2] γ±, γ΄ \\item[3] γ±, γ· \\item[4] γ΄, γ· \\item[5] γ±, γ΄, γ· \\end{itemize}","answer":3,"score":4,"review":"<보기> changed to 'μλ γ±,γ΄,γ·, μ€'."} |
|
{"id":15,"name":"15","problem":"15. λ μ $( \\mathrm{O}_1, \\mathrm{O}_2 )$λ₯Ό κ°κ° μ€μ¬μΌλ‘ νκ³ λ°μ§λ¦μ κΈΈμ΄κ° $(\\overline{\\mathrm{O}_1\\mathrm{O}_2} )$μΈ λ μ $( C_1, C_2 )$κ° μλ€. κ·Έλ¦Όκ³Ό κ°μ΄ μ $( C_1 )$ μμ μλ‘ λ€λ₯Έ μΈ μ $( \\mathrm{A}, \\mathrm{B}, \\mathrm{C} )$μ μ $( C_2 )$ μμ μ $( \\mathrm{D} )$κ° μ£Όμ΄μ Έ μκ³ , μΈ μ $( \\mathrm{A}, \\mathrm{O}_1, \\mathrm{O}_2 )$μ μΈ μ $( \\mathrm{C}, \\mathrm{O}_2, \\mathrm{D} )$κ° κ°κ° ν μ§μ μμ μλ€.\n\nμ΄λ $(\\angle \\mathrm{B}\\mathrm{O}_1\\mathrm{A} = \\theta_1)$, $(\\angle \\mathrm{O}_2\\mathrm{O}_1\\mathrm{C} = \\theta_2)$, $(\\angle \\mathrm{O}_1\\mathrm{O}_2\\mathrm{D} = \\theta_3)$μ΄λΌ νμ.\n\nλ€μμ $( \\overline{\\mathrm{A}\\mathrm{B}} : \\overline{\\mathrm{O}_1\\mathrm{D}} = 1 : 2\\sqrt{2} )$μ΄κ³ $( \\theta_3 = \\theta_1 + \\theta_2 )$μΌ λ, μ λΆ $( \\mathrm{A}\\mathrm{B} )$μ μ λΆ $( \\mathrm{C}\\mathrm{D} )$μ κΈΈμ΄μ λΉλ₯Ό ꡬνλ κ³Όμ μ΄λ€.\n\n\\[ \\begin{aligned} &\\angle \\mathrm{C}\\mathrm{O}_2\\mathrm{O}_1 + \\angle \\mathrm{O}_1\\mathrm{O}_2\\mathrm{D} = \\pi \\text{μ΄λ―λ‘ } \\theta_3 = \\frac{\\pi}{2} + \\frac{\\theta_2}{2} \\text{μ΄κ³ } \\\\ &\\theta_3 = \\theta_1 + \\theta_2 \\text{μμ } 2\\theta_1 + \\theta_2 = \\pi \\text{μ΄λ―λ‘ } \\angle \\mathrm{C}\\mathrm{O}_1\\mathrm{B} = \\theta_1 \\text{μ΄λ€.} \\\\ &\\text{μ΄λ } \\angle \\mathrm{O}_2\\mathrm{O}_1\\mathrm{B} = \\theta_1 + \\theta_2 = \\theta_3 \\text{μ΄λ―λ‘ μΌκ°ν } \\mathrm{O}_1\\mathrm{O}_2\\mathrm{B} \\text{μ μΌκ°ν } \\mathrm{O}_2\\mathrm{O}_1\\mathrm{D} \\text{λ ν©λμ΄λ€.} \\\\ &\\overline{\\mathrm{A}\\mathrm{B}} = k \\text{λΌ ν λ} \\\\ &\\overline{\\mathrm{B}\\mathrm{O}_2} = \\overline{\\mathrm{O}_1\\mathrm{D}}= 2\\sqrt{2}k \\text{μ΄λ―λ‘ } \\overline{\\mathrm{A}\\mathrm{O}_2} = \\text{(κ°)μ΄κ³ ,} \\\\ &\\angle \\mathrm{B}\\mathrm{O}_2\\mathrm{A} = \\frac{\\theta_1}{2} \\text{μ΄λ―λ‘ } \\cos \\frac{\\theta_1}{2} = \\text{(λ) μ΄λ€.} \\\\ &\\text{μΌκ°ν } \\mathrm{O}_2\\mathrm{B}\\mathrm{C} \\text{μμ} \\\\ &\\overline{\\mathrm{B}\\mathrm{C}} = k, \\overline{\\mathrm{B}\\mathrm{O}_2} = 2\\sqrt{2}k, \\angle \\mathrm{C}\\mathrm{O}_2\\mathrm{B} = \\frac{\\theta_1}{2} \\text{μ΄λ―λ‘} \\\\ &\\text{μ½μ¬μΈλ²μΉμ μνμ¬ } \\overline{\\mathrm{O}_2\\mathrm{C}} = \\text{(λ€) μ΄λ€.