Upload 17 files
Browse files- LLavacheckpoints/files_for_uform_gen2_qwen/.gitattributes +35 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/README.md +82 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/cat.jpg +3 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/config.json +28 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/configuration_uform_gen.py +43 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/generation_config.json +4 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/interior.jpg +3 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/model-00001-of-00002.safetensors +3 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/model-00002-of-00002.safetensors +3 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/model.safetensors.index.json +901 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/modeling_uform_gen.py +245 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/processing_uform_gen.py +181 -0
- LLavacheckpoints/files_for_uform_gen2_qwen/vision_encoder.py +182 -0
- layerstyle/light_leak.pkl +3 -0
- mediapipe/.gitattributes +35 -0
- mediapipe/hair_segmenter.tflite +3 -0
- mediapipe/selfie_multiclass_256x256.tflite +3 -0
LLavacheckpoints/files_for_uform_gen2_qwen/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
LLavacheckpoints/files_for_uform_gen2_qwen/README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- image-captioning
|
5 |
+
- visual-question-answering
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- X2FD/LVIS-Instruct4V
|
9 |
+
- BAAI/SVIT
|
10 |
+
- HuggingFaceH4/ultrachat_200k
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
pipeline_tag: image-to-text
|
14 |
+
widget:
|
15 |
+
- src: interior.jpg
|
16 |
+
example_title: Detailed caption
|
17 |
+
output:
|
18 |
+
text: "The image showcases a serene and well-lit bedroom. Dominating the scene is a bed, neatly made with a white blanket and a black headboard. Adjacent to the bed, a dresser stands tall, hosting a mirror, a vase, and a flower arrangement. A chair is positioned near the dresser, offering a comfortable spot to sit and relax. The room is adorned with a large window that offers a picturesque view of trees outside. The walls are painted in a soothing shade of white, enhancing the overall ambiance of the space."
|
19 |
+
- src: cat.jpg
|
20 |
+
example_title: Short caption
|
21 |
+
output:
|
22 |
+
text: "A white and orange cat stands on its hind legs, reaching towards a wooden table with a white teapot and a basket of red berries. The table is set on a wooden bench, surrounded by orange flowers. The cat's position and actions suggest curiosity and playfulness."
|
23 |
+
---
|
24 |
+
|
25 |
+
<h1 align="center">UForm</h1>
|
26 |
+
<h3 align="center">
|
27 |
+
Pocket-Sized Multimodal AI<br/>
|
28 |
+
For Content Understanding and Generation<br/>
|
29 |
+
</h3>
|
30 |
+
|
31 |
+
## Description
|
32 |
+
|
33 |
+
UForm-Gen is a small generative vision-language model primarily designed for Image Captioning and Visual Question Answering. The model consists of two parts:
|
34 |
+
|
35 |
+
1. CLIP-like ViT-H/14
|
36 |
+
2. [Qwen1.5-0.5B-Chat](https://huggingface.co/Qwen/Qwen1.5-0.5B-Chat)
|
37 |
+
|
38 |
+
The model was pre-trained on the internal image captioning dataset and fine-tuned on public instructions datasets: SVIT, LVIS, VQAs datasets.
|
39 |
+
The model took one day to train on a DGX-H100 with 8x H100 GPUs.
|
40 |
+
Thanks to [Nebius.ai](https://nebius.ai) for providing the compute 🤗
|
41 |
+
|
42 |
+
### Usage
|
43 |
+
|
44 |
+
|
45 |
+
The generative model can be used to caption images, answer questions about them. Also it is suitable for a multimodal chat.
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import AutoModel, AutoProcessor
|
49 |
+
|
50 |
+
model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True)
|
51 |
+
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True)
|
52 |
+
|
53 |
+
prompt = "Question or Instruction"
|
54 |
+
image = Image.open("image.jpg")
|
55 |
+
|
56 |
+
inputs = processor(text=[prompt], images=[image], return_tensors="pt")
|
57 |
+
with torch.inference_mode():
|
58 |
+
output = model.generate(
|
59 |
+
**inputs,
|
60 |
+
do_sample=False,
|
61 |
+
use_cache=True,
|
62 |
+
max_new_tokens=256,
|
63 |
+
eos_token_id=151645,
|
64 |
+
pad_token_id=processor.tokenizer.pad_token_id
|
65 |
+
)
|
66 |
+
|
67 |
+
prompt_len = inputs["input_ids"].shape[1]
|
68 |
+
decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
|
69 |
+
```
|
70 |
+
|
71 |
+
You can check examples of different prompts in our demo space.
|
72 |
+
|
73 |
+
## Evaluation
|
74 |
+
|
75 |
+
|
76 |
+
| Model | LLM Size | SQA | MME | MMBench | Average¹ |
|
77 |
+
| :---------------------------------- | -------: | -----:| ------:| --------:| --------:|
|
78 |
+
| UForm-Gen2-Qwen-500m | 0.5B | 45.5 | 880.1 | 42.0 | 29.31 |
|
79 |
+
| MobileVLM v2 | 1.4B | 52.1 | 1302.8 | 57.7 | 36.81 |
|
80 |
+
| LLaVA-Phi | 2.7B | 68.4 | 1335.1 | 59.8 | 42.95 |
|
81 |
+
|
82 |
+
¹MME scores were divided by 2000 before averaging.
|
LLavacheckpoints/files_for_uform_gen2_qwen/cat.jpg
ADDED
Git LFS Details
|
LLavacheckpoints/files_for_uform_gen2_qwen/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../weights/vlm-qwen-big-uform",
|
3 |
+
"architectures": [
|
4 |
+
"VLMForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_uform_gen.VLMConfig",
|
8 |
+
"AutoModel": "modeling_uform_gen.VLMForCausalLM",
|
9 |
+
"AutoProcessor": "processing_uform_gen.VLMProcessor"
|
10 |
+
},
|
11 |
+
"image_encoder_hidden_size": 1280,
|
12 |
+
"image_encoder_name_or_path": "unum-cloud/uform-vl-english-big",
|
13 |
+
"image_encoder_num_heads": 16,
|
14 |
+
"image_encoder_num_layers": 32,
|
15 |
+
"image_encoder_patch_size": 14,
|
16 |
+
"image_encoder_pooling": "cls",
|
17 |
+
"image_pooler_intermediate_size": 3200,
|
18 |
+
"image_pooler_num_attn_heads": 16,
|
19 |
+
"image_size": 336,
|
20 |
+
"image_token_id": 151646,
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"model_type": "vlm",
|
23 |
+
"num_image_latents": 256,
|
24 |
+
"text_decoder_name_or_path": "Qwen/Qwen1.5-0.5B-Chat",
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.37.2",
|
27 |
+
"use_cache": true
|
28 |
+
}
|
LLavacheckpoints/files_for_uform_gen2_qwen/configuration_uform_gen.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class VLMConfig(PretrainedConfig):
|
6 |
+
model_type = "vlm"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
text_decoder_name_or_path: str = "",
|
11 |
+
image_encoder_name_or_path: str = "",
|
12 |
+
image_size: int = 336,
|
13 |
+
image_pooler_num_attn_heads: int = 16,
|
14 |
+
image_pooler_intermediate_size: int = 3200,
|
15 |
+
image_token_id: int = 151646,
|
16 |
+
image_encoder_hidden_size: int = 1280,
|
17 |
+
image_encoder_patch_size: int = 14,
|
18 |
+
image_encoder_num_layers: int = 32,
|
19 |
+
image_encoder_num_heads: int = 16,
|
20 |
+
image_encoder_pooling: str = "cls",
|
21 |
+
num_image_latents: int = 256,
|
22 |
+
initializer_range: float = 0.02,
|
23 |
+
use_cache: bool = True,
|
24 |
+
**kwargs,
|
25 |
+
):
|
26 |
+
self.text_decoder_name_or_path = text_decoder_name_or_path
|
27 |
+
self.image_encoder_name_or_path = image_encoder_name_or_path
|
28 |
+
|
29 |
+
self.image_pooler_num_attn_heads = image_pooler_num_attn_heads
|
30 |
+
self.image_pooler_intermediate_size = image_pooler_intermediate_size
|
31 |
+
self.image_token_id = image_token_id
|
32 |
+
self.image_size = image_size
|
33 |
+
self.image_encoder_hidden_size = image_encoder_hidden_size
|
34 |
+
self.image_encoder_patch_size = image_encoder_patch_size
|
35 |
+
self.image_encoder_num_layers = image_encoder_num_layers
|
36 |
+
self.image_encoder_num_heads = image_encoder_num_heads
|
37 |
+
self.image_encoder_pooling = image_encoder_pooling
|
38 |
+
self.num_image_latents = num_image_latents
|
39 |
+
|
40 |
+
self.initializer_range = initializer_range
|
41 |
+
self.use_cache = use_cache
|
42 |
+
|
43 |
+
super().__init__(**kwargs)
|
LLavacheckpoints/files_for_uform_gen2_qwen/generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.37.2"
|
4 |
+
}
|
LLavacheckpoints/files_for_uform_gen2_qwen/interior.jpg
ADDED
Git LFS Details
|
LLavacheckpoints/files_for_uform_gen2_qwen/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:745e8e2f2087905cee61b46e74b181681484d3e0d7ecbef3189e472b3fd78329
|
3 |
+
size 4975529328
|
LLavacheckpoints/files_for_uform_gen2_qwen/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27ce47ee20f96a21f8c7ac2a1be36d838b973b5af28b2b0b0e993b86c8a35a27
|
3 |
+
size 118081792
|
LLavacheckpoints/files_for_uform_gen2_qwen/model.safetensors.index.json
ADDED
@@ -0,0 +1,901 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5093506560
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"image_encoder.blocks.0.attn.key.bias": "model-00001-of-00002.safetensors",
|
7 |
+
"image_encoder.blocks.0.attn.key.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"image_encoder.blocks.0.attn.out.bias": "model-00001-of-00002.safetensors",
|
9 |
+
"image_encoder.blocks.0.attn.out.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"image_encoder.blocks.0.attn.query.bias": "model-00001-of-00002.safetensors",
|
11 |
+
"image_encoder.blocks.0.attn.query.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"image_encoder.blocks.0.attn.value.bias": "model-00001-of-00002.safetensors",
|
13 |
+
"image_encoder.blocks.0.attn.value.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"image_encoder.blocks.0.ls1.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"image_encoder.blocks.0.ls2.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"image_encoder.blocks.0.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
17 |
+
"image_encoder.blocks.0.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"image_encoder.blocks.0.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
19 |
+
"image_encoder.blocks.0.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"image_encoder.blocks.0.norm1.bias": "model-00001-of-00002.safetensors",
|
21 |
+
"image_encoder.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"image_encoder.blocks.0.norm2.bias": "model-00001-of-00002.safetensors",
|
23 |
+
"image_encoder.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"image_encoder.blocks.1.attn.key.bias": "model-00001-of-00002.safetensors",
|
25 |
+
"image_encoder.blocks.1.attn.key.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"image_encoder.blocks.1.attn.out.bias": "model-00001-of-00002.safetensors",
|
27 |
+
"image_encoder.blocks.1.attn.out.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"image_encoder.blocks.1.attn.query.bias": "model-00001-of-00002.safetensors",
|
29 |
+
"image_encoder.blocks.1.attn.query.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"image_encoder.blocks.1.attn.value.bias": "model-00001-of-00002.safetensors",
|
31 |
+
"image_encoder.blocks.1.attn.value.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"image_encoder.blocks.1.ls1.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"image_encoder.blocks.1.ls2.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"image_encoder.blocks.1.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
35 |
+
"image_encoder.blocks.1.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"image_encoder.blocks.1.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
37 |
+
"image_encoder.blocks.1.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"image_encoder.blocks.1.norm1.bias": "model-00001-of-00002.safetensors",
|
39 |
+
"image_encoder.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"image_encoder.blocks.1.norm2.bias": "model-00001-of-00002.safetensors",
|
41 |
+
"image_encoder.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"image_encoder.blocks.10.attn.key.bias": "model-00001-of-00002.safetensors",
|
43 |
+
"image_encoder.blocks.10.attn.key.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"image_encoder.blocks.10.attn.out.bias": "model-00001-of-00002.safetensors",
|
45 |
+
"image_encoder.blocks.10.attn.out.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"image_encoder.blocks.10.attn.query.bias": "model-00001-of-00002.safetensors",
|
47 |
+
"image_encoder.blocks.10.attn.query.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"image_encoder.blocks.10.attn.value.bias": "model-00001-of-00002.safetensors",
|
49 |
+
"image_encoder.blocks.10.attn.value.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"image_encoder.blocks.10.ls1.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"image_encoder.blocks.10.ls2.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"image_encoder.blocks.10.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
53 |
+
"image_encoder.blocks.10.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"image_encoder.blocks.10.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
55 |
+
"image_encoder.blocks.10.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"image_encoder.blocks.10.norm1.bias": "model-00001-of-00002.safetensors",
|
57 |
+
"image_encoder.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"image_encoder.blocks.10.norm2.bias": "model-00001-of-00002.safetensors",
|
59 |
+
"image_encoder.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"image_encoder.blocks.11.attn.key.bias": "model-00001-of-00002.safetensors",
|
61 |
+
"image_encoder.blocks.11.attn.key.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"image_encoder.blocks.11.attn.out.bias": "model-00001-of-00002.safetensors",
|
63 |
+
"image_encoder.blocks.11.attn.out.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"image_encoder.blocks.11.attn.query.bias": "model-00001-of-00002.safetensors",
