Datasets:
clairebarale
commited on
Commit
•
478e8ad
1
Parent(s):
7be07aa
Upload asylex.py
Browse files
asylex.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""AsyLex: A Dataset for Legal Language Processing of Refugee Claims"""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
logger = datasets.logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
_VERSION = datasets.Version("1.1.0")
|
27 |
+
|
28 |
+
_DESCRIPTION = """AsyLex: A Dataset for Legal Language Processing of Refugee Claims"""
|
29 |
+
|
30 |
+
_HOMEPAGE = "https://huggingface.co/datasets/clairebarale/AsyLex"
|
31 |
+
|
32 |
+
_LICENSE = "cc-by-nc-sa-4.0"
|
33 |
+
|
34 |
+
# TODO: Add link to the official dataset URLs here
|
35 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
36 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
37 |
+
_URLS = {
|
38 |
+
"raw_documents": "https://huggingface.co/datasets/clairebarale/AsyLex/raw/main/cases_anonymized_txt_raw.tar.gz",
|
39 |
+
"raw_sentences": "https://huggingface.co/datasets/clairebarale/AsyLex/raw/main/all_sentences_anonymized.tar.xz",
|
40 |
+
"all_legal_entities": "https://huggingface.co/datasets/clairebarale/AsyLex/raw/main/main_and_case_cover_all_entities_inferred.csv",
|
41 |
+
"casecover_legal_entities": "https://huggingface.co/datasets/clairebarale/AsyLex/blob/main/case_cover/case_cover_anonymised_extracted_entities.csv",
|
42 |
+
"casecover_entities_outcome": "https://huggingface.co/datasets/clairebarale/AsyLex/blob/main/case_cover/case_cover_entities_and_decision_outcome.csv",
|
43 |
+
"determination_sentences": "https://huggingface.co/datasets/clairebarale/AsyLex/blob/main/determination_label_extracted_sentences.csv",
|
44 |
+
"outcome_classification": "https://huggingface.co/datasets/clairebarale/AsyLex/tree/main/outcome_train_test/"
|
45 |
+
}
|
46 |
+
|
47 |
+
class AsyLexConfig(datasets.BuilderConfig):
|
48 |
+
"""BuilderConfig for AsyLex"""
|
49 |
+
def __init__(self, url, **kwargs):
|
50 |
+
super(AsyLexConfig, self).__init__(**kwargs)
|
51 |
+
self.url = url
|
52 |
+
|
53 |
+
|
54 |
+
class Asylex(datasets.GeneratorBasedBuilder):
|
55 |
+
"""AsyLex: A Dataset for Legal Language Processing of Refugee Claims"""
|
56 |
+
|
57 |
+
VERSION = datasets.Version(_VERSION)
|
58 |
+
|
59 |
+
BUILDER_CONFIG_CLASS = AsyLexConfig
|
60 |
+
|
61 |
+
|
62 |
+
BUILDER_CONFIGS = [
|
63 |
+
AsyLexConfig(
|
64 |
+
name="raw_documents",
|
65 |
+
description = "contains the raw text from all documents, by case, with the corresponding case identifier",
|
66 |
+
version=datasets.Version(_VERSION, ""),
|
67 |
+
url = _URLS["raw_documents"]
|
68 |
+
),
|
69 |
+
AsyLexConfig(
|
70 |
+
name="raw_sentences",
|
71 |
+
description = "contains the raw text from all retrieved documents, split by sentences, with the corresponding case identifier",
|
72 |
+
version=datasets.Version(_VERSION, ""),
|
73 |
+
url = _URLS["raw_sentences"]
|
74 |
+
),
|
75 |
+
AsyLexConfig(
|
76 |
+
name="all_legal_entities",
|
77 |
+