} \\\\ &\\overline{\\mathrm{C}\\mathrm{D}} = \\overline{\\mathrm{O}_2\\mathrm{D}} + \\overline{\\mathrm{O}_2\\mathrm{C}} = \\overline{\\mathrm{O}_1\\mathrm{O}_2} + \\overline{\\mathrm{O}_2\\mathrm{C}} \\text{μ΄λ―λ‘} \\\\ &\\overline{\\mathrm{A}\\mathrm{B}} : \\overline{\\mathrm{C}\\mathrm{D}} = k : \\left(\\frac{\\text{(κ°)}}{2} + \\text{(λ€)}\\right) \\text{μ΄λ€.} \\end{aligned} \\]\n\nμμ (κ°), (λ€)μ μλ§μ μμ κ°κ° $( f(k), g(k) )$λΌ νκ³ , (λ)μ μλ§μ μλ₯Ό $( p )$λΌ ν λ, $( f(p) \\times g(p) )$μ κ°μ? [4μ ]\n\n\\begin{itemize} \\item[1] \\frac{169}{27} \\item[2] \\frac{56}{9} \\item[3] \\frac{167}{27} \\item[4] \\frac{166}{27} \\item[5] \\frac{55}{9} \\end{itemize}","answer":2,"score":4,"review":"Removed figure and the statement referring to the figure."} |
|
{"id":16,"name":"16","problem":"16. $\\log_2 120 - \\frac{1}{\\log_{15} 2}$ μ κ°μ ꡬνμμ€. [3μ ]","answer":3,"score":3,"review":null} |
|
{"id":17,"name":"17","problem":"17. ν¨μ $f(x)$μ λνμ¬ $f'(x) = 3x^2 + 2x$μ΄κ³ $f(0) = 2$μΌ λ, $f(1)$μ κ°μ ꡬνμμ€. [3μ ]","answer":4,"score":3,"review":null} |
|
{"id":18,"name":"18","problem":"18. μμ΄ $\\{a_n\\}$μ λνμ¬ \\[ \\sum_{k=1}^{10} a_k - \\sum_{k=1}^{7} \\frac{a_k}{2} = 56, \\quad \\sum_{k=1}^{10} 2a_k - \\sum_{k=1}^{8} a_k = 100 \\] μΌ λ, $a_8$μ κ°μ ꡬνμμ€. [3μ ]","answer":12,"score":3,"review":null} |
|
{"id":19,"name":"19","problem":"19. ν¨μ $f(x) = x^3 + ax^2 - (a^2 - 8a)x + 3$μ΄ μ€μ μ 체μ μ§ν©μμ μ¦κ°νλλ‘ νλ μ€μ $a$μ μ΅λκ°μ ꡬνμμ€. [3μ ]","answer":6,"score":3,"review":null} |
|
{"id":20,"name":"20","problem":"20. μ€μ μ 체μ μ§ν©μμ λ―ΈλΆκ°λ₯ν ν¨μ $( f(x) )$κ° λ€μ 쑰건μ λ§μ‘±μν¨λ€.\n\n\\begin{itemize} \\item[(κ°)] λ«νκ΅¬κ° $[0, 1]$μμ $f(x) = x$μ΄λ€. \\item[(λ)] μ΄λ€ μμ $a, b$μ λνμ¬ κ΅¬κ° $[0, \\infty)$μμ $f(x+1) - x f(x) = ax + b$μ΄λ€. \\end{itemize}\n\n\\[ 60 \\times \\int_1^2 f(x) \\, dx \\] μ κ°μ ꡬνμμ€. [4μ ]","answer":110,"score":4,"review":null} |
|
{"id":21,"name":"21","problem":"21. μμ΄ $\\{a_n\\}$μ΄ λ€μ 쑰건μ λ§μ‘±μν¨λ€.\n\n\\begin{itemize} \\item[(κ°)] $( |a_1| = 2 )$ \\item[(λ)] λͺ¨λ μμ°μ $( n )$μ λνμ¬ $( |a_{n+1}| = 2|a_n| )$μ΄λ€. \\item[(λ€)] $\\sum_{n=1}^{10} a_n = -14$ \\end{itemize}\n\n$a_1 + a_3 + a_5 + a_7 + a_9$μ κ°μ ꡬνμμ€. [4μ ]","answer":678,"score":4,"review":null} |
