File size: 3,036 Bytes
b879cd2
 
 
 
 
5c35113
b879cd2
5c35113
 
 
b879cd2
 
5c35113
b879cd2
5c35113
 
 
 
 
 
 
 
 
b879cd2
 
 
5c35113
 
b879cd2
5c35113
 
 
 
 
 
 
a54bdb3
 
 
 
 
 
 
 
e0073c8
b879cd2
a54bdb3
b879cd2
a54bdb3
 
 
e0073c8
a54bdb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: eval
    path: data/eval-*
dataset_info:
  features:
  - name: Product Name
    dtype: string
  - name: Category
    dtype: string
  - name: Description
    dtype: string
  - name: Selling Price
    dtype: string
  - name: Product Specification
    dtype: string
  - name: Image
    dtype: string
  splits:
  - name: train
    num_bytes: 12542887
    num_examples: 23993
  - name: test
    num_bytes: 3499375
    num_examples: 6665
  - name: eval
    num_bytes: 1376174
    num_examples: 2666
  download_size: 6391314
  dataset_size: 17418436
license: apache-2.0
task_categories:
- image-classification
- image-to-text
language:
- en
size_categories:
- 10K<n<100K

---
## Dataset Creation and Processing Overview

This dataset underwent a comprehensive process of loading, cleaning, processing, and preparing, incorporating a range of data manipulation and NLP techniques to optimize its utility for machine learning models, particularly in natural language processing.

### Data Loading and Initial Cleaning
- **Source**: Loaded from the Hugging Face dataset repository [bprateek/amazon_product_description](https://huggingface.co/datasets/bprateek/amazon_product_description).
- **Conversion to Pandas DataFrame**: For ease of data manipulation.
- **Null Value Removal**: Rows with null values in the 'About Product' column were discarded.

### Data Cleaning and NLP Processing
- **Sentence Extraction**: 'About Product' descriptions were split into sentences, identifying common phrases.
- **Emoji and Special Character Removal**: A regex function removed these elements from the product descriptions.
- **Common Phrase Elimination**: A function was used to strip common phrases from each product description.
- **Improving Writing Standards**: Adjusted capitalization, punctuation, and replaced '&' with 'and' for better readability and formalization.

### Sentence Similarity Analysis
- **Model Application**: The pre-trained Sentence Transformer model 'all-MiniLM-L6-v2' was used.
- **Sentence Comparison**: Identified the most similar sentence to each product name within the cleaned product descriptions.

### Dataset Refinement
- **Column Selection**: Retained relevant columns for final dataset.
- **Image URL Processing**: Split multiple image URLs into individual URLs, removing specific unwanted URLs.

### Image Validation
- **Image URL Validation**: Implemented a function to verify the validity of each image URL.
- **Filtering Valid Images**: Retained only rows with valid image URLs.

### Dataset Splitting for Machine Learning
- **Creation of Train, Test, and Eval Sets**: Used scikit-learn's `train_test_split` for dataset division.



For further details or to contribute to enhancing the dataset card, please refer to the [Hugging Face Dataset Card Contribution Guide](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards).