Upload create_dataset.ipynb
Browse filesnotebook used to create the dataset
- create_dataset.ipynb +366 -0
create_dataset.ipynb
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 13,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"from datasets import load_dataset, DatasetDict"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 2,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [
|
17 |
+
{
|
18 |
+
"name": "stdout",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"{'letter': 0, 'form': 1, 'email': 2, 'handwritten': 3, 'advertissement': 4, 'scientific report': 5, 'scientific publication': 6, 'specification': 7, 'file folder': 8, 'news article': 9, 'budget': 10, 'invoice': 11, 'presentation': 12, 'questionnaire': 13, 'resume': 14, 'memo': 15}\n"
|
22 |
+
]
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"source": [
|
26 |
+
"labels = [\n",
|
27 |
+
" \"letter\", \n",
|
28 |
+
" \"form\", \n",
|
29 |
+
" \"email\", \n",
|
30 |
+
" \"handwritten\", \n",
|
31 |
+
" \"advertissement\", \n",
|
32 |
+
" \"scientific report\", \n",
|
33 |
+
" \"scientific publication\", \n",
|
34 |
+
" \"specification\",\n",
|
35 |
+
" \"file folder\", \n",
|
36 |
+
" \"news article\", \n",
|
37 |
+
" \"budget\", \n",
|
38 |
+
" \"invoice\", \n",
|
39 |
+
" \"presentation\", \n",
|
40 |
+
" \"questionnaire\", \n",
|
41 |
+
" \"resume\", \n",
|
42 |
+
" \"memo\",\n",
|
43 |
+
"]\n",
|
44 |
+
"id2label = {i: label for i, label in enumerate(labels)}\n",
|
45 |
+
"label2id = {label: i for i, label in enumerate(labels)}\n",
|
46 |
+
"\n",
|
47 |
+
"print(label2id)"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 10,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"name": "stderr",
|
57 |
+
"output_type": "stream",
|
58 |
+
"text": [
|
59 |
+
"Resolving data files: 100%|ββββββββββ| 319999/319999 [00:01<00:00, 179922.60it/s]\n",
|
60 |
+
"Using custom data configuration default-92674f9f14bd5f68\n",
|
61 |
+
"Reusing dataset image_folder (/home/chainyo/.cache/huggingface/datasets/image_folder/default-92674f9f14bd5f68/0.0.0/ee92df8e96c6907f3c851a987be3fd03d4b93b247e727b69a8e23ac94392a091)\n",
|
62 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 1.10it/s]\n"
|
63 |
+
]
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"source": [
|
67 |
+
"train_dataset = load_dataset(\"imagefolder\", data_dir=\"data/train\")\n",
|
68 |
+
"train_dataset = train_dataset[\"train\"]"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 11,
|
74 |
+
"metadata": {},
|
75 |
+
"outputs": [
|
76 |
+
{
|
77 |
+
"name": "stderr",
|
78 |
+
"output_type": "stream",
|
79 |
+
"text": [
|
80 |
+
"Resolving data files: 100%|ββββββββββ| 40000/40000 [00:00<00:00, 42366.47it/s] \n",
|
81 |
+
"Using custom data configuration default-3ddea2d6bbc33b4c\n",
|
82 |
+
"Reusing dataset image_folder (/home/chainyo/.cache/huggingface/datasets/image_folder/default-3ddea2d6bbc33b4c/0.0.0/ee92df8e96c6907f3c851a987be3fd03d4b93b247e727b69a8e23ac94392a091)\n",
|
83 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 8.93it/s]\n"
|
84 |
+
]
|
85 |
+
}
|
86 |
+
],
|
87 |
+
"source": [
|
88 |
+
"test_dataset = load_dataset(\"imagefolder\", data_dir=\"data/test\")\n",
|
89 |
+
"test_dataset = test_dataset[\"train\"]"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 12,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [
|
97 |
+
{
|
98 |
+
"name": "stderr",
|
99 |
+
"output_type": "stream",
|
100 |
+
"text": [
|
101 |
+
"Resolving data files: 100%|ββββββββββ| 40000/40000 [00:00<00:00, 127231.79it/s]\n",
|
102 |
+
"Using custom data configuration default-8c91b9b2f12e1b5f\n",
|
103 |
+
"Reusing dataset image_folder (/home/chainyo/.cache/huggingface/datasets/image_folder/default-8c91b9b2f12e1b5f/0.0.0/ee92df8e96c6907f3c851a987be3fd03d4b93b247e727b69a8e23ac94392a091)\n",
|
104 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 7.66it/s]\n"
|
105 |
+
]
|
106 |
+
}
|
107 |
+
],
|
108 |
+
"source": [
|
109 |
+
"val_dataset = load_dataset(\"imagefolder\", data_dir=\"data/val\")\n",