|
{"id":22,"name":"22","problem":"22. μ΅κ³ μ°¨νμ κ³μκ° $\\frac{1}{2}$ μΈ μΌμ°¨ν¨μ $f(x)$μ μ€μ $t$μ λνμ¬ λ°©μ μ $f'(x) = 0$μ΄ λ«νκ΅¬κ° $[t, t+2]$μμ κ°λ μ€κ·Όμ κ°μλ₯Ό $g(t)$λΌ ν λ, ν¨μ $g(t)$λ λ€μ 쑰건μ λ§μ‘±μν¨λ€.\n\n\\begin{itemize} \\item[(κ°)] λͺ¨λ μ€μ $( a )$μ λνμ¬ $( \\lim_{t \\to a+} g(t) + \\lim_{t \\to a-} g(t) \\leq 2 )$μ΄λ€. \\item[(λ)] $( g(f(1)) = g(f(4)) = 2, \\ g(f(0)) = 1 )$ \\end{itemize}\n\n$f(5)$μ κ°μ ꡬνμμ€. [4μ ]","answer":9,"score":4,"review":null} |
|
{"id":23,"name":"23_prob","problem":"23. λ€νμ $(x+2)^7$μ μ κ°μμμ $x^5$μ κ³μλ? [2μ ] \\begin{itemize} \\item[1] 42 \\item[2] 56 \\item[3] 70 \\item[4] 84 \\item[5] 98 \\end{itemize}","answer":4,"score":2,"review":null} |
|
{"id":24,"name":"24_prob","problem":"24. νλ₯ λ³μ $X$κ° μ΄νλΆν¬ $\\mathrm{B}\\left(n, \\frac{1}{3}\\right)$μ λ°λ₯΄κ³ $\\mathrm{V}(2X) = 40$μΌ λ, $n$μ κ°μ? [3μ ] \\begin{itemize} \\item[1] 30 \\item[2] 35 \\item[3] 40 \\item[4] 45 \\item[5] 50 \\end{itemize}","answer":4,"score":3,"review":null} |
|
{"id":25,"name":"25_prob","problem":"25. λ€μ 쑰건μ λ§μ‘±μν€λ μμ°μ $a, \\ b, \\ c, \\ d, \\ e$μ λͺ¨λ μμμ $(a, b, c, d, e)$μ κ°μλ? [3μ ]\n\n\\begin{itemize} \\item[(κ°)] $a + b + c + d + e = 12$ \\item[(λ)] $\\left| a^2 - b^2 \\right| = 5$ \\end{itemize}\n\n\\begin{itemize} \\item[1] 30 \\item[2] 32 \\item[3] 34 \\item[4] 36 \\item[5] 38 \\end{itemize}","answer":1,"score":3,"review":null} |
|
{"id":26,"name":"26_prob","problem":"26. $( 1 )$λΆν° $( 10 )$κΉμ§ μμ°μκ° νλμ© μ ν μλ $( 10 )$μ₯μ μΉ΄λκ° λ€μ΄ μλ μ£Όλ¨Έλκ° μλ€. μ΄ μ£Όλ¨Έλμμ μμλ‘ μΉ΄λ $( 3 )$μ₯μ λμμ κΊΌλΌ λ, κΊΌλΈ μΉ΄λμ μ ν μλ μΈ μμ°μ μ€μμ κ°μ₯ μμ μκ° $( 4 )$ μ΄νμ΄κ±°λ $( 7 )$ μ΄μμΌ νλ₯ μ? [3μ ]\n\n\\begin{itemize} \\item[1] \\frac{4}{5} \\item[2] \\frac{5}{6} \\item[3] \\frac{13}{15} \\item[4] \\frac{9}{10} \\item[5] \\frac{14}{15} \\end{itemize}","answer":3,"score":3,"review":"Removed figure."} |
|
