|
29. νλ©΄ $\alpha$ μμ $\overline{\mathrm{AB}} = \overline{\mathrm{CD}} = \overline{\mathrm{AD}} = 2$, $\angle \mathrm{ABC} = \angle \mathrm{BCD} = \frac{\pi}{3}$ μΈ μ¬λ€λ¦¬κΌ΄ $\mathrm{ABCD}$κ° μλ€. λ€μ 쑰건μ λ§μ‘±μν€λ νλ©΄ $\alpha$ μμ λ μ $\mathrm{P}$, $\mathrm{Q}$μ λνμ¬ $\overrightarrow{\mathrm{CP}} \cdot \overrightarrow{\mathrm{DQ}}$μ κ°μ ꡬνμμ€. [4μ ] |
|
|
|
\begin{itemize} |
|
\item[(κ°)] $\overrightarrow{\mathrm{AC}} = 2 \left( \overrightarrow{\mathrm{AD}} + \overrightarrow{\mathrm{BP}} \right)$ |
|
\item[(λ)] $\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{PQ}} = 6$ |
|
\item[(λ€)] $2 \times \angle \mathrm{BQA} = \angle \mathrm{PBQ} < \frac{\pi}{2}$ |
|
\end{itemize} |