cartoonset
Browse files- .vscode/settings.json +0 -3
- cartoonset10k.py → cartoonset.py +18 -7
- dataset_infos.json +0 -39
.vscode/settings.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"python.formatting.provider": "black"
|
3 |
-
}
|
|
|
|
|
|
|
|
cartoonset10k.py → cartoonset.py
RENAMED
@@ -25,22 +25,32 @@ The Cartoonset-10k dataset consists of 60000 32x32 colour images in 10 classes,
|
|
25 |
per class. There are 50000 training images and 10000 test images.
|
26 |
"""
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
_NAMES = []
|
31 |
|
32 |
|
33 |
-
class
|
34 |
"""Cartoonset-10k Data Set"""
|
35 |
|
36 |
BUILDER_CONFIGS = [
|
37 |
datasets.BuilderConfig(
|
38 |
-
name="
|
39 |
version=datasets.Version("1.0.0", ""),
|
40 |
-
description="
|
41 |
-
)
|
|
|
|
|
|
|
|
|
|
|
42 |
]
|
43 |
|
|
|
|
|
44 |
def _info(self):
|
45 |
return datasets.DatasetInfo(
|
46 |
description=_DESCRIPTION,
|
@@ -58,9 +68,10 @@ class Cartoonset10k(datasets.GeneratorBasedBuilder):
|
|
58 |
# ),
|
59 |
)
|
60 |
|
61 |
-
def _split_generators(self, dl_manager):
|
|
|
62 |
print("URL:", _DATA_URL)
|
63 |
-
archive = dl_manager.download(
|
64 |
|
65 |
print(archive)
|
66 |
exit()
|
|
|
25 |
per class. There are 50000 training images and 10000 test images.
|
26 |
"""
|
27 |
|
28 |
+
_DATA_URLS = {
|
29 |
+
"10k": "https://storage.cloud.google.com/cartoonset_public_files/cartoonset10k.tgz",
|
30 |
+
"100k": "https://storage.cloud.google.com/cartoonset_public_files/cartoonset100k.tgz",
|
31 |
+
}
|
32 |
|
33 |
_NAMES = []
|
34 |
|
35 |
|
36 |
+
class Cartoonset(datasets.GeneratorBasedBuilder):
|
37 |
"""Cartoonset-10k Data Set"""
|
38 |
|
39 |
BUILDER_CONFIGS = [
|
40 |
datasets.BuilderConfig(
|
41 |
+
name="10k",
|
42 |
version=datasets.Version("1.0.0", ""),
|
43 |
+
description="Loads the Cartoonset-10k Data Set",
|
44 |
+
),
|
45 |
+
datasets.BuilderConfig(
|
46 |
+
name="100k",
|
47 |
+
version=datasets.Version("1.0.0", ""),
|
48 |
+
description="Loads the Cartoonset-10k Data Set",
|
49 |
+
),
|
50 |
]
|
51 |
|
52 |
+
DEFAULT_CONFIG_NAME = "10k"
|
53 |
+
|
54 |
def _info(self):
|
55 |
return datasets.DatasetInfo(
|
56 |
description=_DESCRIPTION,
|
|
|
68 |
# ),
|
69 |
)
|
70 |
|
71 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
72 |
+
self.config.name
|
73 |
print("URL:", _DATA_URL)
|
74 |
+
archive = dl_manager.download(_DATA_URL)
|
75 |
|
76 |
print(archive)
|
77 |
exit()
|
dataset_infos.json
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"plain_text": {
|
3 |
-
"description": "The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images\nper class. There are 20000 training images and 10000 test images.\n",
|
4 |
-
"citation": "@TECHREPORT{Krizhevsky09learningmultiple,\n author = {Alex Krizhevsky},\n title = {Learning multiple layers of features from tiny images},\n institution = {},\n year = {2009}\n}\n",
|
5 |
-
"homepage": "https://www.cs.toronto.edu/~kriz/cifar.html",
|
6 |
-
"license": "",
|
7 |
-
"features": {
|
8 |
-
"img": {
|
9 |
-
"id": null,
|
10 |
-
"_type": "Image"
|
11 |
-
}
|
12 |
-
},
|
13 |
-
"post_processed": null,
|
14 |
-
"supervised_keys": {
|
15 |
-
"input": "img",
|
16 |
-
"output": "label"
|
17 |
-
},
|
18 |
-
"builder_name": "cifar10",
|
19 |
-
"version": {
|
20 |
-
"version_str": "1.0.0",
|
21 |
-
"description": "",
|
22 |
-
"major": 1,
|
23 |
-
"minor": 0,
|
24 |
-
"patch": 0
|
25 |
-
},
|
26 |
-
"splits": {
|
27 |
-
"train": {
|
28 |
-
"name": "train",
|
29 |
-
"num_bytes": 476635078,
|
30 |
-
"num_examples": 20000,
|
31 |
-
"dataset_name": "cifar10"
|
32 |
-
}
|
33 |
-
},
|
34 |
-
"download_size": 476635078,
|
35 |
-
"post_processing_size": null,
|
36 |
-
"dataset_size": 136627438,
|
37 |
-
"size_in_bytes": 307125509
|
38 |
-
}
|
39 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|