|
65 |
+
"image_encoder.blocks.11.attn.query.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"image_encoder.blocks.11.attn.value.bias": "model-00001-of-00002.safetensors",
|
67 |
+
"image_encoder.blocks.11.attn.value.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"image_encoder.blocks.11.ls1.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"image_encoder.blocks.11.ls2.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"image_encoder.blocks.11.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
71 |
+
"image_encoder.blocks.11.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"image_encoder.blocks.11.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
73 |
+
"image_encoder.blocks.11.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"image_encoder.blocks.11.norm1.bias": "model-00001-of-00002.safetensors",
|
75 |
+
"image_encoder.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"image_encoder.blocks.11.norm2.bias": "model-00001-of-00002.safetensors",
|
77 |
+
"image_encoder.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"image_encoder.blocks.12.attn.key.bias": "model-00001-of-00002.safetensors",
|
79 |
+
"image_encoder.blocks.12.attn.key.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"image_encoder.blocks.12.attn.out.bias": "model-00001-of-00002.safetensors",
|
81 |
+
"image_encoder.blocks.12.attn.out.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"image_encoder.blocks.12.attn.query.bias": "model-00001-of-00002.safetensors",
|
83 |
+
"image_encoder.blocks.12.attn.query.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"image_encoder.blocks.12.attn.value.bias": "model-00001-of-00002.safetensors",
|
85 |
+
"image_encoder.blocks.12.attn.value.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"image_encoder.blocks.12.ls1.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"image_encoder.blocks.12.ls2.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"image_encoder.blocks.12.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
89 |
+
"image_encoder.blocks.12.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"image_encoder.blocks.12.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
91 |
+
"image_encoder.blocks.12.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"image_encoder.blocks.12.norm1.bias": "model-00001-of-00002.safetensors",
|
93 |
+
"image_encoder.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"image_encoder.blocks.12.norm2.bias": "model-00001-of-00002.safetensors",
|
95 |
+
"image_encoder.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"image_encoder.blocks.13.attn.key.bias": "model-00001-of-00002.safetensors",
|
97 |
+
"image_encoder.blocks.13.attn.key.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"image_encoder.blocks.13.attn.out.bias": "model-00001-of-00002.safetensors",
|
99 |
+
"image_encoder.blocks.13.attn.out.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"image_encoder.blocks.13.attn.query.bias": "model-00001-of-00002.safetensors",
|
101 |
+
"image_encoder.blocks.13.attn.query.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"image_encoder.blocks.13.attn.value.bias": "model-00001-of-00002.safetensors",
|
103 |
+
"image_encoder.blocks.13.attn.value.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"image_encoder.blocks.13.ls1.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"image_encoder.blocks.13.ls2.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"image_encoder.blocks.13.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
107 |
+
"image_encoder.blocks.13.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"image_encoder.blocks.13.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
109 |
+
"image_encoder.blocks.13.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"image_encoder.blocks.13.norm1.bias": "model-00001-of-00002.safetensors",
|
111 |
+
"image_encoder.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"image_encoder.blocks.13.norm2.bias": "model-00001-of-00002.safetensors",
|
113 |
+
"image_encoder.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"image_encoder.blocks.14.attn.key.bias": "model-00001-of-00002.safetensors",
|
115 |
+
"image_encoder.blocks.14.attn.key.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"image_encoder.blocks.14.attn.out.bias": "model-00001-of-00002.safetensors",
|
117 |
+
"image_encoder.blocks.14.attn.out.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"image_encoder.blocks.14.attn.query.bias": "model-00001-of-00002.safetensors",
|
119 |
+
"image_encoder.blocks.14.attn.query.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"image_encoder.blocks.14.attn.value.bias": "model-00001-of-00002.safetensors",
|
121 |
+
"image_encoder.blocks.14.attn.value.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"image_encoder.blocks.14.ls1.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"image_encoder.blocks.14.ls2.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"image_encoder.blocks.14.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
125 |
+
"image_encoder.blocks.14.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"image_encoder.blocks.14.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
127 |
+
"image_encoder.blocks.14.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"image_encoder.blocks.14.norm1.bias": "model-00001-of-00002.safetensors",
|
129 |
+
"image_encoder.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"image_encoder.blocks.14.norm2.bias": "model-00001-of-00002.safetensors",
|
131 |
+
"image_encoder.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"image_encoder.blocks.15.attn.key.bias": "model-00001-of-00002.safetensors",
|
133 |
+
"image_encoder.blocks.15.attn.key.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"image_encoder.blocks.15.attn.out.bias": "model-00001-of-00002.safetensors",
|
135 |
+
"image_encoder.blocks.15.attn.out.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"image_encoder.blocks.15.attn.query.bias": "model-00001-of-00002.safetensors",
|
137 |
+
"image_encoder.blocks.15.attn.query.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"image_encoder.blocks.15.attn.value.bias": "model-00001-of-00002.safetensors",
|
139 |
+
"image_encoder.blocks.15.attn.value.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"image_encoder.blocks.15.ls1.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"image_encoder.blocks.15.ls2.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"image_encoder.blocks.15.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
143 |
+
"image_encoder.blocks.15.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"image_encoder.blocks.15.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
145 |
+
"image_encoder.blocks.15.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"image_encoder.blocks.15.norm1.bias": "model-00001-of-00002.safetensors",
|
147 |
+
"image_encoder.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"image_encoder.blocks.15.norm2.bias": "model-00001-of-00002.safetensors",
|
149 |
+
"image_encoder.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"image_encoder.blocks.16.attn.key.bias": "model-00001-of-00002.safetensors",
|
151 |
+
"image_encoder.blocks.16.attn.key.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"image_encoder.blocks.16.attn.out.bias": "model-00001-of-00002.safetensors",
|
153 |
+
"image_encoder.blocks.16.attn.out.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"image_encoder.blocks.16.attn.query.bias": "model-00001-of-00002.safetensors",
|
155 |
+
"image_encoder.blocks.16.attn.query.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"image_encoder.blocks.16.attn.value.bias": "model-00001-of-00002.safetensors",
|
157 |
+
"image_encoder.blocks.16.attn.value.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"image_encoder.blocks.16.ls1.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"image_encoder.blocks.16.ls2.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"image_encoder.blocks.16.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
161 |
+
"image_encoder.blocks.16.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"image_encoder.blocks.16.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
163 |
+
"image_encoder.blocks.16.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"image_encoder.blocks.16.norm1.bias": "model-00001-of-00002.safetensors",
|
165 |
+
"image_encoder.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"image_encoder.blocks.16.norm2.bias": "model-00001-of-00002.safetensors",
|
167 |
+
"image_encoder.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"image_encoder.blocks.17.attn.key.bias": "model-00001-of-00002.safetensors",
|
169 |
+
"image_encoder.blocks.17.attn.key.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"image_encoder.blocks.17.attn.out.bias": "model-00001-of-00002.safetensors",
|
171 |
+
"image_encoder.blocks.17.attn.out.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"image_encoder.blocks.17.attn.query.bias": "model-00001-of-00002.safetensors",
|
173 |
+
"image_encoder.blocks.17.attn.query.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"image_encoder.blocks.17.attn.value.bias": "model-00001-of-00002.safetensors",
|
175 |
+
"image_encoder.blocks.17.attn.value.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"image_encoder.blocks.17.ls1.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"image_encoder.blocks.17.ls2.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"image_encoder.blocks.17.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
179 |
+
"image_encoder.blocks.17.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"image_encoder.blocks.17.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
181 |
+
"image_encoder.blocks.17.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"image_encoder.blocks.17.norm1.bias": "model-00001-of-00002.safetensors",
|
183 |
+
"image_encoder.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"image_encoder.blocks.17.norm2.bias": "model-00001-of-00002.safetensors",
|
185 |
+
"image_encoder.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"image_encoder.blocks.18.attn.key.bias": "model-00001-of-00002.safetensors",
|
187 |
+
"image_encoder.blocks.18.attn.key.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"image_encoder.blocks.18.attn.out.bias": "model-00001-of-00002.safetensors",
|
189 |
+
"image_encoder.blocks.18.attn.out.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"image_encoder.blocks.18.attn.query.bias": "model-00001-of-00002.safetensors",
|
191 |
+
"image_encoder.blocks.18.attn.query.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"image_encoder.blocks.18.attn.value.bias": "model-00001-of-00002.safetensors",
|
193 |
+
"image_encoder.blocks.18.attn.value.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"image_encoder.blocks.18.ls1.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"image_encoder.blocks.18.ls2.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"image_encoder.blocks.18.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
197 |
+
"image_encoder.blocks.18.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"image_encoder.blocks.18.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
199 |
+
"image_encoder.blocks.18.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"image_encoder.blocks.18.norm1.bias": "model-00001-of-00002.safetensors",
|
201 |
+
"image_encoder.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"image_encoder.blocks.18.norm2.bias": "model-00001-of-00002.safetensors",
|
203 |
+
"image_encoder.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"image_encoder.blocks.19.attn.key.bias": "model-00001-of-00002.safetensors",
|
205 |
+
"image_encoder.blocks.19.attn.key.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"image_encoder.blocks.19.attn.out.bias": "model-00001-of-00002.safetensors",
|
207 |
+
"image_encoder.blocks.19.attn.out.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"image_encoder.blocks.19.attn.query.bias": "model-00001-of-00002.safetensors",
|
209 |
+
"image_encoder.blocks.19.attn.query.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"image_encoder.blocks.19.attn.value.bias": "model-00001-of-00002.safetensors",
|
211 |
+
"image_encoder.blocks.19.attn.value.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"image_encoder.blocks.19.ls1.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"image_encoder.blocks.19.ls2.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"image_encoder.blocks.19.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
215 |
+
"image_encoder.blocks.19.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"image_encoder.blocks.19.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
217 |
+
"image_encoder.blocks.19.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"image_encoder.blocks.19.norm1.bias": "model-00001-of-00002.safetensors",
|
219 |
+
"image_encoder.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"image_encoder.blocks.19.norm2.bias": "model-00001-of-00002.safetensors",
|
221 |
+
"image_encoder.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"image_encoder.blocks.2.attn.key.bias": "model-00001-of-00002.safetensors",
|
223 |
+
"image_encoder.blocks.2.attn.key.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"image_encoder.blocks.2.attn.out.bias": "model-00001-of-00002.safetensors",
|
225 |
+
"image_encoder.blocks.2.attn.out.weight": "model-00001-of-00002.safetensors",
|
226 |
+
"image_encoder.blocks.2.attn.query.bias": "model-00001-of-00002.safetensors",
|
227 |
+
"image_encoder.blocks.2.attn.query.weight": "model-00001-of-00002.safetensors",
|
228 |
+
