christopher commited on
Commit
d287063
1 Parent(s): e12e8b6

Upload dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +65 -0
dataset_infos.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"cakiki--emotion-with-length": {
2
+ "description": "Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.\n",
3
+ "citation": "@inproceedings{saravia-etal-2018-carer,\n title = \"{CARER}: Contextualized Affect Representations for Emotion Recognition\",\n author = \"Saravia, Elvis and\n Liu, Hsien-Chi Toby and\n Huang, Yen-Hao and\n Wu, Junlin and\n Chen, Yi-Shin\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\",\n month = oct # \"-\" # nov,\n year = \"2018\",\n address = \"Brussels, Belgium\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D18-1404\",\n doi = \"10.18653/v1/D18-1404\",\n pages = \"3687--3697\",\n abstract = \"Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.\",\n}\n",
4
+ "homepage": "https://github.com/dair-ai/emotion_dataset",
5
+ "license": "",
6
+ "features": {
7
+ "text": {
8
+ "dtype": "string",
9
+ "id": null,
10
+ "_type": "Value"
11
+ },
12
+ "label": {
13
+ "num_classes": 6,
14
+ "names": [
15
+ "sadness",
16
+ "joy",
17
+ "love",
18
+ "anger",
19
+ "fear",
20
+ "surprise"
21
+ ],
22
+ "id": null,
23
+ "_type": "ClassLabel"
24
+ },
25
+ "tweet_length": {
26
+ "dtype": "int64",
27
+ "id": null,
28
+ "_type": "Value"
29
+ }
30
+ },
31
+ "post_processed": null,
32
+ "supervised_keys": {
33
+ "input": "text",
34
+ "output": "label"
35
+ },
36
+ "task_templates": [
37
+ {
38
+ "task": "text-classification",
39
+ "text_column": "text",
40
+ "label_column": "label"
41
+ }
42
+ ],
43
+ "builder_name": "emotion",
44
+ "config_name": "default",
45
+ "version": {
46
+ "version_str": "0.0.0",
47
+ "description": null,
48
+ "major": 0,
49
+ "minor": 0,
50
+ "patch": 0
51
+ },
52
+ "splits": {
53
+ "train": {
54
+ "name": "train",
55
+ "num_bytes": 1869533,
56
+ "num_examples": 16000,
57
+ "dataset_name": "emotion-with-length"
58
+ }
59
+ },
60
+ "download_checksums": null,
61
+ "download_size": 1026123,
62
+ "post_processing_size": null,
63
+ "dataset_size": 1869533,
64
+ "size_in_bytes": 2895656
65
+ }}