|
|
|
"""CURRICULUM Benchmark""" |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@misc{https://doi.org/10.48550/arxiv.2204.06283, |
|
doi = {10.48550/ARXIV.2204.06283}, |
|
url = {https://arxiv.org/abs/2204.06283}, |
|
author = {Chen, Zeming and Gao, Qiyue}, |
|
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Curriculum: A Broad-Coverage Benchmark for Linguistic Phenomena in Natural Language Understanding}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
We introduce Curriculum as a new format of NLI benchmark for evaluation of broad-coverage linguistic phenomena. |
|
Curriculum contains a collection of datasets that covers 36 types of major linguistic phenomena and an evaluation procedure |
|
for diagnosing how well a language model captures reasoning skills for distinct types of linguistic phenomena. |
|
We show that this linguistic-phenomena-driven benchmark can serve as an effective tool for diagnosing |
|
model behavior and verifying model learning quality. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/eric11eca/curriculum-ling" |
|
_LICENSE = "CC BY-SA 3.0" |
|
_URL = "https://github.com/eric11eca/curriculum-ling/blob/main/benchmark/tasks/" |
|
|
|
|
|
_DESCRIPTION_MAP = { |
|
"analytic": "analytical thinking.", |
|
"atomic": "reasoning on commonsense knowledge graph.", |
|
} |
|
|
|
_TAKS_NAMES = ["analytic", "defeasible", "boolean", "comparative", |
|
"conditional", "context_align", "control", "coreference", |
|
"cosmoqa", "counterfactual", "counting", "drop", |
|
"entailment_tree", "ester", "hellaswag", "hypernymy", |
|
"hyponymy", "kg_relations", "lexical", "logiqa", |
|
"monotonicity_infer", "negation", "ner", "physicalqa", |
|
"puns", "quantifier", "sentiment", "socialqa", |
|
"spatial", "sprl", "syntactic_alternation", "syntactic_variation", |
|
"temporal", "transitive", "verbcorner", "verbnet"] |
|
|
|
task_label_dict = { |
|
"lexical": ["entailed", "not-entailed"], |
|
"transitive": ["entailed", "not-entailed"], |
|
"hypernymy": ["entailed", "not-entailed"], |
|
"hyponymy": ["entailed", "not-entailed"], |
|
"ner": ["entailed", "not-entailed"], |
|
"verbnet": ["entailed", "not-entailed"], |
|
"verbcorner": ["entailed", "not-entailed"], |
|
"syntactic_alternation": ["entailed", "not-entailed"], |
|
"syntactic_variation": ["entailed", "not-entailed"], |
|
"boolean": ["entailment", "contradiction", "neutral"], |
|
"comparative": ["entailment", "contradiction", "neutral"], |
|
"conditional": ["entailment", "contradiction", "neutral"], |
|
"counting": ["entailment", "contradiction", "neutral"], |
|
"negation": ["entailment", "contradiction", "neutral"], |
|
"quantifier": ["entailment", "contradiction", "neutral"], |
|
"monotonicity_infer": ["entailed", "not-entailed"], |
|
"sentiment": ["entailed", "not-entailed"], |
|
"kg_relations": ["entailed", "not-entailed"], |
|
"puns": ["entailed", "not-entailed"], |
|
"coreference": ["entailed", "not-entailed"], |
|
"context_align": ["entailed", "not-entailed"], |
|
"sprl": ["entailed", "not-entailed"], |
|
"analytic": ["entailed", "not-entailed"], |
|
"entailment_tree": ["entailed", "not-entailed"], |
|
"socialqa": ["entailed", "not-entailed"], |
|
"physicalqa": ["entailed", "not-entailed"], |
|
"hellaswag": ["entailed", "not-entailed"], |
|
"cosmoqa": ["entailed", "not-entailed"], |
|
"logiqa": ["entailed", "not-entailed"], |
|
"ester": ["entailed", "not-entailed"], |
|
"drop": ["entailed", "not-entailed"], |
|
"control": ["entailment", "contradiction", "neutral"], |
|
"spatial": ["entailed", "not-entailed"], |
|
"temporal": ["entailed", "not-entailed"], |
