KoreanSAT / data /json /2023 /math.json
cfpark00
v1
3a117ca
raw
history blame
25.2 kB
{"id":1,"name":"1","problem":"1. $\\left( \\frac{4}{2^{\\sqrt{2}}} \\right)^{2 + \\sqrt{2}}$ 의 값은? [2점] \\begin{itemize} \\item[1] $\\frac{1}{4}$ \\item[2] $\\frac{1}{2}$ \\item[3] $1$ \\item[4] $2$ \\item[5] $4$ \\end{itemize}","answer":5,"score":2,"review":null}
{"id":2,"name":"2","problem":"2. $\\lim_{x \\to \\infty} \\frac{\\sqrt{x^2 - 2} + 3x}{x + 5}$ 의 값은? [2점] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":4,"score":2,"review":null}
{"id":3,"name":"3","problem":"3. 곡비가 μ–‘μˆ˜μΈ λ“±λΉ„μˆ˜μ—΄$\\{a_n\\}$이 \\[ a_2 + a_4 = 30, \\quad a_4 + a_6 = \\frac{15}{2} \\] λ₯Ό λ§Œμ‘±μ‹œν‚¬ λ•Œ, $a_1$ 의 값은? [3점] \\begin{itemize} \\item[1] 48 \\item[2] 56 \\item[3] 64 \\item[4] 72 \\item[5] 80 \\end{itemize}","answer":1,"score":3,"review":null}
{"id":4,"name":"4","problem":"4. λ‹€ν•­ν•¨μˆ˜ $f(x)$에 λŒ€ν•˜μ—¬ ν•¨μˆ˜ $g(x)$ λ₯Ό \\[ g(x) = x^2 f(x) \\] 라 ν•˜μž. $f(2) = 1, \\ f'(2) = 3$ 일 λ•Œ, $g'(2)$ 의 값은? [3점] \\begin{itemize} \\item[1] 12 \\item[2] 14 \\item[3] 16 \\item[4] 18 \\item[5] 20 \\end{itemize}","answer":3,"score":3,"review":null}
{"id":5,"name":"5","problem":"5. $\\tan \\theta < 0$이고 $\\cos\\left(\\frac{\\pi}{2} + \\theta\\right) = \\frac{\\sqrt{5}}{5}$일 λ•Œ, $\\cos \\theta$의 값은? [3점] \\begin{itemize} \\item[1] -\\frac{2\\sqrt{5}}{5} \\item[2] -\\frac{\\sqrt{5}}{5} \\item[3] 0 \\item[4] \\frac{\\sqrt{5}}{5} \\item[5] \\frac{2\\sqrt{5}}{5} \\end{itemize}","answer":5,"score":3,"review":null}
{"id":6,"name":"6","problem":"6. ν•¨μˆ˜ $f(x) = 2x^3 - 9x^2 + ax + 5$ λŠ” $x=1$ μ—μ„œ κ·ΉλŒ€μ΄κ³ , $x=b$ μ—μ„œ κ·Ήμ†Œμ΄λ‹€. $a + b$의 값은? (단, $a$, $b$λŠ” μƒμˆ˜μ΄λ‹€.) [3점] \\begin{itemize} \\item[1] 12 \\item[2] 14 \\item[3] 16 \\item[4] 18 \\item[5] 20 \\end{itemize}","answer":2,"score":3,"review":null}
{"id":7,"name":"7","problem":"7. λͺ¨λ“  항이 μ–‘μˆ˜μ΄κ³  첫째항과 곡차가 같은 λ“±μ°¨μˆ˜μ—΄ $\\{a_n\\}$이 \\[ \\sum_{k=1}^{15} \\frac{1}{\\sqrt{a_k} + \\sqrt{a_{k+1}}} = 2 \\] λ₯Ό λ§Œμ‘±μ‹œν‚¬ λ•Œ, $a_4$ 의 값은? [3점] \\begin{itemize} \\item[1] 6 \\item[2] 7 \\item[3] 8 \\item[4] 9 \\item[5] 10 \\end{itemize}","answer":4,"score":3,"review":null}
{"id":8,"name":"8","problem":"8. 점 $(0, 4)$μ—μ„œ 곑선 $y = x^3 - x + 2$에 그은 μ ‘μ„ μ˜ $x$μ ˆνŽΈμ€? [3점] \\begin{itemize} \\item[1] -\\frac{1}{2} \\item[2] -1 \\item[3] -\\frac{3}{2} \\item[4] -2 \\item[5] -\\frac{5}{2} \\end{itemize}","answer":4,"score":3,"review":null}
{"id":9,"name":"9","problem":"9. ν•¨μˆ˜ \\[ f(x) = a - \\sqrt{3} \\tan 2x \\] κ°€ λ‹«νžŒκ΅¬κ°„ \\left[ -\\frac{\\pi}{6}, b \\right] μ—μ„œ μ΅œλŒ“κ°’ 7, μ΅œμ†Ÿκ°’ 3을 κ°€μ§ˆ λ•Œ, $a \\times b$의 값은? (단, $a$, $b$λŠ” μƒμˆ˜μ΄λ‹€.) [4점] \\begin{itemize} \\item[1] \\frac{\\pi}{2} \\item[2] \\frac{5\\pi}{12} \\item[3] \\frac{\\pi}{3} \\item[4] \\frac{\\pi}{4} \\item[5] \\frac{\\pi}{6} \\end{itemize}","answer":3,"score":4,"review":"Removed figure."}