description = "contains the structured dataset, all extracted entities (one column per entity type), with the corresponding case identifier",
|
78 |
+
version=datasets.Version(_VERSION, ""),
|
79 |
+
url = _URLS["all_legal_entities"]
|
80 |
+
),
|
81 |
+
AsyLexConfig(
|
82 |
+
name="casecover_legal_entities",
|
83 |
+
description = "contains the structured dataset derived from the case covers only (one column per entity type), with the corresponding case identifier",
|
84 |
+
version=datasets.Version(_VERSION, ""),
|
85 |
+
url = _URLS["casecover_legal_entities"]
|
86 |
+
),
|
87 |
+
AsyLexConfig(
|
88 |
+
name="casecover_entities_outcome",
|
89 |
+
description = "contains the structured dataset derived from the case covers only (one column per entity type), with the corresponding case identifier, with the addition of the decision outcome of the case",
|
90 |
+
version=datasets.Version(_VERSION, ""),
|
91 |
+
url = _URLS["casecover_entities_outcome"]
|
92 |
+
),
|
93 |
+
AsyLexConfig(
|
94 |
+
name="determination_sentences",
|
95 |
+
description = "contains all sentences that have been extracted with the Entity Type determination. All sentences included here should therefore directly state the outcome of the decision, with the correspinding case identifier",
|
96 |
+
version=datasets.Version(_VERSION, ""),
|
97 |
+
url = _URLS["determination_sentences"]
|
98 |
+
),
|
99 |
+
AsyLexConfig(
|
100 |
+
name="outcome_classification",
|
101 |
+
description = "folder containing a train and test set for the task of outcome classificiation. Each set includes the case identifier and the decision outcome (0,1,2). The test set only contains gold-standard manually labeled data.",
|
102 |
+
version=datasets.Version(_VERSION, ""),
|
103 |
+
url = _URLS["outcome_classification"]
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
DEFAULT_CONFIG_NAME = "raw_sentences"
|
108 |
+
|
109 |
+
def _info(self):
|
110 |
+
|
111 |
+
if self.config.name == "raw_documents":
|
112 |
+
features = datasets.Features(
|
113 |
+
{
|
114 |
+
"text": datasets.Value("string"),
|
115 |
+
}
|
116 |
+
)
|
117 |
+
elif self.config.name == "raw_sentences":
|
118 |
+
features = datasets.Features(
|
119 |
+
{
|
120 |
+
"decisionID": datasets.Value("int64"),
|
121 |
+
"Text": datasets.Value("string"),
|
122 |
+
}
|
123 |
+
)
|
124 |
+
elif self.config.name == "all_legal_entities":
|
125 |
+
features = datasets.Features(
|
126 |
+
{
|
127 |
+
"decisionID": datasets.Value("int64"),
|
128 |
+
"Text": datasets.Value("string"),
|
129 |
+
"GPE": datasets.Value("string"),
|
130 |
+
"DATE": datasets.Value("string"),
|
131 |
+
"NORP": datasets.Value("string"),
|
132 |
+
"ORG": datasets.Value("string"),
|
133 |
+
"LAW": datasets.Value("string"),
|
134 |
+
"CLAIMANT_EVENTS": datasets.Value("string"),
|
135 |
+
"CREDIBILITY": datasets.Value("string"),
|
136 |
+
"DETERMINATION": datasets.Value("string"),
|
137 |
+
"CLAIMANT_INFO": datasets.Value("string"),
|
138 |
+
"PROCEDURE": datasets.Value("string"),
|
139 |
+
"DOC_EVIDENCE": datasets.Value("string"),
|
140 |
+
