Datasets:
File size: 8,828 Bytes
8940e00 17f8bab ac88f33 8940e00 d5c4b1d fe2f834 d5c4b1d fe2f834 d5c4b1d fe2f834 d5c4b1d fe2f834 d5c4b1d b0fe937 d5c4b1d 657e605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
---
task_categories:
- object-detection
license: mit
tags:
- computer vision
- amodal-tracking
- object-tracking
- amodal-perception
configs:
- config_name: default
data_files:
- split: train
path: "amodal_annotations/train.json"
- split: validation
path: "amodal_annotations/validation.json"
- split: test
path: "amodal_annotations/test.json"
extra_gated_prompt: "To download the AVA and HACS videos you have to agree to terms and conditions."
extra_gated_fields:
You will use the Datasets only for non-commercial research and educational purposes.:
type: select
options:
- No
- Yes
You will NOT distribute the Datasets or any parts thereof.:
type: select
options:
- No
- Yes
Carnegie Mellon University makes no representations or warranties regarding the datasets, including but not limited to warranties of non-infringement or fitness for a particular purpose.:
type: select
options:
- No
- Yes
You accept full responsibility for your use of the datasets and shall defend and indemnify Carnegie Mellon University, including its employees, officers and agents, against any and all claims arising from your use of the datasets, including but not limited to your use of any copyrighted videos or images that you may create from the datasets.:
type: select
options:
- No
- Yes
You will treat people appearing in this data with respect and dignity.:
type: select
options:
- No
- Yes
This data comes with no warranty or guarantee of any kind, and you accept full liability.:
type: select
options:
- No
- Yes
extra_gated_heading: "TAO HACS VIDEO Request"
extra_gated_button_content: "Request Data"
---
# TAO-Amodal Dataset
<!-- Provide a quick summary of the dataset. -->
Official Source for Downloading the TAO-Amodal Dataset.
[**π Project Page**](https://tao-amodal.github.io/) | [**π» Code**](https://github.com/WesleyHsieh0806/TAO-Amodal) | [**π Paper Link**](https://arxiv.org/abs/2312.12433) | [**βοΈ Citations**](#citations)
<div align="center">
<a href="https://tao-amodal.github.io/"><img width="95%" alt="TAO-Amodal" src="https://tao-amodal.github.io/static/images/webpage_preview.png"></a>
</div>
</br>
Contact: [ππ»ββοΈCheng-Yen (Wesley) Hsieh](https://wesleyhsieh0806.github.io/)
## Dataset Description
Our dataset augments the TAO dataset with amodal bounding box annotations for fully invisible, out-of-frame, and occluded objects.
Note that this implies TAO-Amodal also includes modal segmentation masks (as visualized in the color overlays above).
Our dataset encompasses 880 categories, aimed at assessing the occlusion reasoning capabilities of current trackers
through the paradigm of Tracking Any Object with Amodal perception (TAO-Amodal).
### Dataset Download
1. Download all the annotations.
```bash
git lfs install
git clone git@hf.co:datasets/chengyenhsieh/TAO-Amodal
```
2. Download all the video frames:
You can either download the frames following the instructions [here](https://motchallenge.net/tao_download.php) (recommended) or modify our provided [script](./download_TAO.sh) and run
```bash
bash download_TAO.sh
```
## π Dataset Structure
The dataset should be structured like this:
```bash
TAO-Amodal
βββ frames
β βββ train
β βββ ArgoVerse
β βββ BDD
β βββ Charades
β βββ HACS
β βββ LaSOT
β βββ YFCC100M
βββ amodal_annotations
β βββ train/validation/test.json
β βββ train_lvis_v1.json
β βββ validation_lvis_v1.json
βββ example_output
β βββ prediction.json
βββ BURST_annotations
β βββ train
β βββ train_visibility.json
β ...
```
## π File Descriptions
| File Name | Description |
| -------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| train/validation/test.json | Formal annotation files. We use these annotations for visualization. Categories include those in [lvis](https://www.lvisdataset.org/) v0.5 and freeform categories. |
| train_lvis_v1.json | We use this file to train our [amodal-expander](https://tao-amodal.github.io/index.html#Amodal-Expander), treating each image frame as an independent sequence. Categories are aligned with those in lvis v1.0. |
| validation_lvis_v1.json | We use this file to evaluate our [amodal-expander](https://tao-amodal.github.io/index.html#Amodal-Expander). Categories are aligned with those in lvis v1.0. |
| prediction.json | Example output json from amodal-expander. Tracker predictions should be structured like this file to be evaluated with our [evaluation toolkit](https://github.com/WesleyHsieh0806/TAO-Amodal?tab=readme-ov-file#bar_chart-evaluation). |
| BURST_annotations/XXX.json | Modal mask annotations from [BURST dataset](https://github.com/Ali2500/BURST-benchmark) with our heuristic visibility attributes. We provide these files for the convenience of visualization |
### Annotation and Prediction Format
Our annotations are structured similarly as [TAO](https://github.com/TAO-Dataset/tao/blob/master/tao/toolkit/tao/tao.py#L4) with some modifications.
Annotations:
```bash
Annotation file format:
{
"info" : info,
"images" : [image],
"videos": [video],
"tracks": [track],
"annotations" : [annotation],
"categories": [category],
"licenses" : [license],
}
annotation: {
"id": int,
"image_id": int,
"track_id": int,
"bbox": [x,y,width,height],
"area": float,
# Redundant field for compatibility with COCO scripts
"category_id": int,
"video_id": int,
# Other important attributes for evaluation on TAO-Amodal
"amodal_bbox": [x,y,width,height],
"amodal_is_uncertain": bool,
"visibility": float, (0.~1.0)
}
image, info, video, track, category, licenses, : Same as TAO
```
Predictions should be structured as:
```bash
[{
"image_id" : int,
"category_id" : int,
"bbox" : [x,y,width,height],
"score" : float,
"track_id": int,
"video_id": int
}]
```
Refer to the instructions of [TAO dataset](https://github.com/TAO-Dataset/tao/blob/master/docs/evaluation.md) for further details
## πΊ Example Sequences
Check [here](https://tao-amodal.github.io/#TAO-Amodal) for more examples and [here](https://github.com/WesleyHsieh0806/TAO-Amodal?tab=readme-ov-file#artist-visualization) for visualization code.
[<img src="https://tao-amodal.github.io/static/images/car_and_bus.png" width="50%">](https://tao-amodal.github.io/dataset.html "tao-amodal")
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
```
@misc{hsieh2023tracking,
title={Tracking Any Object Amodally},
author={Cheng-Yen Hsieh and Tarasha Khurana and Achal Dave and Deva Ramanan},
year={2023},
eprint={2312.12433},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<details>
<summary>Please also cite <a href="https://taodataset.org/">TAO</a> and <a href="https://github.com/Ali2500/BURST-benchmark">BURST</a> dataset if you use our dataset</summary>
```
@inproceedings{dave2020tao,
title={Tao: A large-scale benchmark for tracking any object},
author={Dave, Achal and Khurana, Tarasha and Tokmakov, Pavel and Schmid, Cordelia and Ramanan, Deva},
booktitle={Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part V 16},
pages={436--454},
year={2020},
organization={Springer}
}
@inproceedings{athar2023burst,
title={Burst: A benchmark for unifying object recognition, segmentation and tracking in video},
author={Athar, Ali and Luiten, Jonathon and Voigtlaender, Paul and Khurana, Tarasha and Dave, Achal and Leibe, Bastian and Ramanan, Deva},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={1674--1683},
year={2023}
}
```
</details>
|