chainyo commited on
Commit
70b2d68
·
1 Parent(s): ca962af

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ ---
4
+
5
+ ⚠️ This only a subpart of the original dataset, containing only `questionnaire`.
6
+
7
+ The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset consists of 400,000 grayscale images in 16 classes, with 25,000 images per class. There are 320,000 training images, 40,000 validation images, and 40,000 test images. The images are sized so their largest dimension does not exceed 1000 pixels.
8
+
9
+ For questions and comments please contact Adam Harley (aharley@scs.ryerson.ca).
10
+
11
+ The full dataset can be found [here](https://www.cs.cmu.edu/~aharley/rvl-cdip/).
12
+
13
+ ## Labels
14
+
15
+ 0: letter
16
+ 1: form
17
+ 2: email
18
+ 3: handwritten
19
+ 4: advertissement
20
+ 5: scientific report
21
+ 6: scientific publication
22
+ 7: specification
23
+ 8: file folder
24
+ 9: news article
25
+ 10: budget
26
+ 11: invoice
27
+ 12: presentation
28
+ 13: questionnaire
29
+ 14: resume
30
+ 15: memo
31
+
32
+ ## Citation
33
+
34
+ This dataset is from this [paper](https://www.cs.cmu.edu/~aharley/icdar15/) `A. W. Harley, A. Ufkes, K. G. Derpanis, "Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval," in ICDAR, 2015`
35
+
36
+ ## License
37
+
38
+ RVL-CDIP is a subset of IIT-CDIP, which came from the [Legacy Tobacco Document Library](https://www.industrydocuments.ucsf.edu/tobacco/), for which license information can be found [here](https://www.industrydocuments.ucsf.edu/help/copyright/).
39
+
40
+ ## References
41
+
42
+ 1. D. Lewis, G. Agam, S. Argamon, O. Frieder, D. Grossman, and J. Heard, "Building a test collection for complex document information processing," in Proc. 29th Annual Int. ACM SIGIR Conference (SIGIR 2006), pp. 665-666, 2006
43
+ 2. The Legacy Tobacco Document Library (LTDL), University of California, San Francisco, 2007. http://legacy.library.ucsf.edu/.