{"id":27,"name":"27_prob","problem":"27. μ΄λ μλμ°¨ νμ¬μμ μμ°νλ μ κΈ° μλμ°¨μ 1ν μΆ©μ μ£Όν 거리λ νκ· μ΄ $m$μ΄κ³ νμ€νΈμ°¨κ° $\\sigma$μΈ μ κ·λΆν¬λ₯Ό λ°λ₯Έλ€κ³ νλ€.\n\nμ΄ μλμ°¨ νμ¬μμ μμ°ν μ κΈ° μλμ°¨ 100λλ₯Ό μμμΆμΆνμ¬ μ»μ 1ν μΆ©μ μ£Όν 거리μ νλ³Ένκ· μ΄ $\\overline{x_1}$μΌ λ, λͺ¨νκ· $m$μ λν μ λ’°λ 95\\%μ μ 뒰ꡬκ°μ΄ $a \\le m \\le b$μ΄λ€.\n\nμ΄ μλμ°¨ νμ¬μμ μμ°ν μ κΈ° μλμ°¨ 400λλ₯Ό μμμΆμΆνμ¬ μ»μ 1ν μΆ©μ μ£Όν 거리μ νλ³Ένκ· μ΄ $\\overline{x_2}$μΌ λ, λͺ¨νκ· $m$μ λν μ λ’°λ 99\\%μ μ 뒰ꡬκ°μ΄ $c \\le m \\le d$μ΄λ€.\n\n$\\overline{x_1} - \\overline{x_2} = 1.34$μ΄κ³ $a = c$μΌ λ, $b - a$μ κ°μ? (λ¨, μ£Όν 거리μ λ¨μλ kmμ΄κ³ , $Z$κ° νμ€μ κ·λΆν¬λ₯Ό λ°λ₯΄λ νλ₯ λ³μμΌ λ $\\mathrm{P}(|Z| \\le 1.96) = 0.95$, $\\mathrm{P}(|Z| \\le 2.58) = 0.99$λ‘ κ³μ°νλ€.) [3μ ]\n\n\\begin{itemize} \\item[1] 5.88 \\item[2] 7.84 \\item[3] 9.80 \\item[4] 11.76 \\item[5] 13.72 \\end{itemize}","answer":2,"score":3,"review":null} |
|
{"id":28,"name":"28_prob","problem":"28. λ μ§ν© $X = \\{1, 2, 3, 4, 5\\}$, $Y = \\{1, 2, 3, 4\\}$μ λνμ¬ λ€μ 쑰건μ λ§μ‘±μν€λ $X$μμ $Y$λ‘μ ν¨μ $f$μ κ°μλ? [4μ ]\n\n\\begin{itemize} \\item[(κ°)] μ§ν© $X$μ λͺ¨λ μμ $x$μ λνμ¬ $f(x) \\geq \\sqrt{x}$μ΄λ€. \\item[(λ)] ν¨μ $f$μ μΉμμ μμμ κ°μλ 3μ΄λ€. \\end{itemize}\n\n\\begin{itemize} \\item[1] 128 \\item[2] 138 \\item[3] 148 \\item[4] 158 \\item[5] 168 \\end{itemize}","answer":1,"score":4,"review":null} |
|
{"id":29,"name":"29_prob","problem":"29. λ μ°μνλ₯ λ³μ $( X )$μ $( Y )$κ° κ°λ κ°μ λ²μλ $( 0 \\leq X \\leq 6 )$, $( 0 \\leq Y \\leq 6 )$μ΄κ³ , $( X )$μ $( Y )$μ νλ₯ λ°λν¨μλ κ°κ° $( f(x), g(x) )$μ΄λ€. νλ₯ λ³μ $( X )$μ νλ₯ λ°λν¨μ $( f(x) )$κ° λ€μκ³Ό κ°μ΄ μ μλμ΄ μλ€.\n\n\\[\nf(x) =\n\\begin{cases}\n0, & x < 0, \\\\\n\\frac{1}{12}x, & 0 \\leq x < 3, \\\\\n\\frac{1}{4}, & 3 \\leq x \\leq 5, \\\\\n\\frac{1}{4}(6-x), & 5 < x \\leq 6, \\\\\n0, & x > 6.\n\\end{cases}\n\\]\n\n\n\\[ 0 \\leq x \\leq 6\\ \\text{μΈ λͺ¨λ } x \\text{μ λνμ¬} \\]\n\\[ f(x) + g(x) = k \\quad (k \\text{λ μμ}) \\]\nλ₯Ό λ§μ‘±μν¬ λ, $( \\mathrm{P}(6k \\leq Y \\leq 15k) = \\frac{q}{p} )$μ΄λ€. $( p + q )$μ κ°μ ꡬνμμ€. (λ¨, $( p )$μ $( q )$λ μλ‘μμΈ μμ°μμ΄λ€.) [4μ ]","answer":31,"score":4,"review":"Removed figure and the statement referring to the figure. The figure is needed to solve the problem, so we paraphrased the figure into text."} |
|