"image_encoder.blocks.2.attn.value.bias": "model-00001-of-00002.safetensors",
|
229 |
+
"image_encoder.blocks.2.attn.value.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"image_encoder.blocks.2.ls1.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"image_encoder.blocks.2.ls2.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"image_encoder.blocks.2.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
233 |
+
"image_encoder.blocks.2.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
234 |
+
"image_encoder.blocks.2.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
235 |
+
"image_encoder.blocks.2.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
236 |
+
"image_encoder.blocks.2.norm1.bias": "model-00001-of-00002.safetensors",
|
237 |
+
"image_encoder.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
|
238 |
+
"image_encoder.blocks.2.norm2.bias": "model-00001-of-00002.safetensors",
|
239 |
+
"image_encoder.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
|
240 |
+
"image_encoder.blocks.20.attn.key.bias": "model-00001-of-00002.safetensors",
|
241 |
+
"image_encoder.blocks.20.attn.key.weight": "model-00001-of-00002.safetensors",
|
242 |
+
"image_encoder.blocks.20.attn.out.bias": "model-00001-of-00002.safetensors",
|
243 |
+
"image_encoder.blocks.20.attn.out.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"image_encoder.blocks.20.attn.query.bias": "model-00001-of-00002.safetensors",
|
245 |
+
"image_encoder.blocks.20.attn.query.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"image_encoder.blocks.20.attn.value.bias": "model-00001-of-00002.safetensors",
|
247 |
+
"image_encoder.blocks.20.attn.value.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"image_encoder.blocks.20.ls1.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"image_encoder.blocks.20.ls2.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"image_encoder.blocks.20.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
251 |
+
"image_encoder.blocks.20.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"image_encoder.blocks.20.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
253 |
+
"image_encoder.blocks.20.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"image_encoder.blocks.20.norm1.bias": "model-00001-of-00002.safetensors",
|
255 |
+
"image_encoder.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"image_encoder.blocks.20.norm2.bias": "model-00001-of-00002.safetensors",
|
257 |
+
"image_encoder.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"image_encoder.blocks.21.attn.key.bias": "model-00001-of-00002.safetensors",
|
259 |
+
"image_encoder.blocks.21.attn.key.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"image_encoder.blocks.21.attn.out.bias": "model-00001-of-00002.safetensors",
|
261 |
+
"image_encoder.blocks.21.attn.out.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"image_encoder.blocks.21.attn.query.bias": "model-00001-of-00002.safetensors",
|
263 |
+
"image_encoder.blocks.21.attn.query.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"image_encoder.blocks.21.attn.value.bias": "model-00001-of-00002.safetensors",
|
265 |
+
"image_encoder.blocks.21.attn.value.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"image_encoder.blocks.21.ls1.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"image_encoder.blocks.21.ls2.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"image_encoder.blocks.21.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
269 |
+
"image_encoder.blocks.21.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"image_encoder.blocks.21.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
271 |
+
"image_encoder.blocks.21.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"image_encoder.blocks.21.norm1.bias": "model-00001-of-00002.safetensors",
|
273 |
+
"image_encoder.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"image_encoder.blocks.21.norm2.bias": "model-00001-of-00002.safetensors",
|
275 |
+
"image_encoder.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"image_encoder.blocks.22.attn.key.bias": "model-00001-of-00002.safetensors",
|
277 |
+
"image_encoder.blocks.22.attn.key.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"image_encoder.blocks.22.attn.out.bias": "model-00001-of-00002.safetensors",
|
279 |
+
"image_encoder.blocks.22.attn.out.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"image_encoder.blocks.22.attn.query.bias": "model-00001-of-00002.safetensors",
|
281 |
+
"image_encoder.blocks.22.attn.query.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"image_encoder.blocks.22.attn.value.bias": "model-00001-of-00002.safetensors",
|
283 |
+
"image_encoder.blocks.22.attn.value.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"image_encoder.blocks.22.ls1.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"image_encoder.blocks.22.ls2.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"image_encoder.blocks.22.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
287 |
+
"image_encoder.blocks.22.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"image_encoder.blocks.22.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
289 |
+
"image_encoder.blocks.22.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"image_encoder.blocks.22.norm1.bias": "model-00001-of-00002.safetensors",
|
291 |
+
"image_encoder.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"image_encoder.blocks.22.norm2.bias": "model-00001-of-00002.safetensors",
|
293 |
+
"image_encoder.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"image_encoder.blocks.23.attn.key.bias": "model-00001-of-00002.safetensors",
|
295 |
+
"image_encoder.blocks.23.attn.key.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"image_encoder.blocks.23.attn.out.bias": "model-00001-of-00002.safetensors",
|
297 |
+
"image_encoder.blocks.23.attn.out.weight": "model-00001-of-00002.safetensors",
|
298 |
+
"image_encoder.blocks.23.attn.query.bias": "model-00001-of-00002.safetensors",
|
299 |
+
"image_encoder.blocks.23.attn.query.weight": "model-00001-of-00002.safetensors",
|
300 |
+
"image_encoder.blocks.23.attn.value.bias": "model-00001-of-00002.safetensors",
|
301 |
+
"image_encoder.blocks.23.attn.value.weight": "model-00001-of-00002.safetensors",
|
302 |
+
"image_encoder.blocks.23.ls1.weight": "model-00001-of-00002.safetensors",
|
303 |
+
"image_encoder.blocks.23.ls2.weight": "model-00001-of-00002.safetensors",
|
304 |
+
"image_encoder.blocks.23.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
305 |
+
"image_encoder.blocks.23.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
306 |
+
"image_encoder.blocks.23.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
307 |
+
"image_encoder.blocks.23.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
308 |
+
"image_encoder.blocks.23.norm1.bias": "model-00001-of-00002.safetensors",
|
309 |
+
"image_encoder.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
|
310 |
+
"image_encoder.blocks.23.norm2.bias": "model-00001-of-00002.safetensors",
|
311 |
+
"image_encoder.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
|
312 |
+
"image_encoder.blocks.24.attn.key.bias": "model-00001-of-00002.safetensors",
|
313 |
+
"image_encoder.blocks.24.attn.key.weight": "model-00001-of-00002.safetensors",
|
314 |
+
"image_encoder.blocks.24.attn.out.bias": "model-00001-of-00002.safetensors",
|
315 |
+
"image_encoder.blocks.24.attn.out.weight": "model-00001-of-00002.safetensors",
|
316 |
+
"image_encoder.blocks.24.attn.query.bias": "model-00001-of-00002.safetensors",
|
317 |
+
"image_encoder.blocks.24.attn.query.weight": "model-00001-of-00002.safetensors",
|
318 |
+
"image_encoder.blocks.24.attn.value.bias": "model-00001-of-00002.safetensors",
|
319 |
+
"image_encoder.blocks.24.attn.value.weight": "model-00001-of-00002.safetensors",
|
320 |
+
"image_encoder.blocks.24.ls1.weight": "model-00001-of-00002.safetensors",
|
321 |
+
"image_encoder.blocks.24.ls2.weight": "model-00001-of-00002.safetensors",
|
322 |
+
"image_encoder.blocks.24.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
323 |
+
"image_encoder.blocks.24.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
324 |
+
"image_encoder.blocks.24.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
325 |
+
"image_encoder.blocks.24.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
326 |
+
"image_encoder.blocks.24.norm1.bias": "model-00001-of-00002.safetensors",
|
327 |
+
"image_encoder.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
|
328 |
+
"image_encoder.blocks.24.norm2.bias": "model-00001-of-00002.safetensors",
|
329 |
+
"image_encoder.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
|
330 |
+
"image_encoder.blocks.25.attn.key.bias": "model-00001-of-00002.safetensors",
|
331 |
+
"image_encoder.blocks.25.attn.key.weight": "model-00001-of-00002.safetensors",
|
332 |
+
"image_encoder.blocks.25.attn.out.bias": "model-00001-of-00002.safetensors",
|
333 |
+
"image_encoder.blocks.25.attn.out.weight": "model-00001-of-00002.safetensors",
|
334 |
+
"image_encoder.blocks.25.attn.query.bias": "model-00001-of-00002.safetensors",
|
335 |
+
"image_encoder.blocks.25.attn.query.weight": "model-00001-of-00002.safetensors",
|
336 |
+
"image_encoder.blocks.25.attn.value.bias": "model-00001-of-00002.safetensors",
|
337 |
+
"image_encoder.blocks.25.attn.value.weight": "model-00001-of-00002.safetensors",
|
338 |
+
"image_encoder.blocks.25.ls1.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"image_encoder.blocks.25.ls2.weight": "model-00001-of-00002.safetensors",
|
340 |
+
"image_encoder.blocks.25.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
341 |
+
"image_encoder.blocks.25.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
342 |
+
"image_encoder.blocks.25.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
343 |
+
"image_encoder.blocks.25.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
344 |
+
"image_encoder.blocks.25.norm1.bias": "model-00001-of-00002.safetensors",
|
345 |
+
"image_encoder.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
|
346 |
+
"image_encoder.blocks.25.norm2.bias": "model-00001-of-00002.safetensors",
|
347 |
+
"image_encoder.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
|
348 |
+
"image_encoder.blocks.26.attn.key.bias": "model-00001-of-00002.safetensors",
|
349 |
+
"image_encoder.blocks.26.attn.key.weight": "model-00001-of-00002.safetensors",
|
350 |
+
"image_encoder.blocks.26.attn.out.bias": "model-00001-of-00002.safetensors",
|
351 |
+
"image_encoder.blocks.26.attn.out.weight": "model-00001-of-00002.safetensors",
|
352 |
+
"image_encoder.blocks.26.attn.query.bias": "model-00001-of-00002.safetensors",
|
353 |
+
"image_encoder.blocks.26.attn.query.weight": "model-00001-of-00002.safetensors",
|
354 |
+
"image_encoder.blocks.26.attn.value.bias": "model-00001-of-00002.safetensors",
|
355 |
+
"image_encoder.blocks.26.attn.value.weight": "model-00001-of-00002.safetensors",
|
356 |
+
"image_encoder.blocks.26.ls1.weight": "model-00001-of-00002.safetensors",
|
357 |
+
"image_encoder.blocks.26.ls2.weight": "model-00001-of-00002.safetensors",
|
358 |
+
"image_encoder.blocks.26.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
359 |
+
"image_encoder.blocks.26.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
360 |
+
"image_encoder.blocks.26.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
361 |
+
"image_encoder.blocks.26.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
362 |
+
"image_encoder.blocks.26.norm1.bias": "model-00001-of-00002.safetensors",
|
363 |
+
"image_encoder.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
|
364 |
+
"image_encoder.blocks.26.norm2.bias": "model-00001-of-00002.safetensors",
|
365 |
+
"image_encoder.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
|
366 |
+
"image_encoder.blocks.27.attn.key.bias": "model-00001-of-00002.safetensors",
|
367 |
+
"image_encoder.blocks.27.attn.key.weight": "model-00001-of-00002.safetensors",
|
368 |
+
"image_encoder.blocks.27.attn.out.bias": "model-00001-of-00002.safetensors",
|
369 |
+
"image_encoder.blocks.27.attn.out.weight": "model-00001-of-00002.safetensors",
|
370 |
+
"image_encoder.blocks.27.attn.query.bias": "model-00001-of-00002.safetensors",
|
371 |
+
"image_encoder.blocks.27.attn.query.weight": "model-00001-of-00002.safetensors",
|
372 |
+
"image_encoder.blocks.27.attn.value.bias": "model-00001-of-00002.safetensors",
|
373 |
+
"image_encoder.blocks.27.attn.value.weight": "model-00001-of-00002.safetensors",
|
374 |
+
"image_encoder.blocks.27.ls1.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"image_encoder.blocks.27.ls2.weight": "model-00001-of-00002.safetensors",
|
376 |
+
"image_encoder.blocks.27.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
377 |
+
"image_encoder.blocks.27.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
378 |
+
"image_encoder.blocks.27.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
379 |
+
"image_encoder.blocks.27.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
380 |
+
"image_encoder.blocks.27.norm1.bias": "model-00001-of-00002.safetensors",
|
381 |
+
"image_encoder.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
|
382 |
+
"image_encoder.blocks.27.norm2.bias": "model-00001-of-00002.safetensors",
|
383 |
+
"image_encoder.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
|
384 |
+
"image_encoder.blocks.28.attn.key.bias": "model-00001-of-00002.safetensors",
|
385 |
+
"image_encoder.blocks.28.attn.key.weight": "model-00001-of-00002.safetensors",
|
386 |
+
"image_encoder.blocks.28.attn.out.bias": "model-00001-of-00002.safetensors",
|
387 |
+
"image_encoder.blocks.28.attn.out.weight": "model-00001-of-00002.safetensors",
|
388 |
+
"image_encoder.blocks.28.attn.query.bias": "model-00001-of-00002.safetensors",