"EXPLANATION": datasets.Value("string"),
|
141 |
+
"LEGAL_GROUND": datasets.Value("string"),
|
142 |
+
"LAW_CASE": datasets.Value("string"),
|
143 |
+
"LAW_REPORT": datasets.Value("string"),
|
144 |
+
"decision_outcome": datasets.ClassLabel(
|
145 |
+
names=['Rejected', 'Granted', 'Uncertain']
|
146 |
+
),
|
147 |
+
"extracted_dates": datasets.Value("string"),
|
148 |
+
"LOC_HEARING": datasets.Value("string"),
|
149 |
+
"TRIBUNAL": datasets.Value("string"),
|
150 |
+
"PUBLIC_PRIVATE_HEARING": datasets.Value("string"),
|
151 |
+
"INCHAMBER_VIRTUAL_HEARING": datasets.Value("string"),
|
152 |
+
"JUDGE": datasets.Value("string"),
|
153 |
+
"text_case_cover": datasets.Value("string"),
|
154 |
+
"DATE_DECISION": datasets.Value("string"),
|
155 |
+
}
|
156 |
+
)
|
157 |
+
|
158 |
+
elif self.config.name == "casecover_legal_entities":
|
159 |
+
features = datasets.Features(
|
160 |
+
{
|
161 |
+
"decision_ID": datasets.Value("int64"),
|
162 |
+
"extracted_dates": datasets.Value("string"),
|
163 |
+
"extracted_gpe": datasets.Value("string"),
|
164 |
+
"extracted_org": datasets.Value("string"),
|
165 |
+
"public_private_hearing": datasets.Value("string"),
|
166 |
+
"in_chamber_virtual": datasets.Value("string"),
|
167 |
+
"judge_name": datasets.Value("string"),
|
168 |
+
"date_decision": datasets.Value("string"),
|
169 |
+
"text_case_cover": datasets.Value("string"),
|
170 |
+
}
|
171 |
+
)
|
172 |
+
elif self.config.name == "casecover_entities_outcome":
|
173 |
+
features = datasets.Features(
|
174 |
+
{
|
175 |
+
"decision_ID": datasets.Value("int64"),
|
176 |
+
"extracted_dates": datasets.Value("string"),
|
177 |
+
"LOC_HEARING": datasets.Value("string"),
|
178 |
+
"TRIBUNAL": datasets.Value("string"),
|
179 |
+
"PUBLIC_PRIVATE_HEARING": datasets.Value("string"),
|
180 |
+
"INCHAMBER_VIRTUAL_HEARING": datasets.Value("string"),
|
181 |
+
"JUDGE": datasets.Value("string"),
|
182 |
+
"text_case_cover": datasets.Value("string"),
|
183 |
+
"DATE_DECISION": datasets.Value("string"),
|
184 |
+
"decision_outcome": datasets.ClassLabel(
|
185 |
+
names=['Rejected', 'Granted', 'Uncertain']),
|
186 |
+
}
|
187 |
+
)
|
188 |
+
elif self.config.name == "determination_sentences":
|
189 |
+
features = datasets.Features(
|
190 |
+
{
|
191 |
+
"decisionID": datasets.Value("int64"),
|
192 |
+
"extracted_sentences_determination": datasets.Value("string"),
|
193 |
+
}
|
194 |
+
)
|
195 |
+
elif self.config.name == "outcome_classification":
|
196 |
+
features = datasets.Features(
|
197 |
+
{
|
198 |
+
"decisionID": datasets.Value("float64"),
|
199 |
+
"decision_outcome": datasets.ClassLabel(
|
200 |
+
names=['Rejected', 'Granted', 'Uncertain']),
|
201 |
+
}
|
202 |
+
)
|
203 |
+
|
204 |
+
data_files = {
|
205 |
+
"train": "outcome_train_test/train_dataset_silver.csv",
|
206 |
+
"test": "outcome_train_test/test_dataset_gold.csv",
|
207 |
+
}
|
208 |
+
return datasets.DatasetInfo(
|
209 |
+
description=_DESCRIPTION,
|
210 |
+
features=features,
|
211 |
+
license=_LICENSE,
|
212 |
+
supervised_keys=None,
|
213 |
+
homepage=_HOMEPAGE,
|
214 |
+
)
|
215 |
+
|
216 |
+
def _split_generators(self, dl_manager):
|
217 |
+
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
218 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
219 |
+
|
220 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
221 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
222 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
223 |
+
|
224 |
+
urls_to_download = _URLS[self.config.name]
|
225 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
226 |
+
|
227 |
+
if self.config.name == "outcome_classification":
|
228 |
+
data_dir = dl_manager.download_and_extract(_URLS["outcome_classification"])
|
229 |
+
return [
|
230 |
+
datasets.SplitGenerator(
|
231 |
+
name=datasets.Split.TRAIN,
|
232 |
+
gen_kwargs={
|
233 |
+
"filepath": os.path.join(data_dir, "train_dataset_silver.csv"),
|
234 |
+
"split": "train",
|
235 |
+
},
|
236 |
+
),
|
237 |
+
datasets.SplitGenerator(
|
238 |
+
name=datasets.Split.TEST,
|
239 |
+
# These kwargs will be passed to _generate_examples
|
240 |
+
gen_kwargs={
|
241 |
+
"filepath": os.path.join(data_dir, "test_dataset_gold.csv"),
|
242 |
+
"split": "test"
|
243 |
+
},
|
244 |
+
),
|
245 |
+
]
|
246 |
+
else:
|
247 |
+
return [
|
248 |
+
datasets.SplitGenerator(
|
249 |
+
name=datasets.Split.TRAIN,
|
250 |
+
gen_kwargs={
|
251 |
+
"filepath": downloaded_files,
|
252 |
+
"split": "train",
|
253 |
+
},
|
254 |
+
)
|
255 |
+
]
|
256 |
+
|
257 |
+
# key value examples
|
258 |
+
def generate_examples(self, file_path, split):
|
259 |
+
|
260 |
+
logger.info("⏳ Generating examples from = %s", file_path)
|
261 |
+
|
262 |
+
if self.config.name == "raw_documents":
|
263 |
+
for idx, filename in enumerate(os.listdir(file_path)):
|
264 |
+
if filename.endswith(".txt"):
|
265 |
+
with open(os.path.join(file_path, filename), "r", encoding="utf-8") as f:
|
266 |
+
# Read the content of the text file
|
267 |
+
text_content = f.read()
|
268 |
+
yield idx, {"case_files": text_content}
|
269 |
+
|
270 |
+
elif self.config.name == "raw_sentences":
|
271 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
272 |
+
data = csv.DictReader(f, delimiter = ";")
|
273 |
+
for idx, row in enumerate(data):
|
274 |
+
yield idx, {
|
275 |
+
"decisionID": int(row["decisionID"]),
|
276 |
+
"Text": row["Text"],
|
277 |
+
}
|
278 |
+
|
279 |
+
elif self.config.name == "all_legal_entities":
|
280 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
281 |
+
reader = csv.DictReader(f, delimiter=";")
|
282 |
+
for idx, row in enumerate(reader):
|
283 |
+
yield idx, {
|
284 |
+
"decisionID": int(row["decisionID"]),
|
285 |
+
"Text": row["Text"],
|
286 |
+
"GPE": row["GPE"],
|
287 |
+
"DATE": row["DATE"],
|
288 |
+
"NORP": row["NORP"],
|
289 |
+
"ORG": row["ORG"],
|
290 |
+
"LAW": row["LAW"],
|
291 |
+
"CLAIMANT_EVENTS": row["CLAIMANT_EVENTS"],
|
292 |
+
"CREDIBILITY": row["CREDIBILITY"],
|
293 |
+
"DETERMINATION": row["DETERMINATION"],
|
294 |
+
"CLAIMANT_INFO": row["CLAIMANT_INFO"],
|
295 |
+
