|
14. λ€νν¨μ $f(x)$μ λνμ¬ ν¨μ $g(x)$λ₯Ό λ€μκ³Ό κ°μ΄ μ μνλ€. |
|
\[ |
|
g(x) = |
|
\begin{cases} |
|
x & (x < -1 \text{ λλ } x > 1) \\ |
|
f(x) & (-1 \leq x \leq 1) |
|
\end{cases} |
|
\] |
|
ν¨μ $h(x) = \lim_{t \to 0+} g(x+t) \times \lim_{t \to 2+} g(x+t)$ μ λνμ¬ μλ γ±, γ΄, γ· μ€μμ μ³μ κ²λ§μ μλ λλ‘ κ³ λ₯Έ κ²μ? [4μ ] |
|
|
|
\begin{itemize} |
|
\item[γ±.] $h(1) = 3$ |
|
\item[γ΄.] ν¨μ $h(x)$λ μ€μ μ 체μ μ§ν©μμ μ°μμ΄λ€. |
|
\item[γ·.] ν¨μ $g(x)$κ° λ«νκ΅¬κ° $[-1, 1]$μμ κ°μνκ³ $g(-1) = -2$μ΄λ©΄ ν¨μ $h(x)$λ μ€μ μ 체μ μ§ν©μμ μ΅μκ°μ κ°λλ€. |
|
\end{itemize} |
|
|
|
\begin{itemize} |
|
\item[1] γ± |
|
\item[2] γ΄ |
|
\item[3] γ±, γ΄ |
|
\item[4] γ±, γ· |
|
\item[5] γ΄, γ· |
|
\end{itemize} |