|
389 |
+
"image_encoder.blocks.28.attn.query.weight": "model-00001-of-00002.safetensors",
|
390 |
+
"image_encoder.blocks.28.attn.value.bias": "model-00001-of-00002.safetensors",
|
391 |
+
"image_encoder.blocks.28.attn.value.weight": "model-00001-of-00002.safetensors",
|
392 |
+
"image_encoder.blocks.28.ls1.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"image_encoder.blocks.28.ls2.weight": "model-00001-of-00002.safetensors",
|
394 |
+
"image_encoder.blocks.28.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
395 |
+
"image_encoder.blocks.28.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
396 |
+
"image_encoder.blocks.28.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
397 |
+
"image_encoder.blocks.28.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
398 |
+
"image_encoder.blocks.28.norm1.bias": "model-00001-of-00002.safetensors",
|
399 |
+
"image_encoder.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
|
400 |
+
"image_encoder.blocks.28.norm2.bias": "model-00001-of-00002.safetensors",
|
401 |
+
"image_encoder.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
|
402 |
+
"image_encoder.blocks.29.attn.key.bias": "model-00001-of-00002.safetensors",
|
403 |
+
"image_encoder.blocks.29.attn.key.weight": "model-00001-of-00002.safetensors",
|
404 |
+
"image_encoder.blocks.29.attn.out.bias": "model-00001-of-00002.safetensors",
|
405 |
+
"image_encoder.blocks.29.attn.out.weight": "model-00001-of-00002.safetensors",
|
406 |
+
"image_encoder.blocks.29.attn.query.bias": "model-00001-of-00002.safetensors",
|
407 |
+
"image_encoder.blocks.29.attn.query.weight": "model-00001-of-00002.safetensors",
|
408 |
+
"image_encoder.blocks.29.attn.value.bias": "model-00001-of-00002.safetensors",
|
409 |
+
"image_encoder.blocks.29.attn.value.weight": "model-00001-of-00002.safetensors",
|
410 |
+
"image_encoder.blocks.29.ls1.weight": "model-00001-of-00002.safetensors",
|
411 |
+
"image_encoder.blocks.29.ls2.weight": "model-00001-of-00002.safetensors",
|
412 |
+
"image_encoder.blocks.29.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
413 |
+
"image_encoder.blocks.29.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
414 |
+
"image_encoder.blocks.29.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
415 |
+
"image_encoder.blocks.29.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
416 |
+
"image_encoder.blocks.29.norm1.bias": "model-00001-of-00002.safetensors",
|
417 |
+
"image_encoder.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
|
418 |
+
"image_encoder.blocks.29.norm2.bias": "model-00001-of-00002.safetensors",
|
419 |
+
"image_encoder.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
|
420 |
+
"image_encoder.blocks.3.attn.key.bias": "model-00001-of-00002.safetensors",
|
421 |
+
"image_encoder.blocks.3.attn.key.weight": "model-00001-of-00002.safetensors",
|
422 |
+
"image_encoder.blocks.3.attn.out.bias": "model-00001-of-00002.safetensors",
|
423 |
+
"image_encoder.blocks.3.attn.out.weight": "model-00001-of-00002.safetensors",
|
424 |
+
"image_encoder.blocks.3.attn.query.bias": "model-00001-of-00002.safetensors",
|
425 |
+
"image_encoder.blocks.3.attn.query.weight": "model-00001-of-00002.safetensors",
|
426 |
+
"image_encoder.blocks.3.attn.value.bias": "model-00001-of-00002.safetensors",
|
427 |
+
"image_encoder.blocks.3.attn.value.weight": "model-00001-of-00002.safetensors",
|
428 |
+
"image_encoder.blocks.3.ls1.weight": "model-00001-of-00002.safetensors",
|
429 |
+
"image_encoder.blocks.3.ls2.weight": "model-00001-of-00002.safetensors",
|
430 |
+
"image_encoder.blocks.3.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
431 |
+
"image_encoder.blocks.3.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
432 |
+
"image_encoder.blocks.3.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
433 |
+
"image_encoder.blocks.3.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
434 |
+
"image_encoder.blocks.3.norm1.bias": "model-00001-of-00002.safetensors",
|
435 |
+
"image_encoder.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
|
436 |
+
"image_encoder.blocks.3.norm2.bias": "model-00001-of-00002.safetensors",
|
437 |
+
"image_encoder.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
|
438 |
+
"image_encoder.blocks.30.attn.key.bias": "model-00001-of-00002.safetensors",
|
439 |
+
"image_encoder.blocks.30.attn.key.weight": "model-00001-of-00002.safetensors",
|
440 |
+
"image_encoder.blocks.30.attn.out.bias": "model-00001-of-00002.safetensors",
|
441 |
+
"image_encoder.blocks.30.attn.out.weight": "model-00001-of-00002.safetensors",
|
442 |
+
"image_encoder.blocks.30.attn.query.bias": "model-00001-of-00002.safetensors",
|
443 |
+
"image_encoder.blocks.30.attn.query.weight": "model-00001-of-00002.safetensors",
|
444 |
+
"image_encoder.blocks.30.attn.value.bias": "model-00001-of-00002.safetensors",
|
445 |
+
"image_encoder.blocks.30.attn.value.weight": "model-00001-of-00002.safetensors",
|
446 |
+
"image_encoder.blocks.30.ls1.weight": "model-00001-of-00002.safetensors",
|
447 |
+
"image_encoder.blocks.30.ls2.weight": "model-00001-of-00002.safetensors",
|
448 |
+
"image_encoder.blocks.30.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
449 |
+
"image_encoder.blocks.30.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
450 |
+
"image_encoder.blocks.30.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
451 |
+
"image_encoder.blocks.30.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
452 |
+
"image_encoder.blocks.30.norm1.bias": "model-00001-of-00002.safetensors",
|
453 |
+
"image_encoder.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
|
454 |
+
"image_encoder.blocks.30.norm2.bias": "model-00001-of-00002.safetensors",
|
455 |
+
"image_encoder.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
|
456 |
+
"image_encoder.blocks.31.attn.key.bias": "model-00001-of-00002.safetensors",
|
457 |
+
"image_encoder.blocks.31.attn.key.weight": "model-00001-of-00002.safetensors",
|
458 |
+
"image_encoder.blocks.31.attn.out.bias": "model-00001-of-00002.safetensors",
|
459 |
+
"image_encoder.blocks.31.attn.out.weight": "model-00001-of-00002.safetensors",
|
460 |
+
"image_encoder.blocks.31.attn.query.bias": "model-00001-of-00002.safetensors",
|
461 |
+
"image_encoder.blocks.31.attn.query.weight": "model-00001-of-00002.safetensors",
|
462 |
+
"image_encoder.blocks.31.attn.value.bias": "model-00001-of-00002.safetensors",
|
463 |
+
"image_encoder.blocks.31.attn.value.weight": "model-00001-of-00002.safetensors",
|
464 |
+
"image_encoder.blocks.31.ls1.weight": "model-00001-of-00002.safetensors",
|
465 |
+
"image_encoder.blocks.31.ls2.weight": "model-00002-of-00002.safetensors",
|
466 |
+
"image_encoder.blocks.31.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
467 |
+
"image_encoder.blocks.31.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
468 |
+
"image_encoder.blocks.31.mlp.output_layer.bias": "model-00002-of-00002.safetensors",
|
469 |
+
"image_encoder.blocks.31.mlp.output_layer.weight": "model-00002-of-00002.safetensors",
|
470 |
+
"image_encoder.blocks.31.norm1.bias": "model-00001-of-00002.safetensors",
|
471 |
+
"image_encoder.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
|
472 |
+
"image_encoder.blocks.31.norm2.bias": "model-00001-of-00002.safetensors",
|
473 |
+
"image_encoder.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
|
474 |
+
"image_encoder.blocks.4.attn.key.bias": "model-00001-of-00002.safetensors",
|
475 |
+
"image_encoder.blocks.4.attn.key.weight": "model-00001-of-00002.safetensors",
|
476 |
+
"image_encoder.blocks.4.attn.out.bias": "model-00001-of-00002.safetensors",
|
477 |
+
"image_encoder.blocks.4.attn.out.weight": "model-00001-of-00002.safetensors",
|
478 |
+
"image_encoder.blocks.4.attn.query.bias": "model-00001-of-00002.safetensors",
|
479 |
+
"image_encoder.blocks.4.attn.query.weight": "model-00001-of-00002.safetensors",
|
480 |
+
"image_encoder.blocks.4.attn.value.bias": "model-00001-of-00002.safetensors",
|
481 |
+
"image_encoder.blocks.4.attn.value.weight": "model-00001-of-00002.safetensors",
|
482 |
+
"image_encoder.blocks.4.ls1.weight": "model-00001-of-00002.safetensors",
|
483 |
+
"image_encoder.blocks.4.ls2.weight": "model-00001-of-00002.safetensors",
|
484 |
+
"image_encoder.blocks.4.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
485 |
+
"image_encoder.blocks.4.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
486 |
+
"image_encoder.blocks.4.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
487 |
+
"image_encoder.blocks.4.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
488 |
+
"image_encoder.blocks.4.norm1.bias": "model-00001-of-00002.safetensors",
|
489 |
+
"image_encoder.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
|
490 |
+
"image_encoder.blocks.4.norm2.bias": "model-00001-of-00002.safetensors",
|
491 |
+
"image_encoder.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
|
492 |
+
"image_encoder.blocks.5.attn.key.bias": "model-00001-of-00002.safetensors",
|
493 |
+
"image_encoder.blocks.5.attn.key.weight": "model-00001-of-00002.safetensors",
|
494 |
+
"image_encoder.blocks.5.attn.out.bias": "model-00001-of-00002.safetensors",
|
495 |
+
"image_encoder.blocks.5.attn.out.weight": "model-00001-of-00002.safetensors",
|
496 |
+
"image_encoder.blocks.5.attn.query.bias": "model-00001-of-00002.safetensors",
|
497 |
+
"image_encoder.blocks.5.attn.query.weight": "model-00001-of-00002.safetensors",
|
498 |
+
"image_encoder.blocks.5.attn.value.bias": "model-00001-of-00002.safetensors",
|
499 |
+
"image_encoder.blocks.5.attn.value.weight": "model-00001-of-00002.safetensors",
|
500 |
+
"image_encoder.blocks.5.ls1.weight": "model-00001-of-00002.safetensors",
|
501 |
+
"image_encoder.blocks.5.ls2.weight": "model-00001-of-00002.safetensors",
|
502 |
+
"image_encoder.blocks.5.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
503 |
+
"image_encoder.blocks.5.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
504 |
+
"image_encoder.blocks.5.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
505 |
+
"image_encoder.blocks.5.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
506 |
+
"image_encoder.blocks.5.norm1.bias": "model-00001-of-00002.safetensors",
|
507 |
+
"image_encoder.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
|
508 |
+
"image_encoder.blocks.5.norm2.bias": "model-00001-of-00002.safetensors",
|
509 |
+
"image_encoder.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
|
510 |
+
"image_encoder.blocks.6.attn.key.bias": "model-00001-of-00002.safetensors",
|
511 |
+
"image_encoder.blocks.6.attn.key.weight": "model-00001-of-00002.safetensors",
|
512 |
+
"image_encoder.blocks.6.attn.out.bias": "model-00001-of-00002.safetensors",
|
513 |
+
"image_encoder.blocks.6.attn.out.weight": "model-00001-of-00002.safetensors",
|
514 |
+
"image_encoder.blocks.6.attn.query.bias": "model-00001-of-00002.safetensors",
|
515 |
+
"image_encoder.blocks.6.attn.query.weight": "model-00001-of-00002.safetensors",
|
516 |
+
"image_encoder.blocks.6.attn.value.bias": "model-00001-of-00002.safetensors",
|
517 |
+
"image_encoder.blocks.6.attn.value.weight": "model-00001-of-00002.safetensors",
|
518 |
+
"image_encoder.blocks.6.ls1.weight": "model-00001-of-00002.safetensors",
|
519 |
+
"image_encoder.blocks.6.ls2.weight": "model-00001-of-00002.safetensors",
|
520 |
+
"image_encoder.blocks.6.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
521 |
+
"image_encoder.blocks.6.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
522 |
+
"image_encoder.blocks.6.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
523 |
+
"image_encoder.blocks.6.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
524 |
+
"image_encoder.blocks.6.norm1.bias": "model-00001-of-00002.safetensors",
|
525 |
+
"image_encoder.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
|
526 |
+
"image_encoder.blocks.6.norm2.bias": "model-00001-of-00002.safetensors",
|
527 |
+
"image_encoder.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
|
528 |
+
"image_encoder.blocks.7.attn.key.bias": "model-00001-of-00002.safetensors",
|
529 |
+
"image_encoder.blocks.7.attn.key.weight": "model-00001-of-00002.safetensors",
|
530 |
+
"image_encoder.blocks.7.attn.out.bias": "model-00001-of-00002.safetensors",
|
531 |
+
"image_encoder.blocks.7.attn.out.weight": "model-00001-of-00002.safetensors",
|
532 |
+
"image_encoder.blocks.7.attn.query.bias": "model-00001-of-00002.safetensors",
|
533 |
+
"image_encoder.blocks.7.attn.query.weight": "model-00001-of-00002.safetensors",
|
534 |
+
"image_encoder.blocks.7.attn.value.bias": "model-00001-of-00002.safetensors",
|
535 |
+
"image_encoder.blocks.7.attn.value.weight": "model-00001-of-00002.safetensors",
|
536 |
+
"image_encoder.blocks.7.ls1.weight": "model-00001-of-00002.safetensors",
|
537 |
+
"image_encoder.blocks.7.ls2.weight": "model-00001-of-00002.safetensors",
|
538 |
+
"image_encoder.blocks.7.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
539 |
+
"image_encoder.blocks.7.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
540 |
+
"image_encoder.blocks.7.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
541 |
+
"image_encoder.blocks.7.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
542 |
+
"image_encoder.blocks.7.norm1.bias": "model-00001-of-00002.safetensors",
|
543 |
+
"image_encoder.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
|
544 |
+
"image_encoder.blocks.7.norm2.bias": "model-00001-of-00002.safetensors",
|
545 |
+
"image_encoder.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
|
546 |
+
"image_encoder.blocks.8.attn.key.bias": "model-00001-of-00002.safetensors",
|
547 |
+
