|
28. μ€μ¬μ΄ \(\mathrm{O}\)μ΄κ³ κΈΈμ΄κ° 2μΈ μ λΆ \(\mathrm{AB}\)λ₯Ό μ§λ¦μΌλ‘ νλ λ°μ μμ \(\angle \mathrm{AOC} = \frac{\pi}{2}\)μΈ μ \(\mathrm{C}\)κ° μλ€. |
|
νΈ \(\mathrm{BC}\) μμ μ \(\mathrm{P}\)μ νΈ \(\mathrm{CA}\) μμ μ \(\mathrm{Q}\)λ₯Ό \(\overline{\mathrm{PB}} = \overline{\mathrm{QC}}\)κ° λλλ‘ μ‘κ³ , μ λΆ \(\mathrm{AP}\) μμ μ \(\mathrm{R}\)λ₯Ό \(\angle \mathrm{CQR} = \frac{\pi}{2}\)κ° λλλ‘ μ‘λλ€. |
|
μ λΆ \(\mathrm{AP}\)μ μ λΆ \(\mathrm{CO}\)μ κ΅μ μ \(\mathrm{S}\)λΌ νμ. \(\angle \mathrm{PAB} = \theta\)μΌ λ, μΌκ°ν \(\mathrm{POB}\)μ λμ΄λ₯Ό \(f(\theta)\), μ¬κ°ν \(\mathrm{CQRS}\)μ λμ΄λ₯Ό \(g(\theta)\)λΌ νμ. |
|
|
|
\[ |
|
\lim_{\theta \to 0+} \frac{3f(\theta) - 2g(\theta)}{\theta^2} |
|
\] |
|
μ κ°μ? (λ¨, \(0 < \theta < \frac{\pi}{4}\)) [4μ ] |
|
|
|
\begin{itemize} |
|
\item[1] 1 |
|
\item[2] 2 |
|
\item[3] 3 |
|
\item[4] 4 |
|
\item[5] 5 |
|
\end{itemize} |