{"id":30,"name":"30_prob","problem":"30. ν° κ³΅κ³Ό κ²μ κ³΅μ΄ κ°κ° 10κ° μ΄μ λ€μ΄ μλ λ°κ΅¬λμ λΉμ΄ μλ μ£Όλ¨Έλκ° μλ€. ν κ°μ μ£Όμ¬μλ₯Ό μ¬μ©νμ¬ λ€μ μνμ νλ€.\n\n\\[ \\begin{array}{|c|} \\hline \\text{μ£Όμ¬μλ₯Ό ν λ² λμ Έ} \\\\ \\text{λμ¨ λμ μκ° 5 μ΄μμ΄λ©΄} \\\\ \\text{λ°κ΅¬λμ μλ ν° κ³΅ 2κ°λ₯Ό μ£Όλ¨Έλμ λ£κ³ ,} \\\\ \\text{λμ¨ λμ μκ° 4 μ΄νμ΄λ©΄} \\\\ \\text{λ°κ΅¬λμ μλ κ²μ 곡 1κ°λ₯Ό μ£Όλ¨Έλμ λ£λλ€.} \\\\ \\hline \\end{array} \\]\n\nμμ μνμ 5λ² λ°λ³΅ν λ, $( n(1 \\leq n \\leq 5) )$λ²μ§Έ μν ν μ£Όλ¨Έλμ λ€μ΄ μλ ν° κ³΅κ³Ό κ²μ 곡μ κ°μλ₯Ό κ°κ° $( a_n )$, $( b_n )$μ΄λΌ νμ. $( a_5 + b_5 \\geq 7 )$μΌ λ, $( a_k = b_k )$μΈ μμ°μ $( k(1 \\leq k \\leq 5) )$κ° μ‘΄μ¬ν νλ₯ μ $( \\frac{q}{p} )$μ΄λ€. $( p + q )$μ κ°μ ꡬνμμ€. (λ¨, $(p)$μ $(q)$λ μλ‘μμΈ μμ°μμ΄λ€.) [4μ ]","answer":191,"score":4,"review":null} |
|
{"id":31,"name":"23_calc","problem":"23. \\[ \\lim_{n \\to \\infty} \\frac{\\frac{5}{n} + \\frac{3}{n^2}}{\\frac{1}{n} - \\frac{2}{n^3}} \\text{μ κ°μ? [2μ ]} \\] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":5,"score":2,"review":null} |
|
{"id":32,"name":"24_calc","problem":"24. μ€μ μ 체μ μ§ν©μμ λ―ΈλΆκ°λ₯ν ν¨μ $f(x)$κ° λͺ¨λ μ€μ $x$μ λνμ¬ \\[ f(x^3 + x) = e^x \\] μ λ§μ‘±μν¬ λ, $f'(2)$μ κ°μ? [3μ ] \\begin{itemize} \\item[1] e \\item[2] \\frac{e}{2} \\item[3] \\frac{e}{3} \\item[4] \\frac{e}{4} \\item[5] \\frac{e}{5} \\end{itemize}","answer":4,"score":3,"review":null} |
|
{"id":33,"name":"25_calc","problem":"25. λ±λΉμμ΄ $\\{a_n\\}$μ λνμ¬ \\[ \\sum_{n=1}^{\\infty} (a_{2n-1} - a_{2n}) = 3, \\quad \\sum_{n=1}^{\\infty} a_n^2 = 6 \\] μΌ λ, $\\sum_{n=1}^{\\infty} a_n$ μ κ°μ? [3μ ] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":2,"score":3,"review":null} |
|
{"id":34,"name":"26_calc","problem":"26. \\[ \\lim_{n \\to \\infty} \\sum_{k=1}^{n} \\frac{k^2 + 2kn}{k^3 + 3k^2 n + n^3} \\text{μ κ°μ?} \\quad [3 \\text{μ }] \\] \\begin{itemize} \\item[1] \\ln 5 \\item[2] \\frac{\\ln 5}{2} \\item[3] \\frac{\\ln 5}{3} \\item[4] \\frac{\\ln 5}{4} \\item[5] \\frac{\\ln 5}{5} \\end{itemize}","answer":3,"score":3,"review":null} |
|
{"id":35,"name":"27_calc","problem":"27. μ’ννλ©΄ μλ₯Ό μμ§μ΄λ μ $\\mathrm{P}$μ μκ° $t \\ (t>0)$μμμ μμΉκ° 곑μ $y = x^2$κ³Ό μ§μ $y = t^2 x - \\frac{\\ln t}{8}$κ° λ§λλ μλ‘ λ€λ₯Έ λ μ μ μ€μ μΌ λ, μκ° $t=1$μμ $t=e$κΉμ§ μ $\\mathrm{P}$κ° μμ§μΈ 거리λ? [3μ ] \\begin{itemize} \\item[1] \\frac{e^4}{2} - \\frac{3}{8} \\item[2] \\frac{e^4}{2} - \\frac{5}{16} \\item[3] \\frac{e^4}{2} - \\frac{1}{4} \\item[4] \\frac{e^4}{2} - \\frac{3}{16} \\item[5] \\frac{e^4}{2} - \\frac{1}{8} \\end{itemize}","answer":1,"score":3,"review":null} |