|
"defeasible": ["entailed", "not-entailed"], |
|
"counterfactual": ["entailed", "not-entailed"] |
|
} |
|
|
|
|
|
def read_file(path, mode="r", **kwargs): |
|
with open(path, mode=mode, **kwargs) as f: |
|
return f.read() |
|
|
|
|
|
def write_file(data, path, mode="w", **kwargs): |
|
with open(path, mode=mode, **kwargs) as f: |
|
f.write(data) |
|
|
|
|
|
def read_json(path, mode="r", **kwargs): |
|
return json.loads(read_file(path, mode=mode, **kwargs)) |
|
|
|
|
|
def write_json(data, path): |
|
return write_file(json.dumps(data, indent=2), path) |
|
|
|
|
|
def read_jsonl(path, mode="r", **kwargs): |
|
|
|
ls = [] |
|
with open(path, mode, **kwargs) as f: |
|
for line in f: |
|
ls.append(json.loads(line)) |
|
return ls |
|
|
|
|
|
def write_jsonl(data, path): |
|
assert isinstance(data, list) |
|
lines = [to_jsonl(elem) for elem in data] |
|
write_file("\n".join(lines), path) |
|
|
|
|
|
def to_jsonl(data): |
|
return json.dumps(data).replace("\n", "") |
|
|
|
|
|
class CurriculumConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Curriculum.""" |
|
|
|
def __init__(self, features, data_url, citation, url, label_classes=["entailed", "not-entailed"], **kwargs): |
|
"""BuilderConfig for Curriculum. |
|
Args: |
|
features: `list[string]`, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
data_url: `string`, url to download the zip file from. |
|
citation: `string`, citation for the data set. |
|
url: `string`, url for information about the data set. |
|
label_classes: `list[string]`, the list of classes for the label if the |
|
label is present as a string. Non-string labels will be cast to either |
|
'False' or 'True'. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
|
|
super(CurriculumConfig, self).__init__( |
|
version=datasets.Version("1.0.0"), **kwargs) |
|
self.features = features |
|
self.label_classes = label_classes |
|
self.data_url = data_url |
|
self.citation = citation |
|
self.url = url |
|
|
|
|
|
class CurriculumBenchmark(datasets.GeneratorBasedBuilder): |
|
"""Curriculum Benchmark. Version 1.0.0""" |
|
|
|
BUILDER_CONFIGS = [ |
|
CurriculumConfig( |
|
name=task_name, |
|
description=_DESCRIPTION, |
|
label_classes=task_label_dict[task_name], |
|
features=["premise", "hypothesis", "idx", "gold_label"], |
|
data_url=f"https://github.com/eric11eca/curriculum-ling/raw/main/benchmark/tasks/{task_name}.zip", |
|
citation=_CITATION, |
|
url="https://github.com/eric11eca/curriculum-ling/", |
|
) for task_name in _TAKS_NAMES |
|
] |
|
|
|
def _info(self): |
|
features = {feature: datasets.Value( |
|
"string") for feature in self.config.features} |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
@staticmethod |
|
def _get_filepath(dl_dir, split): |
|
return os.path.join(dl_dir, split + ".jsonl") |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(self.config.data_url) or "" |
|
task_name = _get_task_name_from_data_url(self.config.data_url) |
|
dl_dir = os.path.join(dl_dir, task_name) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "train.jsonl"), |
|
"split": datasets.Split.TRAIN, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "val.jsonl"), |
|
"split": datasets.Split.VALIDATION, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", data_file) |
|
|
|
dataset = read_jsonl(data_file) |
|
for id_, data in enumerate(dataset): |
|
|
|
yield id_, { |
|
"premise": data["premise"], |
|
"hypothesis": data["hypothesis"], |
|
"gold_label": data["gold_label"], |
|
"idx": id_ |
|
} |
|
|
|
|
|
def _get_task_name_from_data_url(data_url): |
|
return data_url.split("/")[-1].split(".")[0] |
|
|