|
110 |
+
"val_dataset = val_dataset[\"train\"]"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 15,
|
116 |
+
"metadata": {},
|
117 |
+
"outputs": [],
|
118 |
+
"source": [
|
119 |
+
"dataset = DatasetDict({\n",
|
120 |
+
" \"train\": train_dataset,\n",
|
121 |
+
" \"val\": val_dataset,\n",
|
122 |
+
" \"test\": test_dataset\n",
|
123 |
+
"})"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 16,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"data": {
|
133 |
+
"text/plain": [
|
134 |
+
"DatasetDict({\n",
|
135 |
+
" train: Dataset({\n",
|
136 |
+
" features: ['image', 'label'],\n",
|
137 |
+
" num_rows: 319999\n",
|
138 |
+
" })\n",
|
139 |
+
" val: Dataset({\n",
|
140 |
+
" features: ['image', 'label'],\n",
|
141 |
+
" num_rows: 40000\n",
|
142 |
+
" })\n",
|
143 |
+
" test: Dataset({\n",
|
144 |
+
" features: ['image', 'label'],\n",
|
145 |
+
" num_rows: 40000\n",
|
146 |
+
" })\n",
|
147 |
+
"})"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
"execution_count": 16,
|
151 |
+
"metadata": {},
|
152 |
+
"output_type": "execute_result"
|
153 |
+
}
|
154 |
+
],
|
155 |
+
"source": [
|
156 |
+
"dataset"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": 17,
|
162 |
+
"metadata": {},
|
163 |
+
"outputs": [
|
164 |
+
{
|
165 |
+
"name": "stderr",
|
166 |
+
"output_type": "stream",
|
167 |
+
"text": [
|
168 |
+
"Pushing split train to the Hub.\n",
|
169 |
+
"The repository already exists: the `private` keyword argument will be ignored.\n",
|
170 |
+
"100%|ββββββββββ| 3/3 [00:02<00:00, 1.41ba/s]0%| | 0/119 [00:00<?, ?it/s]\n",
|
171 |
+
"100%|ββββββββββ| 3/3 [00:02<00:00, 1.39ba/s]1%| | 1/119 [00:46<1:31:49, 46.69s/it]\n",
|
172 |
+
"100%|ββββββββββ| 3/3 [00:02<00:00, 1.42ba/s]2%|β | 2/119 [01:29<1:27:05, 44.66s/it]\n",
|
173 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.55ba/s]3%|β | 3/119 [02:07<1:19:39, 41.20s/it]\n",
|
174 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.52ba/s]3%|β | 4/119 [03:05<1:32:10, 48.09s/it]\n",
|
175 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.52ba/s]4%|β | 5/119 [03:50<1:28:54, 46.79s/it]\n",
|
176 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.55ba/s]5%|β | 6/119 [04:39<1:29:45, 47.66s/it]\n",
|
177 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.77ba/s]6%|β | 7/119 [05:50<1:43:26, 55.41s/it]\n",
|
178 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.89ba/s]7%|β | 8/119 [06:23<1:29:07, 48.17s/it]\n",
|
179 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.78ba/s]8%|β | 9/119 [06:54<1:18:14, 42.68s/it]\n",
|
180 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.90ba/s]8%|β | 10/119 [07:23<1:10:07, 38.60s/it]\n",
|
181 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.99ba/s]9%|β | 11/119 [07:49<1:02:35, 34.77s/it]\n",
|
182 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.95ba/s]0%|β | 12/119 [08:19<59:11, 33.20s/it] \n",
|
183 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.97ba/s]1%|β | 13/119 [08:46<55:23, 31.35s/it]\n",
|
184 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.00ba/s]2%|ββ | 14/119 [09:10<50:52, 29.07s/it]\n",
|
185 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.23ba/s]3%|ββ | 15/119 [09:33<47:35, 27.45s/it]\n",
|
186 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.27ba/s]3%|ββ | 16/119 [09:55<44:13, 25.76s/it]\n",
|
187 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.22ba/s]4%|ββ | 17/119 [10:13<39:46, 23.40s/it]\n",
|
188 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.21ba/s]5%|ββ | 18/119 [10:30<36:19, 21.58s/it]\n",
|
189 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.19ba/s]6%|ββ | 19/119 [10:49<34:18, 20.59s/it]\n",
|
190 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.29ba/s]7%|ββ | 20/119 [11:08<33:27, 20.27s/it]\n",
|
191 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.31ba/s]8%|ββ | 21/119 [11:27<32:11, 19.71s/it]\n",
|
192 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.08ba/s]8%|ββ | 22/119 [11:46<31:41, 19.60s/it]\n",
|