"image_encoder.blocks.8.attn.key.weight": "model-00001-of-00002.safetensors",
|
548 |
+
"image_encoder.blocks.8.attn.out.bias": "model-00001-of-00002.safetensors",
|
549 |
+
"image_encoder.blocks.8.attn.out.weight": "model-00001-of-00002.safetensors",
|
550 |
+
"image_encoder.blocks.8.attn.query.bias": "model-00001-of-00002.safetensors",
|
551 |
+
"image_encoder.blocks.8.attn.query.weight": "model-00001-of-00002.safetensors",
|
552 |
+
"image_encoder.blocks.8.attn.value.bias": "model-00001-of-00002.safetensors",
|
553 |
+
"image_encoder.blocks.8.attn.value.weight": "model-00001-of-00002.safetensors",
|
554 |
+
"image_encoder.blocks.8.ls1.weight": "model-00001-of-00002.safetensors",
|
555 |
+
"image_encoder.blocks.8.ls2.weight": "model-00001-of-00002.safetensors",
|
556 |
+
"image_encoder.blocks.8.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
557 |
+
"image_encoder.blocks.8.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
558 |
+
"image_encoder.blocks.8.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
559 |
+
"image_encoder.blocks.8.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
560 |
+
"image_encoder.blocks.8.norm1.bias": "model-00001-of-00002.safetensors",
|
561 |
+
"image_encoder.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
|
562 |
+
"image_encoder.blocks.8.norm2.bias": "model-00001-of-00002.safetensors",
|
563 |
+
"image_encoder.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
|
564 |
+
"image_encoder.blocks.9.attn.key.bias": "model-00001-of-00002.safetensors",
|
565 |
+
"image_encoder.blocks.9.attn.key.weight": "model-00001-of-00002.safetensors",
|
566 |
+
"image_encoder.blocks.9.attn.out.bias": "model-00001-of-00002.safetensors",
|
567 |
+
"image_encoder.blocks.9.attn.out.weight": "model-00001-of-00002.safetensors",
|
568 |
+
"image_encoder.blocks.9.attn.query.bias": "model-00001-of-00002.safetensors",
|
569 |
+
"image_encoder.blocks.9.attn.query.weight": "model-00001-of-00002.safetensors",
|
570 |
+
"image_encoder.blocks.9.attn.value.bias": "model-00001-of-00002.safetensors",
|
571 |
+
"image_encoder.blocks.9.attn.value.weight": "model-00001-of-00002.safetensors",
|
572 |
+
"image_encoder.blocks.9.ls1.weight": "model-00001-of-00002.safetensors",
|
573 |
+
"image_encoder.blocks.9.ls2.weight": "model-00001-of-00002.safetensors",
|
574 |
+
"image_encoder.blocks.9.mlp.hidden_layer.bias": "model-00001-of-00002.safetensors",
|
575 |
+
"image_encoder.blocks.9.mlp.hidden_layer.weight": "model-00001-of-00002.safetensors",
|
576 |
+
"image_encoder.blocks.9.mlp.output_layer.bias": "model-00001-of-00002.safetensors",
|
577 |
+
"image_encoder.blocks.9.mlp.output_layer.weight": "model-00001-of-00002.safetensors",
|
578 |
+
"image_encoder.blocks.9.norm1.bias": "model-00001-of-00002.safetensors",
|
579 |
+
"image_encoder.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
|
580 |
+
"image_encoder.blocks.9.norm2.bias": "model-00001-of-00002.safetensors",
|
581 |
+
"image_encoder.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
|
582 |
+
"image_encoder.cls_token": "model-00001-of-00002.safetensors",
|
583 |
+
"image_encoder.norm.bias": "model-00002-of-00002.safetensors",
|
584 |
+
"image_encoder.norm.weight": "model-00002-of-00002.safetensors",
|
585 |
+
"image_encoder.patch_embed.bias": "model-00001-of-00002.safetensors",
|
586 |
+
"image_encoder.patch_embed.weight": "model-00001-of-00002.safetensors",
|
587 |
+
"image_encoder.pos_embed": "model-00001-of-00002.safetensors",
|
588 |
+
"image_pooler.image_latents": "model-00002-of-00002.safetensors",
|
589 |
+
"image_pooler.pooler.linear1.bias": "model-00002-of-00002.safetensors",
|
590 |
+
"image_pooler.pooler.linear1.weight": "model-00002-of-00002.safetensors",
|
591 |
+
"image_pooler.pooler.linear2.bias": "model-00002-of-00002.safetensors",
|
592 |
+
"image_pooler.pooler.linear2.weight": "model-00002-of-00002.safetensors",
|
593 |
+
"image_pooler.pooler.multihead_attn.in_proj_bias": "model-00002-of-00002.safetensors",
|
594 |
+
"image_pooler.pooler.multihead_attn.in_proj_weight": "model-00002-of-00002.safetensors",
|
595 |
+
"image_pooler.pooler.multihead_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
596 |
+
"image_pooler.pooler.multihead_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
597 |
+
"image_pooler.pooler.norm1.bias": "model-00002-of-00002.safetensors",
|
598 |
+
"image_pooler.pooler.norm1.weight": "model-00002-of-00002.safetensors",
|
599 |
+
"image_pooler.pooler.norm2.bias": "model-00002-of-00002.safetensors",
|
600 |
+
"image_pooler.pooler.norm2.weight": "model-00002-of-00002.safetensors",
|
601 |
+
"image_pooler.pooler.norm3.bias": "model-00002-of-00002.safetensors",
|
602 |
+
"image_pooler.pooler.norm3.weight": "model-00002-of-00002.safetensors",
|
603 |
+
"image_pooler.pooler.self_attn.in_proj_bias": "model-00002-of-00002.safetensors",
|
604 |
+
"image_pooler.pooler.self_attn.in_proj_weight": "model-00002-of-00002.safetensors",
|
605 |
+
"image_pooler.pooler.self_attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
606 |
+
"image_pooler.pooler.self_attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
607 |
+
"image_pooler.projection.bias": "model-00002-of-00002.safetensors",
|
608 |
+
"image_pooler.projection.weight": "model-00002-of-00002.safetensors",
|
609 |
+
"text_decoder.lm_head.weight": "model-00001-of-00002.safetensors",
|
610 |
+
"text_decoder.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
611 |
+
"text_decoder.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
612 |
+
"text_decoder.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
613 |
+
"text_decoder.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
614 |
+
"text_decoder.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
615 |
+
"text_decoder.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
616 |
+
"text_decoder.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
617 |
+
"text_decoder.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
618 |
+
"text_decoder.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
619 |
+
"text_decoder.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
620 |
+
"text_decoder.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
621 |
+
"text_decoder.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
622 |
+
"text_decoder.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
623 |
+
"text_decoder.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
624 |
+
"text_decoder.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
625 |
+
"text_decoder.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
626 |
+
"text_decoder.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
627 |
+
"text_decoder.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
628 |
+
"text_decoder.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
629 |
+
"text_decoder.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
630 |
+
"text_decoder.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
631 |
+
"text_decoder.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
632 |
+
"text_decoder.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
633 |
+
"text_decoder.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
634 |
+
"text_decoder.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
635 |
+
"text_decoder.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
636 |
+
"text_decoder.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
637 |
+
"text_decoder.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
638 |
+
"text_decoder.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
639 |
+
"text_decoder.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
640 |
+
"text_decoder.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
641 |
+
"text_decoder.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
642 |
+
"text_decoder.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
643 |
+
"text_decoder.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
644 |
+
"text_decoder.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
645 |
+
"text_decoder.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
646 |
+
"text_decoder.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
647 |
+
"text_decoder.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
648 |
+
"text_decoder.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
649 |
+
"text_decoder.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
650 |
+
"text_decoder.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
651 |
+
"text_decoder.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
652 |
+
"text_decoder.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
653 |
+
"text_decoder.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
654 |
+
"text_decoder.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
655 |
+
"text_decoder.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
656 |
+
"text_decoder.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
657 |
+
"text_decoder.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
658 |
+
"text_decoder.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
659 |
+
"text_decoder.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
660 |
+
"text_decoder.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
661 |
+
"text_decoder.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
662 |
+
"text_decoder.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
663 |
+
"text_decoder.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
664 |
+
"text_decoder.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
665 |
+
"text_decoder.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
666 |
+
"text_decoder.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
667 |
+
"text_decoder.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
668 |
+
"text_decoder.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
669 |
+
"text_decoder.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
670 |
+
"text_decoder.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
671 |
+
"text_decoder.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
672 |
+
"text_decoder.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
673 |
+
"text_decoder.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
674 |
+
"text_decoder.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
675 |
+
"text_decoder.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
676 |
+
"text_decoder.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
677 |
+
"text_decoder.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
678 |
+
"text_decoder.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
679 |
+
"text_decoder.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
680 |
+
"text_decoder.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
681 |
+
"text_decoder.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
682 |
+
"text_decoder.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
683 |
+
"text_decoder.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
684 |
+
"text_decoder.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
685 |
+
"text_decoder.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
686 |
+
"text_decoder.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
687 |
+
"text_decoder.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
688 |
+
"text_decoder.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
689 |
+
"text_decoder.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
690 |
+
"text_decoder.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
691 |
+
"text_decoder.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
692 |
+
"text_decoder.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
693 |
+
"text_decoder.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
694 |
+
"text_decoder.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
695 |
+
"text_decoder.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
696 |
+
"text_decoder.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
697 |
+
"text_decoder.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
698 |
+
"text_decoder.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
699 |
+
"text_decoder.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
700 |
+
"text_decoder.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
701 |
+
"text_decoder.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
702 |
+
"text_decoder.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
703 |
+
"text_decoder.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
704 |
+
"text_decoder.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
705 |
+
"text_decoder.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
706 |
+
"text_decoder.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
707 |
+
"text_decoder.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
708 |
+
"text_decoder.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
709 |
+
"text_decoder.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
710 |
+
"text_decoder.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
711 |
+
"text_decoder.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
712 |
+
"text_decoder.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
713 |
+
"text_decoder.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
714 |
+
"text_decoder.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
715 |
+
"text_decoder.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
716 |
+
"text_decoder.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
717 |
+
"text_decoder.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
718 |
+
"text_decoder.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
719 |
+