|
{"id":36,"name":"28_calc","problem":"28. ν¨μ $( f(x) = 6\\pi (x - 1)^2 )$μ λνμ¬ ν¨μ $( g(x) )$λ₯Ό \\[ g(x) = 3f(x) + 4\\cos f(x) \\] λΌ νμ. $( 0 < x < 2 )$μμ ν¨μ $( g(x) )$κ° κ·Ήμκ° λλ $( x )$μ κ°μλ? [4μ ] \\begin{itemize} \\item[1] 6 \\item[2] 7 \\item[3] 8 \\item[4] 9 \\item[5] 10 \\end{itemize}","answer":2,"score":4,"review":null} |
|
{"id":37,"name":"29_calc","problem":"29. κ·Έλ¦Όκ³Ό κ°μ΄ κΈΈμ΄κ° 2μΈ μ λΆ $(\\mathrm{AB})$λ₯Ό μ§λ¦μΌλ‘ νλ λ°μμ΄ μλ€. νΈ $(\\mathrm{AB})$ μμ λ μ $(\\mathrm{P})$, $(\\mathrm{Q})$λ₯Ό $(\\angle \\mathrm{PAB} = \\theta)$, $(\\angle \\mathrm{QBA} = 2\\theta)$κ° λλλ‘ μ‘κ³ , λ μ λΆ $(\\mathrm{AP})$, $(\\mathrm{BQ})$μ κ΅μ μ $(\\mathrm{R})$λΌ νμ. μ λΆ $(\\mathrm{AB})$ μμ μ $(\\mathrm{S})$, μ λΆ $(\\mathrm{BR})$ μμ μ $(\\mathrm{T})$, μ λΆ $(\\mathrm{AR})$ μμ μ $(\\mathrm{U})$λ₯Ό μ λΆ $(\\mathrm{UT})$κ° μ λΆ $(\\mathrm{AB})$μ νννκ³ μΌκ°ν $(\\mathrm{STU})$κ° μ μΌκ°νμ΄ λλλ‘ μ‘λλ€. λ μ λΆ $(\\mathrm{AR})$, $(\\mathrm{QR})$μ νΈ $(\\mathrm{AQ})$λ‘ λλ¬μΈμΈ λΆλΆμ λμ΄λ₯Ό $(f(\\theta))$, μΌκ°ν $(\\mathrm{STU})$μ λμ΄λ₯Ό $(g(\\theta))$λΌ ν λ,\n\\[ \\lim_{\\theta \\to 0+} \\frac{g(\\theta)}{\\theta \\times f(\\theta)} = \\frac{q}{p} \\sqrt{3} \\]\nμ΄λ€. $(p + q)$μ κ°μ ꡬνμμ€.\n\n(λ¨, $(0 < \\theta < \\frac{\\pi}{6})$μ΄κ³ , $(p)$μ $(q)$λ μλ‘μμΈ μμ°μμ΄λ€.) [4μ ]","answer":11,"score":4,"review":"Removed figure and the statement referring to the figure."} |
|
{"id":38,"name":"30_calc","problem":"30. μ€μ μ 체μ μ§ν©μμ μ¦κ°νκ³ λ―ΈλΆκ°λ₯ν ν¨μ $f(x)$κ° λ€μ 쑰건μ λ§μ‘±μν¨λ€.\n\n\\begin{itemize} \\item[(κ°)] $f(1) = 1$, \\quad $\\int_{1}^{2} f(x) \\, dx = \\frac{5}{4}$ \\item[(λ)] ν¨μ $f(x)$μ μν¨μλ₯Ό $g(x)$λΌ ν λ, $x \\geq 1$μΈ λͺ¨λ μ€μ $x$μ λνμ¬ $g(2x) = 2f(x)$μ΄λ€. \\end{itemize}\n\n\\[ \\int_{1}^{8} x f'(x) \\, dx = \\frac{q}{p} \\text{μΌ λ, } p+q \\text{μ κ°μ ꡬνμμ€.} \\]\n(λ¨, $p$μ $q$λ μλ‘μμΈ μμ°μμ΄λ€.) [4μ ]","answer":143,"score":4,"review":null} |
|
{"id":39,"name":"23_geom","problem":"23. μ’ν곡κ°μ μ $\\mathrm{A}(2, 1, 3)$μ $xy$ νλ©΄μ λνμ¬ λμΉμ΄λν μ μ $\\mathrm{P}$λΌ νκ³ , μ $\\mathrm{A}$λ₯Ό $yz$ νλ©΄μ λνμ¬ λμΉμ΄λν μ μ $\\mathrm{Q}$λΌ ν λ, μ λΆ $\\mathrm{PQ}$μ κΈΈμ΄λ? [2μ ]\n\n\\begin{itemize} \\item[1] 5 \\sqrt{2} \\item[2] 2 \\sqrt{13} \\item[3] 3 \\sqrt{6} \\item[4] 2 \\sqrt{14} \\item[5] 2 \\sqrt{15} \\end{itemize}","answer":2,"score":2,"review":null} |