193 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.14ba/s]9%|ββ | 23/119 [12:08<32:25, 20.27s/it]\n",
|
194 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.17ba/s]0%|ββ | 24/119 [12:39<37:02, 23.39s/it]\n",
|
195 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.13ba/s]1%|ββ | 25/119 [13:02<36:37, 23.38s/it]\n",
|
196 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.15ba/s]2%|βββ | 26/119 [13:27<36:55, 23.82s/it]\n",
|
197 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.11ba/s]3%|βββ | 27/119 [13:56<39:11, 25.56s/it]\n",
|
198 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.09ba/s]4%|βββ | 28/119 [14:24<39:37, 26.12s/it]\n",
|
199 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.05ba/s]4%|βββ | 29/119 [14:50<39:12, 26.14s/it]\n",
|
200 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.82ba/s]5%|βββ | 30/119 [15:14<37:49, 25.50s/it]\n",
|
201 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.92ba/s]6%|βββ | 31/119 [15:48<41:07, 28.04s/it]\n",
|
202 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.81ba/s]7%|βββ | 32/119 [16:16<40:28, 27.91s/it]\n",
|
203 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.94ba/s]8%|βββ | 33/119 [16:43<39:44, 27.72s/it]\n",
|
204 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.83ba/s]9%|βββ | 34/119 [17:10<39:00, 27.54s/it]\n",
|
205 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.88ba/s]9%|βββ | 35/119 [17:37<38:10, 27.27s/it]\n",
|
206 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.82ba/s]0%|βββ | 36/119 [18:02<36:59, 26.74s/it]\n",
|
207 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.84ba/s]1%|βββ | 37/119 [18:30<37:00, 27.08s/it]\n",
|
208 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.79ba/s]2%|ββββ | 38/119 [19:05<39:56, 29.59s/it]\n",
|
209 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.83ba/s]3%|ββββ | 39/119 [19:42<42:03, 31.55s/it]\n",
|
210 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.74ba/s]4%|ββββ | 40/119 [20:14<42:02, 31.93s/it]\n",
|
211 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.85ba/s]4%|ββββ | 41/119 [20:43<40:23, 31.07s/it]\n",
|
212 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.75ba/s]5%|ββββ | 42/119 [21:14<39:49, 31.03s/it]\n",
|
213 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.86ba/s]6%|ββββ | 43/119 [21:39<37:00, 29.22s/it]\n",
|
214 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.81ba/s]7%|ββββ | 44/119 [22:17<39:37, 31.70s/it]\n",
|
215 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.90ba/s]8%|ββββ | 45/119 [22:46<38:12, 30.98s/it]\n",
|
216 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.78ba/s]9%|ββββ | 46/119 [23:19<38:27, 31.62s/it]\n",
|
217 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.88ba/s]9%|ββββ | 47/119 [23:47<36:35, 30.49s/it]\n",
|
218 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.77ba/s]0%|ββββ | 48/119 [24:15<35:02, 29.61s/it]\n",
|
219 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.89ba/s]1%|ββββ | 49/119 [24:43<34:10, 29.30s/it]\n",
|
220 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.81ba/s]2%|βββββ | 50/119 [25:12<33:33, 29.18s/it]\n",
|
221 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.88ba/s]3%|βββββ | 51/119 [25:42<33:08, 29.25s/it]\n",
|
222 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.84ba/s]4%|βββββ | 52/119 [26:11<32:33, 29.16s/it]\n",
|
223 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.93ba/s]5%|βββββ | 53/119 [26:44<33:37, 30.57s/it]\n",
|
224 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.82ba/s]5%|βββββ | 54/119 [27:12<32:09, 29.68s/it]\n",
|
225 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.94ba/s]6%|βββββ | 55/119 [27:54<35:38, 33.41s/it]\n",
|
226 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.74ba/s]7%|βββββ | 56/119 [28:21<33:06, 31.53s/it]\n",
|
227 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.79ba/s]8%|βββββ | 57/119 [28:49<31:27, 30.44s/it]\n",
|
228 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.69ba/s]9%|βββββ | 58/119 [29:19<30:40, 30.17s/it]\n",
