Update README.md
Browse files
README.md
CHANGED
@@ -20,6 +20,10 @@ license: apache-2.0
|
|
20 |
|
21 |
![ROOTS Dataset Scatterplot](./datashader.png)
|
22 |
|
|
|
|
|
|
|
|
|
23 |
```python
|
24 |
import os
|
25 |
import numpy as np
|
@@ -53,6 +57,7 @@ dset = load_dataset(..., split="train")
|
|
53 |
|
54 |
dset = dset.map(batch_tokenize, batched=True, batch_size=64, num_proc=28)
|
55 |
|
|
|
56 |
max_shard_size = convert_file_size_to_int('300MB')
|
57 |
dataset_nbytes = dset.data.nbytes
|
58 |
num_shards = int(dataset_nbytes / max_shard_size) + 1
|
@@ -63,6 +68,11 @@ for shard_index in tqdm(range(num_shards)):
|
|
63 |
shard = dset.shard(num_shards=num_shards, index=shard_index, contiguous=True)
|
64 |
shard.to_parquet(f"{dset_name}/tokenized/tokenized-{shard_index:03d}.parquet")
|
65 |
|
|
|
|
|
|
|
|
|
|
|
66 |
client = Client() # To keep track of dask computation
|
67 |
client
|
68 |
|
@@ -90,7 +100,11 @@ tsne = TSNE(
|
|
90 |
)
|
91 |
|
92 |
tsne_embedding = tsne.fit(X)
|
|
|
|
|
|
|
93 |
|
|
|
94 |
df = pd.DataFrame(data=tsne_embedding, columns=['x','y'])
|
95 |
agg = ds.Canvas(plot_height=600, plot_width=600).points(df, 'x', 'y')
|
96 |
img = ds.tf.shade(agg, cmap=cc.fire, how='eq_hist')
|
|
|
20 |
|
21 |
![ROOTS Dataset Scatterplot](./datashader.png)
|
22 |
|
23 |
+
What follows is research code. It is by no means optimized for speed, efficiency, or readability.
|
24 |
+
|
25 |
+
## Data loading, tokenizing and sharding
|
26 |
+
|
27 |
```python
|
28 |
import os
|
29 |
import numpy as np
|
|
|
57 |
|
58 |
dset = dset.map(batch_tokenize, batched=True, batch_size=64, num_proc=28)
|
59 |
|
60 |
+
dset_name = "roots_subset"
|
61 |
max_shard_size = convert_file_size_to_int('300MB')
|
62 |
dataset_nbytes = dset.data.nbytes
|
63 |
num_shards = int(dataset_nbytes / max_shard_size) + 1
|
|
|
68 |
shard = dset.shard(num_shards=num_shards, index=shard_index, contiguous=True)
|
69 |
shard.to_parquet(f"{dset_name}/tokenized/tokenized-{shard_index:03d}.parquet")
|
70 |
|
71 |
+
```
|
72 |
+
|
73 |
+
## Embedding
|
74 |
+
|
75 |
+
```python
|
76 |
client = Client() # To keep track of dask computation
|
77 |
client
|
78 |
|
|
|
100 |
)
|
101 |
|
102 |
tsne_embedding = tsne.fit(X)
|
103 |
+
```
|
104 |
+
|
105 |
+
## Plotting
|
106 |
|
107 |
+
```python
|
108 |
df = pd.DataFrame(data=tsne_embedding, columns=['x','y'])
|
109 |
agg = ds.Canvas(plot_height=600, plot_width=600).points(df, 'x', 'y')
|
110 |
img = ds.tf.shade(agg, cmap=cc.fire, how='eq_hist')
|