{"id":10,"name":"10","problem":"10. 두 곑선 $y = x^3 + x^2$, $y = -x^2 + k$와 $y$μΆ•μœΌλ‘œ λ‘˜λŸ¬μ‹ΈμΈ λΆ€λΆ„μ˜ 넓이λ₯Ό $A$, 두 곑선 $y = x^3 + x^2$, $y = -x^2 + k$와 직선 $x = 2$둜 λ‘˜λŸ¬μ‹ΈμΈ λΆ€λΆ„μ˜ 넓이λ₯Ό $B$라 ν•˜μž. $A = B$일 λ•Œ, μƒμˆ˜ $k$의 값은? (단, $4 < k < 5$) [4점] \\begin{itemize} \\item[1] \\frac{25}{6} \\item[2] \\frac{13}{3} \\item[3] \\frac{9}{2} \\item[4] \\frac{14}{3} \\item[5] \\frac{29}{6} \\end{itemize}","answer":4,"score":4,"review":null}
{"id":11,"name":"11","problem":"11. μ‚¬κ°ν˜• $\\mathrm{ABCD}$κ°€ ν•œ 원에 λ‚΄μ ‘ν•˜κ³  \\[ \\overline{\\mathrm{AB}} = 5, \\quad \\overline{\\mathrm{AC}} = 3\\sqrt{5}, \\quad \\overline{\\mathrm{AD}} = 7, \\quad \\angle \\mathrm{BAC} = \\angle \\mathrm{CAD} \\] 일 λ•Œ, 이 μ›μ˜ λ°˜μ§€λ¦„μ˜ κΈΈμ΄λŠ”? [4점] \\begin{itemize} \\item[1] \\frac{5\\sqrt{2}}{2} \\item[2] \\frac{8\\sqrt{5}}{5} \\item[3] \\frac{5\\sqrt{5}}{3} \\item[4] \\frac{8\\sqrt{2}}{3} \\item[5] \\frac{9\\sqrt{3}}{4} \\end{itemize}","answer":1,"score":4,"review":"Removed figure and the statement referring to the figure."}
{"id":12,"name":"12","problem":"12. μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ 연속인 ν•¨μˆ˜ $f(x)$ κ°€ λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚¨λ‹€. \\[ n-1 \\leq x < n \\text{일 λ•Œ}, \\ |f(x)| = |6(x-n+1)(x-n)| \\text{이닀.} \\ (\\text{단}, \\ n \\text{은 μžμ—°μˆ˜μ΄λ‹€.}) \\] 열린ꡬ간 $(0, 4)$μ—μ„œ μ •μ˜λœ ν•¨μˆ˜ \\[ g(x) = \\int_0^x f(t) \\, dt - \\int_x^4 f(t) \\, dt \\] κ°€ $x = 2$μ—μ„œ μ΅œμ†Ÿκ°’ 0을 κ°€μ§ˆ λ•Œ, $\\int_{\\frac{1}{2}}^{4} f(x) \\, dx$ 의 값은? [4점] \\begin{itemize} \\item[1] -\\frac{3}{2} \\item[2] -\\frac{1}{2} \\item[3] \\frac{1}{2} \\item[4] \\frac{3}{2} \\item[5] \\frac{5}{2} \\end{itemize}","answer":2,"score":4,"review":null}
{"id":13,"name":"13","problem":"13. μžμ—°μˆ˜ $m(m \\geq 2)$에 λŒ€ν•˜μ—¬ $m^{12}$의 $n$제곱근 μ€‘μ—μ„œ μ •μˆ˜κ°€ μ‘΄μž¬ν•˜λ„λ‘ ν•˜λŠ” 2 μ΄μƒμ˜ μžμ—°μˆ˜ $n$의 개수λ₯Ό $f(m)$이라 ν•  λ•Œ, \\[ \\sum_{m=2}^{9} f(m) \\ \\text{의 값은? [4점]} \\] \\begin{itemize} \\item[1] 37 \\item[2] 42 \\item[3] 47 \\item[4] 52 \\item[5] 57 \\end{itemize}","answer":3,"score":4,"review":null}
{"id":14,"name":"14","problem":"14. λ‹€ν•­ν•¨μˆ˜ $f(x)$에 λŒ€ν•˜μ—¬ ν•¨μˆ˜ $g(x)$λ₯Ό λ‹€μŒκ³Ό 같이 μ •μ˜ν•œλ‹€. \\[ g(x) = \\begin{cases} x & (x < -1 \\text{ λ˜λŠ” } x > 1) \\\\ f(x) & (-1 \\leq x \\leq 1) \\end{cases} \\] ν•¨μˆ˜ $h(x) = \\lim_{t \\to 0+} g(x+t) \\times \\lim_{t \\to 2+} g(x+t)$ 에 λŒ€ν•˜μ—¬ μ•„λž˜ γ„±, γ„΄, γ„· μ€‘μ—μ„œ μ˜³μ€ κ²ƒλ§Œμ„ μžˆλŠ” λŒ€λ‘œ κ³ λ₯Έ 것은? [4점] \\begin{itemize} \\item[γ„±.] $h(1) = 3$ \\item[γ„΄.] ν•¨μˆ˜ $h(x)$λŠ” μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ 연속이닀. \\item[γ„·.] ν•¨μˆ˜ $g(x)$κ°€ λ‹«νžŒκ΅¬κ°„ $[-1, 1]$μ—μ„œ κ°μ†Œν•˜κ³  $g(-1) = -2$이면 ν•¨μˆ˜ $h(x)$λŠ” μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ μ΅œμ†Ÿκ°’μ„ κ°–λŠ”λ‹€. \\end{itemize} \\begin{itemize} \\item[1] γ„± \\item[2] γ„΄ \\item[3] γ„±, γ„΄ \\item[4] γ„±, γ„· \\item[5] γ„΄, γ„· \\end{itemize}","answer":1,"score":4,"review":"<보기> changed to 'μ•„λž˜ γ„±, γ„΄, γ„· 쀑'."}
{"id":15,"name":"15","problem":"15. λͺ¨λ“  항이 μžμ—°μˆ˜μ΄κ³  λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚€λŠ” λͺ¨λ“  μˆ˜μ—΄ $\\{a_n\\}$에 λŒ€ν•˜μ—¬ $a_9$의 μ΅œλŒ“κ°’κ³Ό μ΅œμ†Ÿκ°’μ„ 각각 $M, m$이라 ν•  λ•Œ, $M + m$의 값은? [4점] \\\\ (κ°€) $a_7 = 40$ \\\\ (λ‚˜) λͺ¨λ“  μžμ—°μˆ˜ $n$에 λŒ€ν•˜μ—¬ \\[ a_{n+2} = \\begin{cases} a_{n+1} + a_n & (a_{n+1}\\text{이 3의 λ°°μˆ˜κ°€ μ•„λ‹Œ 경우}) \\\\ \\frac{1}{3} a_{n+1} & (a_{n+1}\\text{이 3의 배수인 경우}) \\end{cases} \\] 이닀. \\begin{itemize} \\item[1] 216 \\item[2] 218 \\item[3] 220 \\item[4] 222 \\item[5] 224 \\end{itemize}","answer":5,"score":4,"review":null}
{"id":16,"name":"16","problem":"16. 방정식 \\[ \\log_2 (3x + 2) = 2 + \\log_2 (x - 2) \\] λ₯Ό λ§Œμ‘±μ‹œν‚€λŠ” μ‹€μˆ˜ $x$의 값을 κ΅¬ν•˜μ‹œμ˜€. [3점]","answer":10,"score":3,"review":null}
{"id":17,"name":"17","problem":"17. ν•¨μˆ˜ $f(x)$에 λŒ€ν•˜μ—¬ $f'(x) = 4x^3 - 2x$이고 $f(0) = 3$일 λ•Œ, $f(2)$의 값을 κ΅¬ν•˜μ‹œμ˜€. [3점]","answer":15,"score":3,"review":null}
{"id":18,"name":"18","problem":"18. 두 μˆ˜μ—΄ $\\{a_n\\}$, $\\{b_n\\}$에 λŒ€ν•˜μ—¬ \\[ \\sum_{k=1}^{5} (3a_k + 5) = 55, \\quad \\sum_{k=1}^{5} (a_k + b_k) = 32 \\] 일 λ•Œ, $\\sum_{k=1}^{5} b_k$의 값을 κ΅¬ν•˜μ‹œμ˜€. [3점]","answer":22,"score":3,"review":null}
{"id":19,"name":"19","problem":"19. 방정식 $2x^3 - 6x^2 + k = 0$ 의 μ„œλ‘œ λ‹€λ₯Έ μ–‘μ˜ μ‹€κ·Όμ˜ κ°œμˆ˜κ°€ 2κ°€ λ˜λ„λ‘ ν•˜λŠ” μ •μˆ˜ $k$ 의 개수λ₯Ό κ΅¬ν•˜μ‹œμ˜€. [3점]","answer":7,"score":3,"review":null}
{"id":20,"name":"20","problem":"20. μˆ˜μ§μ„  μœ„λ₯Ό μ›€μ§μ΄λŠ” 점 P의 μ‹œκ° $t(t \\geq 0)$μ—μ„œμ˜ 속도 $v(t)$와 가속도 $a(t)$κ°€ λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚¨λ‹€. \\[ \\text{(κ°€)} \\ 0 \\leq t \\leq 2 \\ \\text{일 λ•Œ}, \\ v(t) = 2t^3 - 8t \\text{이닀.} \\] \\[ \\text{(λ‚˜)} \\ t \\geq 2 \\ \\text{일 λ•Œ}, \\ a(t) = 6t + 4 \\text{이닀.} \\] μ‹œκ° $t = 0$μ—μ„œ $t = 3$κΉŒμ§€ 점 Pκ°€ 움직인 거리λ₯Ό κ΅¬ν•˜μ‹œμ˜€. [4점]","answer":17,"score":4,"review":null}
{"id":21,"name":"21","problem":"21. μžμ—°μˆ˜ $n$에 λŒ€ν•˜μ—¬ ν•¨μˆ˜ $f(x)$λ₯Ό \\[ f(x) = \\begin{cases} | 3^{x + 2} - n | & (x < 0) \\\\ | \\log_2(x + 4) - n | & (x \\geq 0) \\end{cases} \\] 이라 ν•˜μž. μ‹€μˆ˜ $t$에 λŒ€ν•˜μ—¬ $x$에 λŒ€ν•œ 방정식 $f(x) = t$의 μ„œλ‘œ λ‹€λ₯Έ μ‹€κ·Όμ˜ 개수λ₯Ό $g(t)$라 ν•  λ•Œ, ν•¨μˆ˜ $g(t)$의 μ΅œλŒ“κ°’μ΄ 4κ°€ λ˜λ„λ‘ ν•˜λŠ” λͺ¨λ“  μžμ—°μˆ˜ $n$의 κ°’μ˜ 합을 κ΅¬ν•˜μ‹œμ˜€. [4점]","answer":33,"score":4,"review":null}
{"id":22,"name":"22","problem":"22. μ΅œκ³ μ°¨ν•­μ˜ κ³„μˆ˜κ°€ 1인 μ‚Όμ°¨ν•¨μˆ˜ $f(x)$와 μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ 연속인 ν•¨μˆ˜ $g(x)$κ°€ λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚¬ λ•Œ, $f(4)$의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점] \\\\ (κ°€) λͺ¨λ“  μ‹€μˆ˜ $x$에 λŒ€ν•˜μ—¬ $f(x) = f(1) + (x-1)f'(g(x))$이닀. \\\\ (λ‚˜) ν•¨μˆ˜ $g(x)$의 μ΅œμ†Ÿκ°’μ€ $\\frac{5}{2}$이닀. \\\\ (λ‹€) $f(0) = -3,\\ f(g(1)) = 6$","answer":13,"score":4,"review":null}
{"id":23,"name":"23_prob","problem":"23. \\[ \\lim_{n \\to \\infty} \\frac{\\frac{5}{n} + \\frac{3}{n^2}}{\\frac{1}{n} - \\frac{2}{n^3}} \\text{의 값은? [2점]} \\] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":3,"score":2,"review":null}
{"id":24,"name":"24_prob","problem":"24. 숫자 1, 2, 3, 4, 5 μ€‘μ—μ„œ 쀑볡을 ν—ˆλ½ν•˜μ—¬ 4개λ₯Ό 택해 일렬둜 λ‚˜μ—΄ν•˜μ—¬ λ§Œλ“€ 수 μžˆλŠ” λ„€ 자리의 μžμ—°μˆ˜ 쀑 4000 이상인 ν™€μˆ˜μ˜ κ°œμˆ˜λŠ”? [3점] \\begin{itemize} \\item[1] 125 \\item[2] 150 \\item[3] 175 \\item[4] 200 \\item[5] 225 \\end{itemize}","answer":2,"score":3,"review":null}
{"id":25,"name":"25_prob","problem":"25. 흰색 마슀크 5개, 검은색 마슀크 9κ°œκ°€ λ“€μ–΄ μžˆλŠ” μƒμžκ°€ μžˆλ‹€. 이 μƒμžμ—μ„œ μž„μ˜λ‘œ 3개의 마슀크λ₯Ό λ™μ‹œμ— κΊΌλ‚Ό λ•Œ, κΊΌλ‚Έ 3개의 마슀크 μ€‘μ—μ„œ 적어도 ν•œ κ°œκ°€ 흰색 마슀크일 ν™•λ₯ μ€? [3점] \\begin{itemize} \\item[1] \\frac{8}{13} \\item[2] \\frac{17}{26} \\item[3] \\frac{9}{13} \\item[4] \\frac{19}{26} \\item[5] \\frac{10}{13} \\end{itemize}","answer":5,"score":3,"review":null}
{"id":26,"name":"26_prob","problem":"26. μ£Όλ¨Έλ‹ˆμ— 1이 적힌 흰 곡 1개, 2κ°€ 적힌 흰 곡 1개, 1이 적힌 검은 곡 1개, 2κ°€ 적힌 검은 곡 3κ°œκ°€ λ“€μ–΄ μžˆλ‹€. 이 μ£Όλ¨Έλ‹ˆμ—μ„œ μž„μ˜λ‘œ 3개의 곡을 λ™μ‹œμ— κΊΌλ‚΄λŠ” μ‹œν–‰μ„ ν•œλ‹€. 이 μ‹œν–‰μ—μ„œ κΊΌλ‚Έ 3개의 곡 μ€‘μ—μ„œ 흰 곡이 1개이고 검은 곡이 2개인 사건을 $A$, κΊΌλ‚Έ 3개의 곡에 μ ν˜€ μžˆλŠ” 수λ₯Ό λͺ¨λ‘ κ³±ν•œ 값이 8인 사건을 $B$라 ν•  λ•Œ, $\\mathrm{P}(A \\cup B)$의 값은? [3점] \\begin{itemize} \\item[1] \\frac{11}{20} \\item[2] \\frac{3}{5} \\item[3] \\frac{13}{20} \\item[4] \\frac{7}{10} \\item[5] \\frac{3}{4} \\end{itemize}","answer":3,"score":3,"review":"Removed figure."}
{"id":27,"name":"27_prob","problem":"27. μ–΄λŠ νšŒμ‚¬μ—μ„œ μƒμ‚°ν•˜λŠ” 샴푸 1개의 μš©λŸ‰μ€ μ •κ·œλΆ„ν¬ $N(m, \\sigma^2)$을 λ”°λ₯Έλ‹€κ³  ν•œλ‹€. 이 νšŒμ‚¬μ—μ„œ μƒμ‚°ν•˜λŠ” 샴푸 μ€‘μ—μ„œ 16개λ₯Ό μž„μ˜μΆ”μΆœν•˜μ—¬ 얻은 ν‘œλ³Έν‰κ· μ„ μ΄μš©ν•˜μ—¬ κ΅¬ν•œ $m$에 λŒ€ν•œ 신뒰도 95\\%의 신뒰ꡬ간이 $746.1 \\leq m \\leq 755.9$이닀. 이 νšŒμ‚¬μ—μ„œ μƒμ‚°ν•˜λŠ” 샴푸 μ€‘μ—μ„œ $n$개λ₯Ό μž„μ˜μΆ”μΆœν•˜μ—¬ 얻은 ν‘œλ³Έν‰κ· μ„ μ΄μš©ν•˜μ—¬ κ΅¬ν•˜λŠ” $m$에 λŒ€ν•œ 신뒰도 99\\%의 신뒰ꡬ간이 $a \\leq m \\leq b$일 λ•Œ, $b - a$의 값이 6 μ΄ν•˜κ°€ 되기 μœ„ν•œ μžμ—°μˆ˜ $n$의 μ΅œμ†Ÿκ°’μ€? (단, μš©λŸ‰μ˜ λ‹¨μœ„λŠ” mL이고, $Z$κ°€ ν‘œμ€€μ •κ·œλΆ„ν¬λ₯Ό λ”°λ₯΄λŠ” ν™•λ₯ λ³€μˆ˜μΌ λ•Œ, $\\mathrm{P}(|Z| \\leq 1.96) = 0.95$, $\\mathrm{P}(|Z| \\leq 2.58) = 0.99$둜 κ³„μ‚°ν•œλ‹€.) [3점] \\begin{itemize} \\item[1] 70 \\item[2] 74 \\item[3] 78 \\item[4] 82 \\item[5] 86 \\end{itemize}","answer":2,"score":3,"review":null}
{"id":28,"name":"28_prob","problem":"28. 연속확λ₯ λ³€μˆ˜ $X$κ°€ κ°–λŠ” κ°’μ˜ λ²”μœ„λŠ” $0 \\leq X \\leq a$이고, $X$의 ν™•λ₯ λ°€λ„ν•¨μˆ˜ f(x)κ°€ λ‹€μŒκ³Ό 같이 μ •μ˜λ˜μ–΄ μžˆλ‹€.\n\n\\[\nf(x) =\n\\begin{cases}\n0, & x < 0, \\\\\n\\frac{c}{b}x, & 0 \\leq x < b, \\\\\nc\\frac{(a-x)}{a-b}, & \\leq x < a, \\\\\n0, & a < x\n\\end{cases}\n\\]\n(단, $a>b$ 이닀.)\n\n $\\mathrm{P}(X \\leq b) - \\mathrm{P}(X \\geq b) = \\frac{1}{4}, \\mathrm{P}(X \\leq \\sqrt{5}) = \\frac{1}{2}$ 일 λ•Œ, $a + b + c$의 값은? (단, $a, b, c$λŠ” μƒμˆ˜μ΄λ‹€.) [4점] \\begin{itemize} \\item[1] $\\frac{11}{2}$ \\item[2] $6$ \\item[3] $\\frac{13}{2}$ \\item[4] $7$ \\item[5] $\\frac{15}{2}$ \\end{itemize}","answer":4,"score":4,"review":"Removed figure and the statement referring to the figure. The figure is needed to solve the problem, so we paraphrased the figure into text."}