|
{"id":40,"name":"24_geom","problem":"24. ν μ΄μ μ μ’νκ° $\\left( 3\\sqrt{2}, 0 \\right)$ μΈ μ곑μ $\\frac{x^2}{a^2} - \\frac{y^2}{6} = 1$ μ μ£ΌμΆμ κΈΈμ΄λ? (λ¨, $a$ λ μμμ΄λ€.) [3μ ]\n\n\\begin{itemize} \\item[1] 3\\sqrt{3} \\item[2] \\frac{7\\sqrt{3}}{2} \\item[3] 4\\sqrt{3} \\item[4] \\frac{9\\sqrt{3}}{2} \\item[5] 5\\sqrt{3} \\end{itemize}","answer":3,"score":3,"review":null} |
|
{"id":41,"name":"25_geom","problem":"25. μ’ννλ©΄μμ λ μ§μ \\[ \\frac{x+1}{2} = y - 3, \\quad x - 2 = \\frac{y - 5}{3} \\] κ° μ΄λ£¨λ μκ°μ ν¬κΈ°λ₯Ό $\\theta$λΌ ν λ, $\\cos \\theta$μ κ°μ? [3μ ]\n\n\\begin{itemize} \\item[1] \\frac{1}{2} \\item[2] \\frac{\\sqrt{5}}{4} \\item[3] \\frac{\\sqrt{6}}{4} \\item[4] \\frac{\\sqrt{7}}{4} \\item[5] \\frac{\\sqrt{2}}{2} \\end{itemize}","answer":5,"score":3,"review":null} |
|
{"id":42,"name":"26_geom","problem":"26. λ μ΄μ μ΄ $( \\mathrm{F}, \\mathrm{F'} )$μΈ νμ $\\frac{x^2}{64} + \\frac{y^2}{16} = 1$ μμ μ μ€ μ 1μ¬λΆλ©΄μ μλ μ $( \\mathrm{A} )$κ° μλ€. λ μ§μ $( \\mathrm{AF}, \\mathrm{AF'} )$μ λμμ μ νκ³ μ€μ¬μ΄ $y$μΆ μμ μλ μ μ€ μ€μ¬μ $y$μ’νκ° μμμΈ κ²μ $( C )$λΌ νμ. μ $( C )$μ μ€μ¬μ $( \\mathrm{B} )$λΌ ν λ μ¬κ°ν $( \\mathrm{AFBF'} )$μ λμ΄κ° 72μ΄λ€. μ $( C )$μ λ°μ§λ¦μ κΈΈμ΄λ? [3μ ]\n\n\\begin{itemize} \\item[1] \\frac{17}{2} \\item[2] 9 \\item[3] \\frac{19}{2} \\item[4] 10 \\item[5] \\frac{21}{2} \\end{itemize}","answer":2,"score":3,"review":"Removed figure."} |
|
{"id":43,"name":"27_geom","problem":"27. κ·Έλ¦Όκ³Ό κ°μ΄ ν λͺ¨μ리μ κΈΈμ΄κ° 4μΈ μ μ‘면체 $\\mathrm{ABCD - EFGH}$ κ° μλ€. μ λΆ $\\mathrm{AD}$ μ μ€μ μ $\\mathrm{M}$μ΄λΌ ν λ, μΌκ°ν $\\mathrm{MEG}$ μ λμ΄λ? [3μ ]\n\n\\begin{itemize} \\item[1] \\frac{21}{2} \\item[2] 11 \\item[3] \\frac{23}{2} \\item[4] 12 \\item[5] \\frac{25}{2} \\end{itemize}","answer":4,"score":3,"review":"Removed figure and the statement referring to the figure."} |
|