"PROCEDURE": row["PROCEDURE"],
|
296 |
+
"DOC_EVIDENCE": row["DOC_EVIDENCE"],
|
297 |
+
"EXPLANATION": row["EXPLANATION"],
|
298 |
+
"LEGAL_GROUND": row["LEGAL_GROUND"],
|
299 |
+
"LAW_CASE": row["LAW_CASE"],
|
300 |
+
"LAW_REPORT": row["LAW_REPORT"],
|
301 |
+
"decision_outcome": row["decision_outcome"],
|
302 |
+
"extracted_dates": row["extracted_dates"],
|
303 |
+
"LOC_HEARING": row["LOC_HEARING"],
|
304 |
+
"TRIBUNAL": row["TRIBUNAL"],
|
305 |
+
"PUBLIC_PRIVATE_HEARING": row["PUBLIC_PRIVATE_HEARING"],
|
306 |
+
"INCHAMBER_VIRTUAL_HEARING": row["INCHAMBER_VIRTUAL_HEARING"],
|
307 |
+
"JUDGE": row["JUDGE"],
|
308 |
+
"text_case_cover": row["text_case_cover"],
|
309 |
+
"DATE_DECISION": row["DATE_DECISION"],
|
310 |
+
}
|
311 |
+
|
312 |
+
elif self.config.name == "casecover_legal_entities":
|
313 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
314 |
+
reader = csv.DictReader(f, delimiter=",")
|
315 |
+
for idx, row in enumerate(reader):
|
316 |
+
yield idx, {
|
317 |
+
"decision_ID": int(row["decision_ID"]),
|
318 |
+
"extracted_dates": row["extracted_dates"],
|
319 |
+
"extracted_gpe": row["extracted_gpe"],
|
320 |
+
"extracted_org": row["extracted_org"],
|
321 |
+
"public_private_hearing": row["public_private_hearing"],
|
322 |
+
"in_chamber_virtual": row["in_chamber_virtual"],
|
323 |
+
"judge_name": row["judge_name"],
|
324 |
+
"date_decision": row["date_decision"],
|
325 |
+
"text_case_cover": row["text_case_cover"],
|
326 |
+
}
|
327 |
+
|
328 |
+
elif self.config.name == "casecover_entities_outcome":
|
329 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
330 |
+
reader = csv.DictReader(f, delimiter=";")
|
331 |
+
for idx, row in enumerate(reader):
|
332 |
+
yield idx, {
|
333 |
+
"decision_ID": int(row["decision_ID"]),
|
334 |
+
"extracted_dates": row["extracted_dates"],
|
335 |
+
"LOC_HEARING": row["LOC_HEARING"],
|
336 |
+
"TRIBUNAL": row["TRIBUNAL"],
|
337 |
+
"PUBLIC_PRIVATE_HEARING": row["PUBLIC_PRIVATE_HEARING"],
|
338 |
+
"INCHAMBER_VIRTUAL_HEARING": row["INCHAMBER_VIRTUAL_HEARING"],
|
339 |
+
"JUDGE": row["JUDGE"],
|
340 |
+
"text_case_cover": row["text_case_cover"],
|
341 |
+
"DATE_DECISION": row["DATE_DECISION"],
|
342 |
+
"decision_outcome": row["decision_outcome"],
|
343 |
+
}
|
344 |
+
|
345 |
+
elif self.config.name == "determination_sentences":
|
346 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
347 |
+
reader = csv.DictReader(f, delimiter=";")
|
348 |
+
for idx, line in enumerate(reader):
|
349 |
+
yield idx, {
|
350 |
+
"decisionID": int(line["decisionID"]),
|
351 |
+
"extracted_sentences_determination": line["extracted_sentences_determination"],
|
352 |
+
}
|
353 |
+
|
354 |
+
elif self.config.name == "outcome_classification":
|
355 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
356 |
+
reader = csv.DictReader(f, delimiter=";")
|
357 |
+
for idx, row in enumerate(reader):
|
358 |
+
yield idx, {
|
359 |
+
"decisionID": float(row["decisionID"]),
|
360 |
+
"decision_outcome": row["decision_outcome"],
|
361 |
+
}
|
362 |
+
|