"text_decoder.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
720 |
+
"text_decoder.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
721 |
+
"text_decoder.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
722 |
+
"text_decoder.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
723 |
+
"text_decoder.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
724 |
+
"text_decoder.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
725 |
+
"text_decoder.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
726 |
+
"text_decoder.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
727 |
+
"text_decoder.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
728 |
+
"text_decoder.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
729 |
+
"text_decoder.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
730 |
+
"text_decoder.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
731 |
+
"text_decoder.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
732 |
+
"text_decoder.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
733 |
+
"text_decoder.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
734 |
+
"text_decoder.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
735 |
+
"text_decoder.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
736 |
+
"text_decoder.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
737 |
+
"text_decoder.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
738 |
+
"text_decoder.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
739 |
+
"text_decoder.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
740 |
+
"text_decoder.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
741 |
+
"text_decoder.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
742 |
+
"text_decoder.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
743 |
+
"text_decoder.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
744 |
+
"text_decoder.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
745 |
+
"text_decoder.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
746 |
+
"text_decoder.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
747 |
+
"text_decoder.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
748 |
+
"text_decoder.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
749 |
+
"text_decoder.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
750 |
+
"text_decoder.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
751 |
+
"text_decoder.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
752 |
+
"text_decoder.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
753 |
+
"text_decoder.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
754 |
+
"text_decoder.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
755 |
+
"text_decoder.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
756 |
+
"text_decoder.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
757 |
+
"text_decoder.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
758 |
+
"text_decoder.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
759 |
+
"text_decoder.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
760 |
+
"text_decoder.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
761 |
+
"text_decoder.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
762 |
+
"text_decoder.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
763 |
+
"text_decoder.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
764 |
+
"text_decoder.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
765 |
+
"text_decoder.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
766 |
+
"text_decoder.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
767 |
+
"text_decoder.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
768 |
+
"text_decoder.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
769 |
+
"text_decoder.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
770 |
+
"text_decoder.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
771 |
+
"text_decoder.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
772 |
+
"text_decoder.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
773 |
+
"text_decoder.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
774 |
+
"text_decoder.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
775 |
+
"text_decoder.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
776 |
+
"text_decoder.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
777 |
+
"text_decoder.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
778 |
+
"text_decoder.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
779 |
+
"text_decoder.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
780 |
+
"text_decoder.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
781 |
+
"text_decoder.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
782 |
+
"text_decoder.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
783 |
+
"text_decoder.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
784 |
+
"text_decoder.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
785 |
+
"text_decoder.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
786 |
+
"text_decoder.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
787 |
+
"text_decoder.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
788 |
+
"text_decoder.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
789 |
+
"text_decoder.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
790 |
+
"text_decoder.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
791 |
+
"text_decoder.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
792 |
+
"text_decoder.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
793 |
+
"text_decoder.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
794 |
+
"text_decoder.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
795 |
+
"text_decoder.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
796 |
+
"text_decoder.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
797 |
+
"text_decoder.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
798 |
+
"text_decoder.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
799 |
+
"text_decoder.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
800 |
+
"text_decoder.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
801 |
+
"text_decoder.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
802 |
+
"text_decoder.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
803 |
+
"text_decoder.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
804 |
+
"text_decoder.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
805 |
+
"text_decoder.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
806 |
+
"text_decoder.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
807 |
+
"text_decoder.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
808 |
+
"text_decoder.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
809 |
+
"text_decoder.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
810 |
+
"text_decoder.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
811 |
+
"text_decoder.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
812 |
+
"text_decoder.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
813 |
+
"text_decoder.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
814 |
+
"text_decoder.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
815 |
+
"text_decoder.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
816 |
+
"text_decoder.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
817 |
+
"text_decoder.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
818 |
+
"text_decoder.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
819 |
+
"text_decoder.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
820 |
+
"text_decoder.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
821 |
+
"text_decoder.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
822 |
+
"text_decoder.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
823 |
+
"text_decoder.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
824 |
+
"text_decoder.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
825 |
+
"text_decoder.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
826 |
+
"text_decoder.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
827 |
+
"text_decoder.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
828 |
+
"text_decoder.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
829 |
+
"text_decoder.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
830 |
+
"text_decoder.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
831 |
+
"text_decoder.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
832 |
+
"text_decoder.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
833 |
+
"text_decoder.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
834 |
+
"text_decoder.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
835 |
+
"text_decoder.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
836 |
+
"text_decoder.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
837 |
+
"text_decoder.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
838 |
+
"text_decoder.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
839 |
+
"text_decoder.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
840 |
+
"text_decoder.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
841 |
+
"text_decoder.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
842 |
+
"text_decoder.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
843 |
+
"text_decoder.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
844 |
+
"text_decoder.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
845 |
+
"text_decoder.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
846 |
+
"text_decoder.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
847 |
+
"text_decoder.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
848 |
+
"text_decoder.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
849 |
+
"text_decoder.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
850 |
+
"text_decoder.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
851 |
+
"text_decoder.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
852 |
+
"text_decoder.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
853 |
+
"text_decoder.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
854 |
+
"text_decoder.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
855 |
+
"text_decoder.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
856 |
+
"text_decoder.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
857 |
+
"text_decoder.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
858 |
+
"text_decoder.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
859 |
+
"text_decoder.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
860 |
+
"text_decoder.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
861 |
+
"text_decoder.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
862 |
+
"text_decoder.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
863 |
+
"text_decoder.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
864 |
+
"text_decoder.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
865 |
+
"text_decoder.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
866 |
+
"text_decoder.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
867 |
+
"text_decoder.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
868 |
+
"text_decoder.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
869 |
+
"text_decoder.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
870 |
+
"text_decoder.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
871 |
+
"text_decoder.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
872 |
+
"text_decoder.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
873 |
+
"text_decoder.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
874 |
+
"text_decoder.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
875 |
+
"text_decoder.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
876 |
+
"text_decoder.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
877 |
+
"text_decoder.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
878 |
+
"text_decoder.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
879 |
+
"text_decoder.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
880 |
+
"text_decoder.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
881 |
+
"text_decoder.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
882 |
+
"text_decoder.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
883 |
+
"text_decoder.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
884 |
+
"text_decoder.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
885 |
+
"text_decoder.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
886 |
+
"text_decoder.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
887 |
+
"text_decoder.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
888 |
+
"text_decoder.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
889 |
+
"text_decoder.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
890 |
+
"text_decoder.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
891 |
+
"text_decoder.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
892 |
+
"text_decoder.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
893 |
+
"text_decoder.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
894 |
+
"text_decoder.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
895 |
+
"text_decoder.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
896 |
+
"text_decoder.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
897 |
+
"text_decoder.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
898 |
+
"text_decoder.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