{"id":29,"name":"29_prob","problem":"29. μ•žλ©΄μ—λŠ” 1λΆ€ν„° 6κΉŒμ§€μ˜ μžμ—°μˆ˜κ°€ ν•˜λ‚˜μ”© μ ν˜€ 있고 λ’·λ©΄μ—λŠ” λͺ¨λ‘ 0이 ν•˜λ‚˜μ”© μ ν˜€ μžˆλŠ” 6μž₯의 μΉ΄λ“œκ°€ μžˆλ‹€. 이 6μž₯의 μΉ΄λ“œκ°€ 6 μ΄ν•˜μ˜ μžμ—°μˆ˜ $k$에 λŒ€ν•˜μ—¬ $k$번째 μžλ¦¬μ— μžμ—°μˆ˜ $k$κ°€ 보이도둝 놓여 μžˆλ‹€. 이 6μž₯의 μΉ΄λ“œμ™€ ν•œ 개의 μ£Όμ‚¬μœ„λ₯Ό μ‚¬μš©ν•˜μ—¬ λ‹€μŒ μ‹œν–‰μ„ ν•œλ‹€. \\[ \\text{μ£Όμ‚¬μœ„λ₯Ό ν•œ 번 던져 λ‚˜μ˜¨ 눈의 μˆ˜κ°€ } k \\text{이면 } k\\text{번째 μžλ¦¬μ— 놓여 μžˆλŠ” μΉ΄λ“œλ₯Ό ν•œ 번 뒀집어 μ œμžλ¦¬μ— λ†“λŠ”λ‹€.} \\] μœ„μ˜ μ‹œν–‰μ„ 3번 λ°˜λ³΅ν•œ ν›„ 6μž₯의 μΉ΄λ“œμ— λ³΄μ΄λŠ” λͺ¨λ“  수의 합이 짝수일 λ•Œ, μ£Όμ‚¬μœ„μ˜ 1의 눈이 ν•œ 번만 λ‚˜μ™”μ„ ν™•λ₯ μ€ $\\frac{q}{p}$이닀. $p+q$의 값을 κ΅¬ν•˜μ‹œμ˜€. (단, $p$와 $q$λŠ” μ„œλ‘œμ†ŒμΈ μžμ—°μˆ˜μ΄λ‹€.) [4점]","answer":49,"score":4,"review":"Removed figure and the statement referring to the figure."}
{"id":30,"name":"30_prob","problem":"30. 집합 $X=\\{x \\mid x\\text{λŠ”} \\ 10 \\ \\text{μ΄ν•˜μ˜ μžμ—°μˆ˜}\\}$에 λŒ€ν•˜μ—¬ λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚€λŠ” ν•¨μˆ˜ $f: X \\to X$의 개수λ₯Ό κ΅¬ν•˜μ‹œμ˜€. [4점] \\begin{itemize} \\item[(κ°€)] 9 μ΄ν•˜μ˜ λͺ¨λ“  μžμ—°μˆ˜ $x$에 λŒ€ν•˜μ—¬ $f(x) \\leq f(x+1)$이닀. \\item[(λ‚˜)] $1 \\leq x \\leq 5$일 λ•Œ $f(x) \\leq x$이고, 6 $\\leq x \\leq 10$일 λ•Œ $f(x) \\geq x$이닀. \\item[(λ‹€)] $f(6) = f(5) + 6$ \\end{itemize}","answer":100,"score":4,"review":null}
{"id":31,"name":"23_calc","problem":"23. \\[ \\lim_{x \\to 0} \\frac{\\ln(x+1)}{\\sqrt{x+4} - 2} \\text{ 의 값은? [2점]} \\] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":4,"score":2,"review":null}
{"id":32,"name":"24_calc","problem":"24. $\\lim_{n \\to \\infty} \\frac{1}{n} \\sum_{k=1}^{n} \\sqrt{1 + \\frac{3k}{n}}$ 의 값은? [3점] \\begin{itemize} \\item[1] \\frac{4}{3} \\item[2] \\frac{13}{9} \\item[3] \\frac{14}{9} \\item[4] \\frac{5}{3} \\item[5] \\frac{16}{9} \\end{itemize}","answer":3,"score":3,"review":null}
{"id":33,"name":"25_calc","problem":"25. λ“±λΉ„μˆ˜μ—΄ $\\{a_n\\}$에 λŒ€ν•˜μ—¬ \\[ \\lim_{n \\to \\infty} \\frac{a_{n}+1}{3^n + 2^{2n-1}} = 3 \\] 일 λ•Œ, $a_2$의 값은? [3점] \\begin{itemize} \\item[1] 16 \\item[2] 18 \\item[3] 20 \\item[4] 22 \\item[5] 24 \\end{itemize}","answer":5,"score":3,"review":null}
{"id":34,"name":"26_calc","problem":"26. 곑선 $y = \\sqrt{\\sec^2 x + \\tan x} \\left( 0 \\leq x \\leq \\frac{\\pi}{3} \\right)$와 $x$μΆ•, $y$μΆ• 및 직선 $x = \\frac{\\pi}{3}$둜 λ‘˜λŸ¬μ‹ΈμΈ 뢀뢄을 λ°‘λ©΄μœΌλ‘œ ν•˜λŠ” μž…μ²΄λ„ν˜•μ΄ μžˆλ‹€. 이 μž…μ²΄λ„ν˜•μ„ $x$좕에 수직인 ν‰λ©΄μœΌλ‘œ 자λ₯Έ 단면이 λͺ¨λ‘ μ •μ‚¬κ°ν˜•μΌ λ•Œ, 이 μž…μ²΄λ„ν˜•μ˜ λΆ€ν”ΌλŠ”? [3점] \\begin{itemize} \\item[1] \\frac{\\sqrt{3}}{2} + \\frac{\\ln 2}{2} \\item[2] \\frac{\\sqrt{3}}{2} + \\ln 2 \\item[3] \\sqrt{3} + \\frac{\\ln 2}{2} \\item[4] \\sqrt{3} + \\ln 2 \\item[5] \\sqrt{3} + 2 \\ln 2 \\end{itemize}","answer":4,"score":3,"review":"Removed figure and the statement referring to the figure."}