|
229 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.79ba/s]0%|βββββ | 59/119 [29:47<29:35, 29.58s/it]\n",
|
230 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.73ba/s]0%|βββββ | 60/119 [30:14<28:13, 28.70s/it]\n",
|
231 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.84ba/s]1%|ββββββ | 61/119 [30:40<26:59, 27.92s/it]\n",
|
232 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.84ba/s]2%|ββββββ | 62/119 [31:06<26:03, 27.43s/it]\n",
|
233 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.93ba/s]3%|ββββββ | 63/119 [31:36<26:14, 28.11s/it]\n",
|
234 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.86ba/s]4%|ββββββ | 64/119 [32:04<25:45, 28.10s/it]\n",
|
235 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.95ba/s]5%|ββββββ | 65/119 [32:36<26:25, 29.36s/it]\n",
|
236 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.79ba/s]5%|ββββββ | 66/119 [33:04<25:30, 28.87s/it]\n",
|
237 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.59ba/s]6%|ββββββ | 67/119 [33:31<24:36, 28.39s/it]\n",
|
238 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.58ba/s]7%|ββββββ | 68/119 [34:18<28:53, 33.99s/it]\n",
|
239 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.59ba/s]8%|ββββββ | 69/119 [35:04<31:18, 37.57s/it]\n",
|
240 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.60ba/s]9%|ββββββ | 70/119 [35:43<31:02, 38.01s/it]\n",
|
241 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.60ba/s]0%|ββββββ | 71/119 [36:32<32:59, 41.25s/it]\n",
|
242 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.56ba/s]1%|ββββββ | 72/119 [37:14<32:36, 41.62s/it]\n",
|
243 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.53ba/s]1%|βββββββ | 73/119 [37:56<31:58, 41.70s/it]\n",
|
244 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.78ba/s]2%|βββββββ | 74/119 [38:32<30:03, 40.07s/it]\n",
|
245 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.87ba/s]3%|βββββββ | 75/119 [39:05<27:44, 37.83s/it]\n",
|
246 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.04ba/s]4%|βββββββ | 76/119 [39:34<25:06, 35.04s/it]\n",
|
247 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.03ba/s]5%|βββββββ | 77/119 [40:02<23:06, 33.02s/it]\n",
|
248 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.91ba/s]6%|βββββββ | 78/119 [40:30<21:31, 31.50s/it]\n",
|
249 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.99ba/s]6%|βββββββ | 79/119 [40:58<20:25, 30.64s/it]\n",
|
250 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.93ba/s]7%|βββββββ | 80/119 [41:35<20:58, 32.26s/it]\n",
|
251 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.91ba/s]8%|βββββββ | 81/119 [41:59<18:53, 29.82s/it]\n",
|
252 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.83ba/s]9%|βββββββ | 82/119 [42:26<17:58, 29.14s/it]\n",
|
253 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.92ba/s]0%|βββββββ | 83/119 [42:51<16:44, 27.90s/it]\n",
|
254 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.84ba/s]1%|βββββββ | 84/119 [43:19<16:19, 27.98s/it]\n",
|
255 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.87ba/s]1%|ββββββββ | 85/119 [43:50<16:15, 28.68s/it]\n",
|
256 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.83ba/s]2%|ββββββββ | 86/119 [44:21<16:16, 29.60s/it]\n",
|
257 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.85ba/s]3%|ββββββββ | 87/119 [44:51<15:43, 29.49s/it]\n",
|
258 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.82ba/s]4%|ββββββββ | 88/119 [45:27<16:14, 31.43s/it]\n",
|
259 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.80ba/s]5%|ββββββββ | 89/119 [46:00<15:58, 31.93s/it]\n",
|
260 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.56ba/s]6%|ββββββββ | 90/119 [46:37<16:13, 33.58s/it]\n",
|
261 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.77ba/s]6%|ββββββββ | 91/119 [47:11<15:46, 33.80s/it]\n",
|
262 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.66ba/s]7%|ββββββββ | 92/119 [47:47<15:29, 34.42s/it]\n",
|