899 |
+
"text_decoder.model.norm.weight": "model-00001-of-00002.safetensors"
|
900 |
+
}
|
901 |
+
}
|
LLavacheckpoints/files_for_uform_gen2_qwen/modeling_uform_gen.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
from .configuration_uform_gen import VLMConfig
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.utils.checkpoint import checkpoint
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.models.auto.modeling_auto import AutoModelForCausalLM, AutoModel
|
13 |
+
from transformers import AutoConfig
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
from .vision_encoder import VisionEncoder
|
17 |
+
|
18 |
+
|
19 |
+
class ImageFeaturesPooler(nn.Module):
|
20 |
+
def __init__(self, config, text_config):
|
21 |
+
super().__init__()
|
22 |
+
self.pooler = nn.TransformerDecoderLayer(
|
23 |
+
config.image_encoder_hidden_size,
|
24 |
+
config.image_pooler_num_attn_heads,
|
25 |
+
config.image_pooler_intermediate_size,
|
26 |
+
activation=nn.functional.silu,
|
27 |
+
batch_first=True,
|
28 |
+
norm_first=True,
|
29 |
+
)
|
30 |
+
self.image_latents = nn.Parameter(
|
31 |
+
torch.randn(1, config.num_image_latents, config.image_encoder_hidden_size)
|
32 |
+
* config.initializer_range**0.5
|
33 |
+
)
|
34 |
+
self.projection = nn.Linear(config.image_encoder_hidden_size, text_config.hidden_size)
|
35 |
+
|
36 |
+
def forward(self, features):
|
37 |
+
features = self.pooler(
|
38 |
+
self.image_latents.expand(features.size(0), -1, -1), features
|
39 |
+
)
|
40 |
+
|
41 |
+
return self.projection(features)
|
42 |
+
|
43 |
+
|
44 |
+
class VLMPreTrainedModel(PreTrainedModel):
|
45 |
+
config_class = VLMConfig
|
46 |
+
base_model_prefix = "vlm"
|
47 |
+
supports_gradient_checkpointing = True
|
48 |
+
_no_split_modules = []
|
49 |
+
_skip_keys_device_placement = "past_key_values"
|
50 |
+
|
51 |
+
def _init_weights(self, module):
|
52 |
+
pass
|
53 |
+
|
54 |
+
def _initialize_weights(self, module):
|
55 |
+
pass
|
56 |
+
|
57 |
+
|
58 |
+
class VLMForCausalLM(VLMPreTrainedModel):
|
59 |
+
def __init__(self, config: VLMConfig):
|
60 |
+
super().__init__(config)
|
61 |
+
|
62 |
+
self.config = config
|
63 |
+
self.text_config = AutoConfig.from_pretrained(
|
64 |
+
config.text_decoder_name_or_path,
|
65 |
+
trust_remote_code=True
|
66 |
+
)
|
67 |
+
|
68 |
+
self.text_decoder = AutoModelForCausalLM.from_config(
|
69 |
+
self.text_config,
|
70 |
+
trust_remote_code=True
|
71 |
+
)
|
72 |
+
|
73 |
+
self.image_encoder = VisionEncoder(
|
74 |
+
config.image_encoder_hidden_size,
|
75 |
+
config.image_encoder_patch_size,
|
76 |
+
config.image_encoder_num_layers,
|
77 |
+
config.image_encoder_num_heads,
|
78 |
+
)
|
79 |
+
|
80 |
+
self.image_pooler = ImageFeaturesPooler(config, self.text_config)
|
81 |
+
|
82 |
+
def get_input_embeddings(self):
|
83 |
+
return self.text_decoder.get_input_embeddings()
|
84 |
+
|
85 |
+
def set_input_embeddings(self, value):
|
86 |
+
self.text_decoder.set_input_embeddings(value)
|
87 |
+
|
88 |
+
def get_images_embeddings(self, images):
|
89 |
+
features = self.image_encoder(images)
|
90 |
+
return self.image_pooler(features)
|
91 |
+
|
92 |
+
def gather_continuous_embeddings(
|
93 |
+
self,
|
94 |
+
input_ids: torch.Tensor,
|
95 |
+
word_embeddings: torch.Tensor,
|
96 |
+
image_embeddings: torch.Tensor
|
97 |
+
) -> torch.Tensor:
|
98 |
+
|
99 |
+
start_indices = (input_ids == self.config.image_token_id).nonzero()[:, 1]
|
100 |
+
embeddings = []
|
101 |
+
for sample_idx, start_idx in enumerate(start_indices.tolist()):
|
102 |
+
embeddings.append(
|
103 |
+
torch.cat(
|
104 |
+
(
|
105 |
+
word_embeddings[sample_idx, :start_idx],
|
106 |
+
image_embeddings[sample_idx],
|
107 |
+
word_embeddings[sample_idx, start_idx + 1 :],
|
108 |
+
),
|
109 |
+
dim=0,
|
110 |
+
)
|
111 |
+
)
|
112 |
+
|
113 |
+
return torch.stack(embeddings, dim=0)
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
input_ids: torch.LongTensor = None,
|
118 |
+
images: torch.Tensor = None,
|
119 |
+
attention_mask: Optional[torch.Tensor] = None,
|
120 |
+
position_ids: Optional[torch.LongTensor] = None,
|
121 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
122 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
123 |
+
use_cache: Optional[bool] = None,
|
124 |
+
labels: Optional[torch.Tensor] = None,
|
125 |
+
output_attentions: Optional[bool] = None,
|
126 |
+
output_hidden_states: Optional[bool] = None,
|
127 |
+
return_dict: Optional[bool] = None
|
128 |
+
) -> Union[dict, Tuple, CausalLMOutputWithPast]:
|
129 |
+
output_attentions = (
|
130 |
+
output_attentions
|
131 |
+
if output_attentions is not None
|
132 |
+
else self.config.output_attentions
|
133 |
+
)
|
134 |
+
output_hidden_states = (
|
135 |
+
output_hidden_states
|
136 |
+
if output_hidden_states is not None
|
137 |
+
else self.config.output_hidden_states
|
138 |
+
)
|
139 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
140 |
+
|
141 |
+
return_dict = (
|
142 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
143 |
+
)
|
144 |
+
|
145 |
+
if input_ids is not None and inputs_embeds is not None:
|
146 |
+
raise ValueError(
|
147 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
148 |
+
)
|
149 |
+
elif input_ids is None and inputs_embeds is None:
|
150 |
+
raise ValueError("You have to specify either input_is or inputs_embeds")
|
151 |
+
|
152 |
+
if inputs_embeds is None and past_key_values is None:
|
153 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
154 |
+
|
155 |
+
if images is not None:
|
156 |
+
image_embeds = self.get_images_embeddings(images)
|
157 |
+
inputs_embeds = self.gather_continuous_embeddings(
|
158 |
+
input_ids,
|
159 |
+
inputs_embeds,
|
160 |
+
image_embeds
|
161 |
+
)
|
162 |
+
|
163 |
+
if position_ids is None:
|
164 |
+
seq_length = (
|
165 |
+
inputs_embeds.shape[1]
|
166 |
+
if inputs_embeds is not None
|
167 |
+
else input_ids.shape[1]
|
168 |
+
)
|
169 |
+
past_key_values_length = 0
|
170 |
+
|
171 |
+
if past_key_values is not None:
|
172 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
173 |
+
|
174 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
175 |
+
position_ids = torch.arange(
|
176 |
+
past_key_values_length,
|
177 |
+
seq_length + past_key_values_length,
|
178 |
+
dtype=torch.long,
|
179 |
+
device=device,
|
180 |
+
)
|
181 |
+
position_ids = position_ids.unsqueeze(0)
|
182 |
+
|
183 |
+
outputs = self.text_decoder(
|
184 |
+
inputs_embeds=inputs_embeds,
|
185 |
+
input_ids=input_ids if past_key_values is not None else None,
|
186 |
+
attention_mask=attention_mask,
|
187 |
+
position_ids=position_ids,
|
188 |
+
past_key_values=past_key_values,
|
189 |
+
output_attentions=output_attentions,
|
190 |
+
output_hidden_states=output_hidden_states,
|
191 |
+
use_cache=use_cache,
|
192 |
+
return_dict=return_dict,
|
193 |
+
)
|
194 |
+
|
195 |
+
return outputs
|
196 |
+
|
197 |
+
def prepare_inputs_for_generation(
|
198 |
+
self,
|
199 |
+
input_ids,
|
200 |
+
images=None,
|
201 |
+
past_key_values=None,
|
202 |
+
attention_mask=None,
|
203 |
+
inputs_embeds=None,
|
204 |
+
**kwargs,
|
205 |
+
):
|
206 |
+
if past_key_values:
|
207 |
+
input_ids = input_ids[:, -1:]
|
208 |
+
|
209 |
+
position_ids = kwargs.get("position_ids", None)
|
210 |
+
if attention_mask is not None and position_ids is None:
|
211 |
+
# create position_ids on the fly for batch generation
|
212 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
213 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
214 |
+
if past_key_values:
|
215 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
216 |
+
|
217 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
218 |
+
if inputs_embeds is not None and past_key_values is None:
|
219 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
220 |
+
n_samples = inputs_embeds.shape[0]
|
221 |
+
else:
|
222 |
+
model_inputs = {"input_ids": input_ids}
|
223 |
+
n_samples = input_ids.shape[0]
|
224 |
+
|
225 |
+
if images is not None:
|
226 |
+
model_inputs["images"] = images
|
227 |
+
|
228 |
+
model_inputs.update(
|
229 |
+
{
|
230 |
+
"position_ids": position_ids,
|
231 |
+
"past_key_values": past_key_values,
|
232 |
+
"use_cache": kwargs.get("use_cache"),
|
233 |
+
"attention_mask": attention_mask,
|
234 |
+
"images": images if past_key_values is None else None,
|
235 |
+
}
|
236 |
+
)
|
237 |
+
return model_inputs
|
238 |
+
|
239 |
+
@classmethod
|
240 |
+
def from_config(cls, config, **kwargs):
|
241 |
+
return cls._from_config(config, **kwargs)
|
242 |
+
|
243 |
+
|
244 |
+
VLMConfig.register_for_auto_class()
|
245 |
+
VLMForCausalLM.register_for_auto_class("AutoModel")
|
LLavacheckpoints/files_for_uform_gen2_qwen/processing_uform_gen.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers.processing_utils import ProcessorMixin
|
6 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
7 |
+
from transformers import AutoTokenizer, AutoConfig
|
8 |
+
from transformers import BatchFeature
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
from torchvision.transforms import (
|
12 |
+
Compose,
|
13 |
+
Normalize,
|
14 |
+
Resize,
|
15 |
+
ToTensor
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
IMAGENET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
20 |
+
IMAGENET_STD = (0.26862954, 0.26130258, 0.27577711)
|
21 |
+
|
22 |
+
|
23 |
+
def convert_to_rgb(x):
|
24 |
+
return x.convert("RGB")
|
25 |
+
|
26 |
+
|
27 |
+
def expand2square(image, background_color):
|
28 |
+
width, height = image.size
|
29 |
+
if width == height:
|
30 |
+
return image
|
31 |
+
elif width > height:
|
32 |
+
result = Image.new(image.mode, (width, width), background_color)
|
33 |
+
result.paste(image, (0, (width - height) // 2))
|
34 |
+
return result
|
35 |
+
else:
|
36 |
+
result = Image.new(image.mode, (height, height), background_color)
|
37 |
+
result.paste(image, ((height - width) // 2, 0))
|
38 |
+
return result
|
39 |
+
|
40 |
+
|
41 |
+
class ImageProcessor(BaseImageProcessor):
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
image_size: int,
|
45 |
+
**kwargs
|
46 |
+
):
|
47 |
+
super().__init__(**kwargs)
|
48 |
+
self.transform = Compose(
|
49 |
+
[
|
50 |
+
convert_to_rgb,
|
51 |
+
partial(
|
52 |
+
expand2square,
|
53 |
+
background_color=tuple(int(255 * v) for v in IMAGENET_MEAN)
|
54 |
+
),
|
55 |
+
Resize(image_size),
|
56 |
+
ToTensor(),
|
57 |
+
Normalize(
|
58 |
+
mean=IMAGENET_MEAN,
|
59 |
+
std=IMAGENET_STD,
|
60 |
+
),
|
61 |
+
]
|
62 |
+
)
|
63 |
+
|
64 |
+
def preprocess(
|
65 |
+
self,
|
66 |
+
image: Image
|
67 |
+
):
|
68 |
+
return self.transform(image)
|
69 |
+
|
70 |
+
def __repr__(self):
|
71 |
+
return repr(self.transform)
|
72 |
+
|
73 |
+
|
74 |
+
class VLMProcessor(ProcessorMixin):
|
75 |
+
def __init__(self, config):
|
76 |
+
self.config = config
|
77 |
+
self.image_size = config.image_size
|
78 |
+
|
79 |
+
self.feature_extractor = ImageProcessor(self.image_size)
|
80 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
81 |
+
config.text_decoder_name_or_path, additional_special_tokens=["<image>"]
|
82 |
+
)
|
83 |
+
self.tokenizer.chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
|
84 |
+
self.num_image_latents = config.num_image_latents
|
85 |
+
# super().__init__(self.image_processor, self.tokenizer)
|
86 |
+
|
87 |
+
def __call__(
|
88 |
+
self, text=None, images=None, **kwargs
|
89 |
+
):
|
90 |
+
if text is not None:
|
91 |
+
if isinstance(text, str):
|
92 |
+
text = [text]
|
93 |
+
|
94 |
+
tokenized_texts = []
|
95 |
+
for t in text:
|
96 |
+
messages = [
|
97 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
98 |
+
{"role": "user", "content": f" <image> {t}"},
|
99 |
+
]
|
100 |
+
tokenized_prompt = self.tokenizer.apply_chat_template(
|
101 |
+
messages, add_generation_prompt=True, return_tensors="pt"
|
102 |
+
)
|
103 |
+
|
104 |
+
tokenized_texts.append(tokenized_prompt)
|
105 |
+
|
106 |
+
max_len = max(len(t[0]) for t in tokenized_texts)
|
107 |
+
input_ids = torch.full(
|
108 |
+
(len(tokenized_texts), max_len),
|
109 |
+
fill_value=self.tokenizer.pad_token_id,
|
110 |
+
dtype=torch.int64,
|
111 |
+
)
|
112 |
+
attention_mask = torch.full(
|
113 |
+
(len(tokenized_texts), max_len), fill_value=0, dtype=torch.int64
|
114 |
+
)
|
115 |
+
|
116 |
+
for i, tokens in enumerate(tokenized_texts):
|
117 |
+
input_ids[i, -len(tokens[0]) :] = tokens[0]
|
118 |
+
attention_mask[i, -len(tokens[0]) :] = 1
|
119 |
+
|
120 |
+
attention_mask = F.pad(
|
121 |
+
attention_mask, pad=(0, self.num_image_latents - 1), value=1
|
122 |
+
)
|
123 |
+
|
124 |
+
encoding = BatchFeature(
|
125 |
+
data={"input_ids": input_ids, "attention_mask": attention_mask}
|
126 |
+
)
|
127 |
+
|
128 |
+
if images is not None:
|
129 |
+
if isinstance(images, (list, tuple)):
|
130 |
+
image_features = torch.empty(
|
131 |
+
(len(images), 3, self.image_size , self.image_size),
|
132 |
+
dtype=torch.float32,
|
133 |
+
)
|
134 |
+
|
135 |
+
for i, image in enumerate(images):
|
136 |
+
image_features[i] = self.feature_extractor(image)
|
137 |
+
|
138 |
+
else:
|
139 |
+
image_features = self.feature_extractor(images).unsqueeze(0)
|
140 |
+
|
141 |
+
if text is not None and images is not None:
|
142 |
+
encoding["images"] = image_features
|
143 |
+
return encoding
|
144 |
+
|
145 |
+
elif text is not None:
|
146 |
+
return encoding
|
147 |
+
|
148 |
+
else:
|
149 |
+
return BatchFeature(
|
150 |
+
data={
|
151 |
+
"images": image_features,
|
152 |
+
},
|
153 |
+
tensor_type=return_tensors,
|
154 |
+
)
|
155 |
+
|
156 |
+
def batch_decode(self, *args, **kwargs):
|
157 |
+
"""
|
158 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
159 |
+
refer to the docstring of this method for more information.