{"id":35,"name":"27_calc","problem":"27. 쀑심이 $\\mathrm{O}$, λ°˜μ§€λ¦„μ˜ 길이가 1이고, μ€‘μ‹¬κ°μ˜ 크기가 $\\frac{\\pi}{2}$인 뢀채꼴 $\\mathrm{O}\\mathrm{A}_1\\mathrm{B}_1$이 μžˆλ‹€. 호 $\\mathrm{A}_1\\mathrm{B}_1$ μœ„μ— 점 $\\mathrm{P}_1$, μ„ λΆ„ $\\mathrm{O}\\mathrm{A}_1$ μœ„μ— 점 $\\mathrm{C}_1$, μ„ λΆ„ $\\mathrm{O}\\mathrm{B}_1$ μœ„μ— 점 $\\mathrm{D}_1$을 μ‚¬κ°ν˜• $\\mathrm{O}\\mathrm{C}_1\\mathrm{P}_1\\mathrm{D}_1$이 $\\overline{\\mathrm{O}\\mathrm{C}_1}:\\overline{\\mathrm{O}\\mathrm{D}_1}=3:4$인 μ§μ‚¬κ°ν˜•μ΄ λ˜λ„λ‘ μž‘λŠ”λ‹€.\n\n뢀채꼴 $\\mathrm{O}\\mathrm{A}_1\\mathrm{B}_1$의 내뢀에 점 $\\mathrm{Q}_1$을 $\\overline{\\mathrm{P}_1\\mathrm{Q}_1} = \\overline{\\mathrm{A}_1\\mathrm{Q}_1}$, $\\angle \\mathrm{P}_1\\mathrm{Q}_1\\mathrm{A}_1 = \\frac{\\pi}{2}$κ°€ λ˜λ„λ‘ 작고, μ΄λ“±λ³€μ‚Όκ°ν˜• $\\mathrm{P}_1\\mathrm{Q}_1\\mathrm{A}_1$에 μƒ‰μΉ ν•˜μ—¬ 얻은 그림을 $R_1$이라 ν•˜μž. κ·Έλ¦Ό $R_1$μ—μ„œ μ„ λΆ„ $\\mathrm{O}\\mathrm{A}_1$ μœ„μ˜ 점 $\\mathrm{A}_2$와 μ„ λΆ„ $\\mathrm{O}\\mathrm{B}_1$ μœ„μ˜ 점 $\\mathrm{B}_2$λ₯Ό $\\overline{\\mathrm{O}\\mathrm{Q}_1} = \\overline{\\mathrm{O}\\mathrm{A}_2} = \\overline{\\mathrm{O}\\mathrm{B}_2}$κ°€ λ˜λ„λ‘ 작고, 쀑심이 $\\mathrm{O}$, λ°˜μ§€λ¦„μ˜ 길이가 $\\overline{\\mathrm{O}\\mathrm{Q}_1}$, μ€‘μ‹¬κ°μ˜ 크기가 $\\frac{\\pi}{2}$인 뢀채꼴 $\\mathrm{O}\\mathrm{A}_2\\mathrm{B}_2$λ₯Ό κ·Έλ¦°λ‹€.\n\nκ·Έλ¦Ό $R_1$을 얻은 것과 같은 λ°©λ²•μœΌλ‘œ λ„€ 점 $\\mathrm{P}_2, \\mathrm{C}_2, \\mathrm{D}_2, \\mathrm{Q}_2$λ₯Ό 작고, μ΄λ“±λ³€μ‚Όκ°ν˜• $\\mathrm{P}_2\\mathrm{Q}_2\\mathrm{A}_2$에 μƒ‰μΉ ν•˜μ—¬ 얻은 그림을 $R_2$라 ν•˜μž. 이와 같은 과정을 κ³„μ†ν•˜μ—¬ $n$번째 얻은 κ·Έλ¦Ό $R_n$에 μƒ‰μΉ λ˜μ–΄ μžˆλŠ” λΆ€λΆ„μ˜ 넓이λ₯Ό $S_n$이라 ν•  λ•Œ, \\[ \\lim_{n \\to \\infty} S_n \\text{의 값은? [3점]} \\]\n\n\\begin{itemize} \\item[1] \\frac{9}{40} \\item[2] \\frac{1}{4} \\item[3] \\frac{11}{40} \\item[4] \\frac{3}{10} \\item[5] \\frac{13}{40} \\end{itemize}","answer":2,"score":3,"review":"Removed figure and the statement referring to the figure."}
{"id":36,"name":"28_calc","problem":"28. 쀑심이 $(\\mathrm{O})$이고 길이가 2인 μ„ λΆ„ $(\\mathrm{AB})$λ₯Ό μ§€λ¦„μœΌλ‘œ ν•˜λŠ” λ°˜μ› μœ„μ— $(\\angle \\mathrm{AOC} = \\frac{\\pi}{2})$인 점 $(\\mathrm{C})$κ°€ μžˆλ‹€. 호 $(\\mathrm{BC})$ μœ„μ— 점 $(\\mathrm{P})$와 호 $(\\mathrm{CA})$ μœ„μ— 점 $(\\mathrm{Q})$λ₯Ό $(\\overline{\\mathrm{PB}} = \\overline{\\mathrm{QC}})$κ°€ λ˜λ„λ‘ 작고, μ„ λΆ„ $(\\mathrm{AP})$ μœ„μ— 점 $(\\mathrm{R})$λ₯Ό $(\\angle \\mathrm{CQR} = \\frac{\\pi}{2})$κ°€ λ˜λ„λ‘ μž‘λŠ”λ‹€. μ„ λΆ„ $(\\mathrm{AP})$와 μ„ λΆ„ $(\\mathrm{CO})$의 ꡐ점을 $(\\mathrm{S})$라 ν•˜μž. $(\\angle \\mathrm{PAB} = \\theta)$일 λ•Œ, μ‚Όκ°ν˜• $(\\mathrm{POB})$의 넓이λ₯Ό $(f(\\theta))$, μ‚¬κ°ν˜• $(\\mathrm{CQRS})$의 넓이λ₯Ό $(g(\\theta))$라 ν•˜μž.\n\n\\[ \\lim_{\\theta \\to 0+} \\frac{3f(\\theta) - 2g(\\theta)}{\\theta^2} \\] 의 값은? (단, $0 < \\theta < \\frac{\\pi}{4}$) [4점]\n\n\\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":2,"score":4,"review":"Removed figure and the statement referring to the figure."}
