"""Metaphor corpus G-KOMET 1.0""" import logging import os import re import xml.etree.ElementTree as ET from typing import List, Tuple import datasets _CITATION = """\ @InProceedings{antloga2022gkomet, title = {Korpusni pristopi za identifikacijo metafore in metonimije: primer metonimije v korpusu gKOMET}, author={Antloga, \v{S}pela}, booktitle={Proceedings of the Conference on Language Technologies and Digital Humanities (Student papers)}, year={2022}, pages={271-277} } """ _DESCRIPTION = """\ G-KOMET 1.0 (a corpus of metaphorical expressions in spoken Slovene language) is a corpus of speech transcriptions and conversations that covers 50,000 lexical units. The corpus contains samples from the Gos corpus of spoken Slovene and includes a balanced set of transcriptions of informative, educational, entertaining, private, and public discourse. The annotation scheme was based on the MIPVU metaphor identification process. This protocol was modified and adapted to the specifics of the Slovene language and the specifics of the spoken language. Corpus was annotated for the following relations to metaphor: indirect metaphor, direct metaphor, borderline cases and metaphor signals. In addition, the corpus introduces a new ‘frame’ tag, which gives information about the concept to which it refers. """ _HOMEPAGE = "http://hdl.handle.net/11356/1490" _LICENSE = "Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)" _URLS = { "gkomet": "https://www.clarin.si/repository/xmlui/bitstream/handle/11356/1490/G-Komet.zip" } XML_NAMESPACE = "{http://www.w3.org/XML/1998/namespace}" EL_LEAF, EL_TYPE, EL_FRAME = range(3) def namespace(element): # https://stackoverflow.com/a/12946675 m = re.match(r'\{.*\}', element.tag) return m.group(0) if m else '' def word_info(sent_el): def _resolve_recursively(element) -> List: """ Knowingly ignored tags: name (anonymized, without IDs), gap, vocal, pause, del, linkGrp (handled separately in linkgroup_info()) """ # Leaf node: word or punctuation character if element.tag.endswith(("w", "pc")): id_curr = element.attrib[f"{XML_NAMESPACE}id"] return [(id_curr, element.text)] # Annotated word or word group - not interested in the annotations in this function elif element.tag.endswith("seg"): parsed_data = [] for child in element: if child.tag.endswith(("c", "vocal", "pause")): # empty space betw. words or "special" word continue res = _resolve_recursively(child) if isinstance(res, list): parsed_data.extend(res) else: parsed_data.append(res) return parsed_data id_words, words = [], [] for child_el in sent_el: curr_annotations = _resolve_recursively(child_el) if curr_annotations is not None: # None = unrecognized ("unimportant") element for ann in curr_annotations: id_words.append(ann[0]) words.append(ann[1]) return id_words, words def seg_info(sent_el): def _resolve_recursively(element) -> Tuple: """ Returns (type[, subtype], deeper_elements, latest_element)""" # Leaf node: word or punctuation character if element.tag.endswith(("w", "pc")): id_curr = element.attrib[f"{XML_NAMESPACE}id"] return EL_LEAF, [], [id_curr] # Annotated word or word group elif element.tag.endswith("seg"): subtype = element.attrib["subtype"] if element.attrib["type"] == "frame": ann_type = EL_FRAME elif element.attrib["type"] == "metaphor": ann_type = EL_TYPE elif element.attrib["type"] == "idiom": ann_type = EL_TYPE else: raise ValueError(f"Unrecognized seg type: {element.attrib['type']}") deeper_elements = [] latest_element = [] for child in element: if child.tag.endswith(("c", "vocal", "pause")): # empty space betw. words or "special" word continue res = _resolve_recursively(child) if res[0] == EL_LEAF: latest_element.extend(res[2]) else: deeper_elements.extend(res[2]) deeper_elements.append((res[0], res[1], res[3])) latest_element.extend(res[3]) return ann_type, subtype, deeper_elements, latest_element annotations = [] for child_el in sent_el: if not child_el.tag.endswith("seg"): continue ann_type, subtype, deeper_elements, latest_element = _resolve_recursively(child_el) annotations.extend(deeper_elements) annotations.append((ann_type, subtype, latest_element)) return annotations def linkgroup_info(sent_el): annotations = [] for