|
160 |
+
"""
|
161 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
162 |
+
|
163 |
+
def decode(self, *args, **kwargs):
|
164 |
+
"""
|
165 |
+
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
166 |
+
the docstring of this method for more information.
|
167 |
+
"""
|
168 |
+
return self.tokenizer.decode(*args, **kwargs)
|
169 |
+
|
170 |
+
@classmethod
|
171 |
+
def from_pretrained(
|
172 |
+
cls,
|
173 |
+
pretrained_model_name_or_path,
|
174 |
+
trust_remote_code=False,
|
175 |
+
**kwargs
|
176 |
+
):
|
177 |
+
config = AutoConfig.from_pretrained(
|
178 |
+
pretrained_model_name_or_path,
|
179 |
+
trust_remote_code=trust_remote_code
|
180 |
+
)
|
181 |
+
return cls(config)
|
LLavacheckpoints/files_for_uform_gen2_qwen/vision_encoder.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
class Attention(nn.Module):
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
dim: int,
|
12 |
+
num_heads: int,
|
13 |
+
dropout_prob: float = 0
|
14 |
+
):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
self.use_sdp = int(torch.__version__[0]) > 1
|
18 |
+
|
19 |
+
self.query = nn.Linear(dim, dim)
|
20 |
+
self.key = nn.Linear(dim, dim)
|
21 |
+
self.value = nn.Linear(dim, dim)
|
22 |
+
self.out = nn.Linear(dim, dim)
|
23 |
+
|
24 |
+
self.dropout_prob = dropout_prob
|
25 |
+
self.num_heads = num_heads
|
26 |
+
self.head_dim = dim // num_heads
|
27 |
+
self.scale = self.head_dim**-0.5
|
28 |
+
|
29 |
+
def forward(
|
30 |
+
self,
|
31 |
+
x: Tensor,
|
32 |
+
attn_mask: Optional[Tensor] = None,
|
33 |
+
context: Optional[Tensor] = None,
|
34 |
+
is_causal: bool = False,
|
35 |
+
) -> Tensor:
|
36 |
+
|
37 |
+
query = self.reshape(self.query(x))
|
38 |
+
key = self.reshape(self.key(x if context is None else context))
|
39 |
+
value = self.reshape(self.value(x if context is None else context))
|
40 |
+
|
41 |
+
if self.use_sdp:
|
42 |
+
x = F.scaled_dot_product_attention(
|
43 |
+
query,
|
44 |
+
key,
|
45 |
+
value,
|
46 |
+
attn_mask,
|
47 |
+
dropout_p=self.dropout_prob if self.training else 0,
|
48 |
+
is_causal=is_causal,
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
attn = query @ key.transpose(-2, -1) * self.scale
|
52 |
+
if attn_mask is not None:
|
53 |
+
attn += attn_mask
|
54 |
+
|
55 |
+
attn = attn.softmax(dim=-1)
|
56 |
+
x = attn @ value
|
57 |
+
|
58 |
+
return self.out(x.transpose(2, 1).flatten(2))
|
59 |
+
|
60 |
+
def reshape(self, x: Tensor) -> Tensor:
|
61 |
+
batch_size, seq_len, _ = x.shape
|
62 |
+
x = x.view(batch_size, seq_len, self.num_heads, self.head_dim)
|
63 |
+
return x.transpose(2, 1)
|
64 |
+
|
65 |
+
|
66 |
+
class MLP(nn.Module):
|
67 |
+
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
dim: int,
|
71 |
+
dim_expand_factor: int = 4
|
72 |
+
):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
self.hidden_layer = nn.Linear(dim, dim * dim_expand_factor)
|
76 |
+
self.output_layer = nn.Linear(dim * dim_expand_factor, dim)
|
77 |
+
|
78 |
+
def forward(self, x: Tensor) -> Tensor:
|
79 |
+
x = F.gelu(self.hidden_layer(x))
|
80 |
+
return self.output_layer(x)
|
81 |
+
|
82 |
+
|
83 |
+
class LayerScale(nn.Module):
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
dim: int,
|
88 |
+
init_values: float = 1e-5,
|
89 |
+
inplace: bool = False
|
90 |
+
):
|
91 |
+
super().__init__()
|
92 |
+
self.weight = nn.Parameter(init_values * torch.ones(dim))
|
93 |
+
self.inplace = inplace
|
94 |
+
|
95 |
+
def forward(self, x: Tensor) -> Tensor:
|
96 |
+
return x.mul_(self.weight) if self.inplace else x * self.weight
|
97 |
+
|
98 |
+
|
99 |
+
class VisionEncoderBlock(nn.Module):
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
dim: int,
|
104 |
+
num_heads: int
|
105 |
+
):
|
106 |
+
super().__init__()
|
107 |
+
self.norm1 = nn.LayerNorm(dim, eps=1e-6)
|
108 |
+
self.attn = Attention(dim, num_heads)
|
109 |
+
self.ls1 = LayerScale(dim)
|
110 |
+
|
111 |
+
self.norm2 = nn.LayerNorm(dim, eps=1e-6)
|
112 |
+
self.mlp = MLP(dim)
|
113 |
+
self.ls2 = LayerScale(dim)
|
114 |
+
|
115 |
+
def forward(self, x: Tensor) -> Tensor:
|
116 |
+
x = x + self.ls1(self.attn(self.norm1(x)))
|
117 |
+
x = x + self.ls2(self.mlp(self.norm2(x)))
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
class VisionEncoder(nn.Module):
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
dim: int,
|
126 |
+
patch_size: int,
|
127 |
+
num_layers: int,
|
128 |
+
num_heads: int,
|
129 |
+
):
|
130 |
+
super().__init__()
|
131 |
+
|
132 |
+
self.n_patch = 224 // patch_size
|
133 |
+
self.seq_len = self.n_patch ** 2
|
134 |
+
self.patch_size = patch_size
|
135 |
+
|
136 |
+
self.patch_embed = nn.Conv2d(3, dim, patch_size, patch_size)
|
137 |
+
self.pos_embed = nn.Parameter(torch.randn(1, self.seq_len, dim) * 0.02)
|
138 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, dim))
|
139 |
+
self.interpolate_offset = 0.1
|
140 |
+
self.interpolate_antialias = False
|
141 |
+
|
142 |
+
self.blocks = nn.Sequential(
|
143 |
+
*[
|
144 |
+
VisionEncoderBlock(dim, num_heads)
|
145 |
+
for _ in range(num_layers)
|
146 |
+
]
|
147 |
+
)
|
148 |
+
|
149 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
150 |
+
|
151 |
+
def interpolate_pos_encoding(self, x, h, w):
|
152 |
+
previous_dtype = x.dtype
|
153 |
+
|
154 |
+
if x.shape[1] == self.seq_len and w == h:
|
155 |
+
return self.pos_embed
|
156 |
+
|
157 |
+
pos_embed = self.pos_embed.float()
|
158 |
+
|
159 |
+
dim = x.shape[-1]
|
160 |
+
w0 = w // self.patch_size
|
161 |
+
h0 = h // self.patch_size
|
162 |
+
# we add a small number to avoid floating point error in the interpolation
|
163 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
164 |
+
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
|
165 |
+
sx, sy = float(w0) / self.n_patch, float(h0) / self.n_patch
|
166 |
+
|
167 |
+
pos_embed = nn.functional.interpolate(
|
168 |
+
pos_embed.reshape(1, self.n_patch, self.n_patch, dim).permute(0, 3, 1, 2),
|
169 |
+
scale_factor=(sy, sx),
|
170 |
+
mode="bicubic",
|
171 |
+
antialias=self.interpolate_antialias,
|
172 |
+
)
|
173 |
+
|
174 |
+
return pos_embed.to(previous_dtype).flatten(start_dim=2).transpose(2, 1)
|
175 |
+
|
176 |
+
def forward(self, x: Tensor) -> Tensor:
|
177 |
+
h, w = x.shape[2:]
|
178 |
+
x = self.patch_embed(x).flatten(start_dim=2).transpose(2, 1)
|
179 |
+
x = x + self.interpolate_pos_encoding(x, h, w)
|
180 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
181 |
+
x = self.blocks(x)
|
182 |
+
return self.norm(x)
|
layerstyle/light_leak.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2f05ff349fb7594f602a3c1ce3a82a172ce841dc63b81bffa7d075a20a7104f
|
3 |
+
size 199067332
|
mediapipe/.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
mediapipe/hair_segmenter.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2628cf3ce5f695f604cbea2841e00befcaa3624bf80caf3664bef2656d59bf84
|
3 |
+
size 781618
|
mediapipe/selfie_multiclass_256x256.tflite
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6748b1253a99067ef71f7e26ca71096cd449baefa8f101900ea23016507e0e0
|
3 |
+
size 16371837
|