{"id":37,"name":"29_calc","problem":"29. μ„Έ μƒμˆ˜ $(a)$, $(b)$, $(c)$에 λŒ€ν•˜μ—¬ ν•¨μˆ˜ $f(x) = ae^{2x} + be^x + c$κ°€ λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚¨λ‹€.\n\n\\[ \\begin{aligned} &\\text{(κ°€)} \\quad \\lim_{x \\to -\\infty} \\frac{f(x) + 6}{e^x} = 1 \\\\ &\\text{(λ‚˜)} \\quad f(\\ln 2) = 0 \\end{aligned} \\]\n\nν•¨μˆ˜ $f(x)$의 μ—­ν•¨μˆ˜λ₯Ό $g(x)$라 ν•  λ•Œ,\n\n\\[ \\int_0^{14} g(x) \\ dx = p + q \\ln 2 \\ \\text{이닀}. \\ p+q \\ \\text{의 값을 κ΅¬ν•˜μ‹œμ˜€.} \\]\n\n$(\\text{단, } p, q \\text{λŠ” 유리수이고, } \\ln 2 \\text{λŠ” λ¬΄λ¦¬μˆ˜μ΄λ‹€.)}$ [4점]","answer":26,"score":4,"review":null}
{"id":38,"name":"30_calc","problem":"30. μ΅œκ³ μ°¨ν•­μ˜ κ³„μˆ˜κ°€ μ–‘μˆ˜μΈ μ‚Όμ°¨ν•¨μˆ˜ $f(x)$와 ν•¨μˆ˜ $g(x) = e^{\\sin{\\pi x}} - 1$에 λŒ€ν•˜μ—¬ μ‹€μˆ˜ μ „μ²΄μ˜ μ§‘ν•©μ—μ„œ μ •μ˜λœ ν•©μ„±ν•¨μˆ˜ $h(x) = g(f(x))$κ°€ λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚¨λ‹€.\n\n\\begin{itemize} \\item[(κ°€)] ν•¨μˆ˜ $( h(x) )$λŠ” $( x = 0 )$μ—μ„œ κ·ΉλŒ“κ°’ $0$을 κ°–λŠ”λ‹€. \\item[(λ‚˜)] 열린ꡬ간 $( 0,3 )$μ—μ„œ 방정식 $( h(x) = 1 )$의 μ„œλ‘œ λ‹€λ₯Έ μ‹€κ·Όμ˜ κ°œμˆ˜λŠ” 7이닀. \\end{itemize}\n\n$f(3) = \\frac{1}{2}, \\ f'(3) = 0$일 λ•Œ, $f(2) = \\frac{q}{p}$이닀. $p + q$의 값을 κ΅¬ν•˜μ‹œμ˜€. (단, $p$와 $q$λŠ” μ„œλ‘œμ†ŒμΈ μžμ—°μˆ˜μ΄λ‹€.) [4점]","answer":31,"score":4,"review":null}
{"id":39,"name":"23_geom","problem":"23. μ’Œν‘œκ³΅κ°„μ˜ 점 $\\mathrm{A}(2, 2, -1)$을 $x$좕에 λŒ€ν•˜μ—¬ λŒ€μΉ­μ΄λ™ν•œ 점을 $\\mathrm{B}$라 ν•˜μž. 점 $\\mathrm{C}(-2, 1, 1)$에 λŒ€ν•˜μ—¬ μ„ λΆ„ $\\mathrm{BC}$의 κΈΈμ΄λŠ”? [2점] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":5,"score":2,"review":null}
{"id":40,"name":"24_geom","problem":"24. 초점이 $\\mathrm{F}\\left( \\frac{1}{3}, 0 \\right)$이고 쀀선이 $x = -\\frac{1}{3}$인 포물선이 점 $(a, 2)$λ₯Ό 지날 λ•Œ, $a$의 값은? [3점] \\begin{itemize} \\item[1] 1 \\item[2] 2 \\item[3] 3 \\item[4] 4 \\item[5] 5 \\end{itemize}","answer":3,"score":3,"review":null}
{"id":41,"name":"25_geom","problem":"25. 타원 $\\frac{x^2}{a^2} + \\frac{y^2}{b^2} = 1$ μœ„μ˜ 점 $(2, 1)$μ—μ„œμ˜ μ ‘μ„ μ˜ κΈ°μšΈκΈ°κ°€ $-\\frac{1}{2}$일 λ•Œ, 이 νƒ€μ›μ˜ 두 초점 μ‚¬μ΄μ˜ κ±°λ¦¬λŠ”? (단, $a, b$λŠ” μ–‘μˆ˜μ΄λ‹€.) [3점] \\begin{itemize} \\item[1] 2\\sqrt{3} \\item[2] 4 \\item[3] 2\\sqrt{5} \\item[4] 2\\sqrt{6} \\item[5] 2\\sqrt{7} \\end{itemize}","answer":4,"score":3,"review":null}
{"id":42,"name":"26_geom","problem":"26. μ’Œν‘œν‰λ©΄μ—μ„œ μ„Έ 벑터 \\[ \\vec{a} = (2, 4), \\quad \\vec{b} = (2, 8), \\quad \\vec{c} = (1, 0) \\] 에 λŒ€ν•˜μ—¬ 두 벑터 $\\vec{p}, \\vec{q}$ κ°€ \\[ (\\vec{p} - \\vec{a}) \\cdot (\\vec{p} - \\vec{b}) = 0, \\quad \\vec{q} = \\frac{1}{2} \\vec{a} + t \\vec{c} \\quad (t \\text{λŠ” μ‹€μˆ˜}) \\] λ₯Ό λ§Œμ‘±μ‹œν‚¬ λ•Œ, $\\left| \\vec{p} - \\vec{q} \\right|$ 의 μ΅œμ†Ÿκ°’μ€? [3점] \\begin{itemize} \\item[1] \\frac{3}{2} \\item[2] 2 \\item[3] \\frac{5}{2} \\item[4] 3 \\item[5] \\frac{7}{2} \\end{itemize}","answer":2,"score":3,"review":null}