263 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.69ba/s]8%|ββββββββ | 93/119 [48:24<15:10, 35.03s/it]\n",
|
264 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.65ba/s]9%|ββββββββ | 94/119 [49:12<16:15, 39.04s/it]\n",
|
265 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.60ba/s]0%|ββββββββ | 95/119 [49:49<15:20, 38.35s/it]\n",
|
266 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.61ba/s]1%|ββββββββ | 96/119 [50:37<15:52, 41.41s/it]\n",
|
267 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.58ba/s]2%|βββββββββ | 97/119 [51:18<15:04, 41.10s/it]\n",
|
268 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.53ba/s]2%|βββββββββ | 98/119 [52:06<15:04, 43.09s/it]\n",
|
269 |
+
"100%|ββββββββββ| 3/3 [00:02<00:00, 1.43ba/s]3%|βββββββββ | 99/119 [52:59<15:25, 46.28s/it]\n",
|
270 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.52ba/s]4%|βββββββββ | 100/119 [53:47<14:48, 46.76s/it]\n",
|
271 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.58ba/s]5%|βββββββββ | 101/119 [54:41<14:38, 48.81s/it]\n",
|
272 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.54ba/s]6%|βββββββββ | 102/119 [55:29<13:44, 48.53s/it]\n",
|
273 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.57ba/s]7%|βββββββββ | 103/119 [56:10<12:20, 46.31s/it]\n",
|
274 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.82ba/s]7%|βββββββββ | 104/119 [56:57<11:41, 46.75s/it]\n",
|
275 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.93ba/s]8%|βββββββββ | 105/119 [57:26<09:39, 41.37s/it]\n",
|
276 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.87ba/s]9%|βββββββββ | 106/119 [57:52<07:55, 36.60s/it]\n",
|
277 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.97ba/s]0%|βββββββββ | 107/119 [58:23<06:59, 35.00s/it]\n",
|
278 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.89ba/s]1%|βββββββββ | 108/119 [58:57<06:20, 34.57s/it]\n",
|
279 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.86ba/s]2%|ββββββββββ| 109/119 [59:26<05:31, 33.11s/it]\n",
|
280 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.86ba/s]2%|ββββββββββ| 110/119 [59:55<04:45, 31.72s/it]\n",
|
281 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.92ba/s]3%|ββββββββββ| 111/119 [1:00:23<04:05, 30.69s/it]\n",
|
282 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.78ba/s]4%|ββββββββββ| 112/119 [1:00:49<03:25, 29.33s/it]\n",
|
283 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.86ba/s]5%|ββββββββββ| 113/119 [1:01:31<03:17, 33.00s/it]\n",
|
284 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.78ba/s]6%|ββββββββββ| 114/119 [1:01:59<02:38, 31.70s/it]\n",
|
285 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.89ba/s]7%|ββββββββββ| 115/119 [1:02:31<02:06, 31.72s/it]\n",
|
286 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.77ba/s]7%|ββββββββββ| 116/119 [1:03:03<01:35, 31.71s/it]\n",
|
287 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.87ba/s]8%|ββββββββββ| 117/119 [1:03:39<01:06, 33.04s/it]\n",
|
288 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.79ba/s]9%|ββββββββββ| 118/119 [1:04:13<00:33, 33.35s/it]\n",
|
289 |
+
"Pushing dataset shards to the dataset hub: 100%|ββββββββββ| 119/119 [1:04:41<00:00, 32.62s/it]\n",
|
290 |
+
"Pushing split val to the Hub.\n",
|
291 |
+
"The repository already exists: the `private` keyword argument will be ignored.\n",
|
292 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.57ba/s]0%| | 0/15 [00:00<?, ?it/s]\n",
|
293 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.98ba/s]7%|β | 1/15 [00:41<09:34, 41.03s/it]\n",
|
294 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.14ba/s]3%|ββ | 2/15 [01:05<06:49, 31.53s/it]\n",
|
295 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.08ba/s]0%|ββ | 3/15 [01:19<04:41, 23.44s/it]\n",
|
296 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.70ba/s]7%|βββ | 4/15 [01:38<03:57, 21.59s/it]\n",
|
297 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.71ba/s]3%|ββββ | 5/15 [02:09<04:08, 24.82s/it]\n",
|
298 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.80ba/s]0%|ββββ | 6/15 [02:34<03:44, 24.99s/it]\n",