{"id":44,"name":"28_geom","problem":"28. λ μμ $( a )$, $( p )$μ λνμ¬ ν¬λ¬Όμ $( (y - a)^2 = 4px )$μ μ΄μ μ $( \\mathrm{F}_1 )$μ΄λΌ νκ³ , ν¬λ¬Όμ $( y^2 = -4x )$μ μ΄μ μ $( \\mathrm{F}_2 )$λΌ νμ. μ λΆ $( \\mathrm{F}_1 \\mathrm{F}_2 )$κ° λ ν¬λ¬Όμ κ³Ό λ§λλ μ μ κ°κ° $( \\mathrm{P} )$, $( \\mathrm{Q} )$λΌ ν λ, $( \\overline{\\mathrm{F}_1 \\mathrm{F}_2} = 3 )$, $( \\overline{\\mathrm{P}\\mathrm{Q}} = 1 )$μ΄λ€. $( a^2 + p^2 )$μ κ°μ? [4μ ]\n\n\\begin{itemize} \\item[1] 6 \\item[2] \\frac{25}{4} \\item[3] \\frac{13}{2} \\item[4] \\frac{27}{4} \\item[5] 7 \\end{itemize}","answer":5,"score":4,"review":"Removed figure."} |
|
{"id":45,"name":"29_geom","problem":"29. μ’ννλ©΄μμ $\\overline{\\mathrm{OA}} = \\sqrt{2}$, $\\overline{\\mathrm{OB}} = 2\\sqrt{2}$μ΄κ³ \n\\[ \\cos(\\angle \\mathrm{AOB}) = \\frac{1}{4} \\]\nμΈ ννμ¬λ³ν $\\mathrm{OACB}$μ λνμ¬ μ $\\mathrm{P}$κ° λ€μ 쑰건μ λ§μ‘±μν¨λ€.\n\n\\begin{itemize} \\item[(κ°)] $\\overrightarrow{\\mathrm{OP}} = s \\overrightarrow{\\mathrm{OA}} + t \\overrightarrow{\\mathrm{OB}} \\quad (0 \\leq s \\leq 1, \\ 0 \\leq t \\leq 1)$ \\item[(λ)] $\\overrightarrow{\\mathrm{OP}} \\cdot \\overrightarrow{\\mathrm{OB}} + \\overrightarrow{\\mathrm{BP}} \\cdot \\overrightarrow{\\mathrm{BC}} = 2$ \\end{itemize}\n\nμ $\\mathrm{O}$λ₯Ό μ€μ¬μΌλ‘ νκ³ μ $\\mathrm{A}$λ₯Ό μ§λλ μ μλ₯Ό μμ§μ΄λ μ $\\mathrm{X}$μ λνμ¬ $|3\\overrightarrow{\\mathrm{OP}} - \\overrightarrow{\\mathrm{OX}}|$μ μ΅λκ°κ³Ό μ΅μκ°μ κ°κ° $M$, $m$μ΄λΌ νμ. $M \\times m = a\\sqrt{6} + b$μΌ λ, $a^2 + b^2$μ κ°μ ꡬνμμ€. (λ¨, $a$μ $b$λ μ 리μμ΄λ€.) [4μ ]","answer":100,"score":4,"review":"Removed figure."} |
|
{"id":46,"name":"30_geom","problem":"30. μ’ν곡κ°μ μ€μ¬μ΄ $\\mathrm{C}(2, \\sqrt{5}, 5)$μ΄κ³ μ $\\mathrm{P}(0, 0, 1)$μ μ§λλ ꡬ \\[ S: (x - 2)^2 + (y - \\sqrt{5})^2 + (z - 5)^2 = 25 \\] κ° μλ€. ꡬ $S$κ° νλ©΄ $\\mathrm{OPC}$μ λ§λμ μκΈ°λ μ μλ₯Ό μμ§μ΄λ μ $\\mathrm{Q}$, ꡬ $S$ μλ₯Ό μμ§μ΄λ μ $\\mathrm{R}$μ λνμ¬ λ μ $\\mathrm{Q}, \\mathrm{R}$μ $xy$νλ©΄ μλ‘μ μ μ¬μμ κ°κ° $\\mathrm{Q}_1, \\mathrm{R}_1$μ΄λΌ νμ.\n\nμΌκ°ν $\\mathrm{O}\\mathrm{Q}_1\\mathrm{R}_1$μ λμ΄κ° μ΅λκ° λλλ‘ νλ λ μ $\\mathrm{Q}, \\mathrm{R}$μ λνμ¬ μΌκ°ν $\\mathrm{O}\\mathrm{Q}_1\\mathrm{R}_1$μ νλ©΄ $\\mathrm{PQR}$ μλ‘μ μ μ¬μμ λμ΄λ $\\frac{q}{p} \\sqrt{6}$μ΄λ€. $p+q$μ κ°μ ꡬνμμ€.\n\n(λ¨, $\\mathrm{O}$λ μμ μ΄κ³ μΈ μ $\\mathrm{O}, \\mathrm{Q}_1, \\mathrm{R}_1$μ ν μ§μ μμ μμ§ μμΌλ©°, $p$μ $q$λ μλ‘μμΈ μμ°μμ΄λ€.) [4μ ]","answer":23,"score":4,"review":"Removed figure."} |