{"id":43,"name":"27_geom","problem":"27. μ’Œν‘œκ³΅κ°„μ— 직선 $( \\mathrm{AB} )$λ₯Ό ν¬ν•¨ν•˜λŠ” 평면 $( \\alpha )$κ°€ μžˆλ‹€. 평면 $( \\alpha )$ μœ„μ— μžˆμ§€ μ•Šμ€ 점 $( \\mathrm{C} )$에 λŒ€ν•˜μ—¬ 직선 $( \\mathrm{AB} )$와 직선 $( \\mathrm{AC} )$κ°€ μ΄λ£¨λŠ” 예각의 크기λ₯Ό $( \\theta_1 )$이라 ν•  λ•Œ $\\sin \\theta_1 = \\frac{4}{5}$이고, 직선 $( \\mathrm{AC} )$와 평면 $( \\alpha )$κ°€ μ΄λ£¨λŠ” 예각의 ν¬κΈ°λŠ” $( \\frac{\\pi}{2} - \\theta_1 )$이닀. 평면 $( \\mathrm{ABC} )$와 평면 $( \\alpha )$κ°€ μ΄λ£¨λŠ” 예각의 크기λ₯Ό $( \\theta_2 )$라 ν•  λ•Œ, $\\cos \\theta_2$의 값은? [3점]\n\n\\begin{itemize} \\item[1] \\frac{\\sqrt{7}}{4} \\item[2] \\frac{\\sqrt{7}}{5} \\item[3] \\frac{\\sqrt{7}}{6} \\item[4] \\frac{\\sqrt{7}}{7} \\item[5] \\frac{\\sqrt{7}}{8} \\end{itemize}","answer":1,"score":3,"review":"Removed figure."}
{"id":44,"name":"28_geom","problem":"28. 두 초점이 $( \\mathrm{F}(c, 0) )$, $( \\mathrm{F'}(-c, 0) \\ (c > 0) )$인 μŒκ³‘μ„  $( C )$와 $( y )$μΆ• μœ„μ˜ 점 $( \\mathrm{A} )$κ°€ μžˆλ‹€. μŒκ³‘μ„  $( C )$κ°€ μ„ λΆ„ $( \\mathrm{AF} )$와 λ§Œλ‚˜λŠ” 점을 $( \\mathrm{P} )$, μ„ λΆ„ $( \\mathrm{AF'} )$와 λ§Œλ‚˜λŠ” 점을 $( \\mathrm{P'} )$이라 ν•˜μž. 직선 $( \\mathrm{AF} )$λŠ” μŒκ³‘μ„  $( C )$의 ν•œ 점근선과 ν‰ν–‰ν•˜κ³ \n\n\\[ \\overline{\\mathrm{AP}}:\\overline{\\mathrm{PP'}} = 5:6, \\quad \\overline{\\mathrm{PF}} = 1 \\]\n\n일 λ•Œ, μŒκ³‘μ„  $( C )$의 μ£ΌμΆ•μ˜ κΈΈμ΄λŠ”? [4점]\n\n\\begin{itemize} \\item[1] \\frac{13}{6} \\item[2] \\frac{9}{4} \\item[3] \\frac{7}{3} \\item[4] \\frac{29}{12} \\item[5] \\frac{5}{2} \\end{itemize}","answer":2,"score":4,"review":"Removed figure."}
{"id":45,"name":"29_geom","problem":"29. 평면 $\\alpha$ μœ„μ— $\\overline{\\mathrm{AB}} = \\overline{\\mathrm{CD}} = \\overline{\\mathrm{AD}} = 2$, $\\angle \\mathrm{ABC} = \\angle \\mathrm{BCD} = \\frac{\\pi}{3}$ 인 사닀리꼴 $\\mathrm{ABCD}$κ°€ μžˆλ‹€. λ‹€μŒ 쑰건을 λ§Œμ‘±μ‹œν‚€λŠ” 평면 $\\alpha$ μœ„μ˜ 두 점 $\\mathrm{P}$, $\\mathrm{Q}$에 λŒ€ν•˜μ—¬ $\\overrightarrow{\\mathrm{CP}} \\cdot \\overrightarrow{\\mathrm{DQ}}$의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점]\n\n\\begin{itemize} \\item[(κ°€)] $\\overrightarrow{\\mathrm{AC}} = 2 \\left( \\overrightarrow{\\mathrm{AD}} + \\overrightarrow{\\mathrm{BP}} \\right)$ \\item[(λ‚˜)] $\\overrightarrow{\\mathrm{AC}} \\cdot \\overrightarrow{\\mathrm{PQ}} = 6$ \\item[(λ‹€)] $2 \\times \\angle \\mathrm{BQA} = \\angle \\mathrm{PBQ} < \\frac{\\pi}{2}$ \\end{itemize}","answer":12,"score":4,"review":"Removed figure."}
{"id":46,"name":"30_geom","problem":"30. μ’Œν‘œκ³΅κ°„μ— 정사면체 $\\mathrm{ABCD}$κ°€ μžˆλ‹€. μ •μ‚Όκ°ν˜• $\\mathrm{BCD}$의 외심을 μ€‘μ‹¬μœΌλ‘œ ν•˜κ³  점 $\\mathrm{B}$λ₯Ό μ§€λ‚˜λŠ” ꡬλ₯Ό $S$라 ν•˜μž.\n\nꡬ $S$와 μ„ λΆ„ $\\mathrm{AB}$κ°€ λ§Œλ‚˜λŠ” 점 쀑 $\\mathrm{B}$κ°€ μ•„λ‹Œ 점을 $\\mathrm{P}$, ꡬ $S$와 μ„ λΆ„ $\\mathrm{AC}$κ°€ λ§Œλ‚˜λŠ” 점 쀑 $\\mathrm{C}$κ°€ μ•„λ‹Œ 점을 $\\mathrm{Q}$, ꡬ $S$와 μ„ λΆ„ $\\mathrm{AD}$κ°€ λ§Œλ‚˜λŠ” 점 쀑 $\\mathrm{D}$κ°€ μ•„λ‹Œ 점을 $\\mathrm{R}$라 ν•˜κ³ , 점 $\\mathrm{P}$μ—μ„œ ꡬ $S$에 μ ‘ν•˜λŠ” 평면을 $\\alpha$라 ν•˜μž.\n\nꡬ $S$의 λ°˜μ§€λ¦„μ˜ 길이가 $6$일 λ•Œ, μ‚Όκ°ν˜• $\\mathrm{PQR}$의 평면 $\\alpha$ μœ„λ‘œμ˜ μ •μ‚¬μ˜μ˜ λ„“μ΄λŠ” $k$이닀. $k^2$의 값을 κ΅¬ν•˜μ‹œμ˜€. [4점]","answer":24,"score":4,"review":"Removed figure."}