|
299 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.96ba/s]7%|βββββ | 7/15 [02:56<03:12, 24.06s/it]\n",
|
300 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.66ba/s]3%|ββββββ | 8/15 [03:20<02:49, 24.18s/it]\n",
|
301 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.87ba/s]0%|ββββββ | 9/15 [04:01<02:54, 29.16s/it]\n",
|
302 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.59ba/s]7%|βββββββ | 10/15 [04:28<02:23, 28.66s/it]\n",
|
303 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.78ba/s]3%|ββββββββ | 11/15 [04:48<01:44, 26.10s/it]\n",
|
304 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.58ba/s]0%|ββββββββ | 12/15 [05:28<01:30, 30.17s/it]\n",
|
305 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.95ba/s]7%|βββββββββ | 13/15 [06:10<01:07, 33.95s/it]\n",
|
306 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.83ba/s]3%|ββββββββββ| 14/15 [06:37<00:31, 31.72s/it]\n",
|
307 |
+
"Pushing dataset shards to the dataset hub: 100%|ββββββββββ| 15/15 [06:58<00:00, 27.89s/it]\n",
|
308 |
+
"Pushing split test to the Hub.\n",
|
309 |
+
"The repository already exists: the `private` keyword argument will be ignored.\n",
|
310 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.66ba/s]0%| | 0/15 [00:00<?, ?it/s]\n",
|
311 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.86ba/s]7%|β | 1/15 [00:37<08:48, 37.75s/it]\n",
|
312 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.11ba/s]3%|ββ | 2/15 [00:58<05:57, 27.51s/it]\n",
|
313 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 2.10ba/s]0%|ββ | 3/15 [01:18<04:49, 24.15s/it]\n",
|
314 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.94ba/s]7%|βββ | 4/15 [01:37<04:03, 22.12s/it]\n",
|
315 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.80ba/s]3%|ββββ | 5/15 [02:08<04:14, 25.41s/it]\n",
|
316 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.83ba/s]0%|ββββ | 6/15 [02:31<03:40, 24.50s/it]\n",
|
317 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.71ba/s]7%|βββββ | 7/15 [02:57<03:20, 25.08s/it]\n",
|
318 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.66ba/s]3%|ββββββ | 8/15 [03:19<02:49, 24.22s/it]\n",
|
319 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.77ba/s]0%|ββββββ | 9/15 [03:48<02:32, 25.49s/it]\n",
|
320 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.75ba/s]7%|βββββββ | 10/15 [04:13<02:07, 25.58s/it]\n",
|
321 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.73ba/s]3%|ββββββββ | 11/15 [04:37<01:39, 24.99s/it]\n",
|
322 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.57ba/s]0%|ββββββββ | 12/15 [05:10<01:22, 27.46s/it]\n",
|
323 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.73ba/s]7%|βββββββββ | 13/15 [05:53<01:04, 32.24s/it]\n",
|
324 |
+
"100%|ββββββββββ| 3/3 [00:01<00:00, 1.81ba/s]3%|ββββββββββ| 14/15 [06:20<00:30, 30.55s/it]\n",
|
325 |
+
"Pushing dataset shards to the dataset hub: 100%|ββββββββββ| 15/15 [06:48<00:00, 27.20s/it]\n"
|
326 |
+
]
|
327 |
+
}
|
328 |
+
],
|
329 |
+
"source": [
|
330 |
+
"dataset.push_to_hub(\"ChainYo/rvl-cdip\")"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": null,
|
336 |
+
"metadata": {},
|
337 |
+
"outputs": [],
|
338 |
+
"source": []
|
339 |
+
}
|
340 |
+
],
|
341 |
+
"metadata": {
|
342 |
+
"interpreter": {
|
343 |
+
"hash": "d6f5ad4d04cbfdf412f1cb227626c5243110bb053a071a535525d68cbde39709"
|
344 |
+
},
|
345 |
+
"kernelspec": {
|
346 |
+
"display_name": "Python 3.8.13 ('datasets')",
|
347 |
+
"language": "python",
|
348 |
+
"name": "python3"
|
349 |
+
},
|
350 |
+
"language_info": {
|
351 |
+
"codemirror_mode": {
|
352 |
+
"name": "ipython",
|
353 |
+
"version": 3
|
354 |
+
},
|
355 |
+
"file_extension": ".py",
|
356 |
+
"mimetype": "text/x-python",
|
357 |
+
"name": "python",
|
358 |
+
"nbconvert_exporter": "python",
|
359 |
+
"pygments_lexer": "ipython3",
|
360 |
+
"version": "3.8.13"
|
361 |
+
},
|
362 |
+
"orig_nbformat": 4
|
363 |
+
},
|
364 |
+
"nbformat": 4,
|
365 |
+
"nbformat_minor": 2
|
366 |
+
}
|