child_el in sent_el: if not child_el.tag.endswith("linkGrp"): continue for curr_link in child_el: ann_type = EL_TYPE if child_el.attrib["type"] not in {"metonymy", "frame", "metaphor", "idiom"}: logging.warning(f"Uncovered linkGrp element type, skipping: {child_el.attrib['type']}") continue if child_el.attrib["type"] == "metonymy": subtype = curr_link.attrib["ana"] elif child_el.attrib["type"] in {"frame", "metaphor"}: ann_type = EL_TYPE if child_el.attrib["type"] == "metaphor" else EL_FRAME subtype = curr_link.attrib["ana"].split(":")[-1] else: subtype = "idiom" tokens_involved = list(map(lambda _tok_id: _tok_id[1:] if _tok_id.startswith("#") else _tok_id, curr_link.attrib["target"].split(" "))) annotations.append((ann_type, subtype, tokens_involved)) return annotations class GKomet(datasets.GeneratorBasedBuilder): """G-KOMET 1.0 is a corpus of metaphorical expressions in spoken Slovene language. """ VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "document_name": datasets.Value("string"), "idx": datasets.Value("uint32"), # index inside current document "idx_paragraph": datasets.Value("uint32"), "idx_sentence": datasets.Value("uint32"), # index inside current paragraph "sentence_words": datasets.Sequence(datasets.Value("string")), "met_type": [{ "type": datasets.Value("string"), "word_indices": datasets.Sequence(datasets.Value("uint32")) }], "met_frame": [{ "type": datasets.Value("string"), "word_indices": datasets.Sequence(datasets.Value("uint32")) }] } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URLS["gkomet"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": os.path.join(data_dir, "G-Komet")}, ) ] def _generate_examples(self, data_dir): data_files = [] for fname in os.listdir(data_dir): curr_path = os.path.join(data_dir, fname) if os.path.isfile(curr_path) and fname.endswith(".xml") and fname != "G-Komet.xml": # G-Komet.xml = meta-file data_files.append(fname) data_files = sorted(data_files) idx_example = 0 for fname in data_files: fpath = os.path.join(data_dir, fname) curr_doc = ET.parse(fpath) root = curr_doc.getroot() NAMESPACE = namespace(root) idx_sent_glob = 0 for idx_par, curr_par in enumerate(root.iterfind(f".//{NAMESPACE}p")): id2position = {} # { -> {: foreach word} foreach sent} all_words = [] # Pass#1: extract word information for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")): id_words, words = word_info(curr_sent) id2position[idx_sent] = dict(zip(id_words, range(len(words)))) all_words.append(words) all_types, all_frames = [], [] # Pass#2: extract annotations from ments for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")): annotated_segs = seg_info(curr_sent) all_types.append([]) all_frames.append([]) for curr_ann in annotated_segs: ann_type, ann_subtype, words_involved = curr_ann if ann_type == EL_TYPE: all_types[idx_sent].append({ "type": ann_subtype, "word_indices": [id2position[idx_sent][_id_word] for _id_word in words_involved if _id_word in id2position[idx_sent]] }) elif ann_type == EL_FRAME: all_frames[idx_sent].append({ "type": ann_subtype, "word_indices": [id2position[idx_sent][_id_word] for _id_word in words_involved if _id_word in id2position[idx_sent]] }) # Pass#3: extract annotations from s for idx_sent, curr_sent in enumerate(curr_par.iterfind(f"{NAMESPACE}s")): annotated_linkgroups = linkgroup_info(curr_sent) for curr_ann in annotated_linkgroups: ann_type, ann_subtype, words_involved = curr_ann if ann_type == EL_TYPE: all_types[idx_sent].append({ "type": ann_subtype, "word_indices": [id2position[idx_sent][_id_word] for _id_word in words_involved if _id_word in id2position[idx_sent]] }) elif ann_type == EL_FRAME: all_frames[idx_sent].append({ "type": ann_subtype, "word_indices": [id2position[idx_sent][_id_word] for _id_word in words_involved if _id_word in id2position[idx_sent]] }) idx_sent = 0 for curr_words, curr_types, curr_frames in zip(all_words, all_types, all_frames): if len(curr_words) == 0: continue yield idx_example, { "document_name": fname, "idx": idx_sent_glob, "idx_paragraph": idx_par, "idx_sentence": idx_sent, "sentence_words": curr_words, "met_type": curr_types, "met_frame": curr_frames } idx_example += 1 idx_sent += 1 idx_sent_glob += 1