polemo2-official / polemo2-official.py
ktagowski's picture
Update loader
bd70953
raw
history blame
5.89 kB
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""PolEmo2 dataset."""
from dataclasses import dataclass
from typing import List, Dict, Generator, Union, Optional, Tuple
import datasets
_DESCRIPTION = """PolEmo 2.0: Corpus of Multi-Domain Consumer Reviews, evaluation data for article presented at CoNLL."""
_CITATION = """
@inproceedings{kocon-etal-2019-multi,
title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews",
author = "Koco{\'n}, Jan and
Mi{\l}kowski, Piotr and
Za{\'s}ko-Zieli{\'n}ska, Monika",
booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/K19-1092",
doi = "10.18653/v1/K19-1092",
pages = "980--991",}
"""
_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/710"
_LICENSE = "CC-BY-4.0"
_DOMAINS = [
"all",
"hotels",
"medicine",
"products",
"reviews",
]
_OUT_DOMAINS = ["Nhotels", "Nmedicine", "Nproducts", "Nreviews"]
_CONFIGS_TEXT = ["text", "sentence"]
_LABELS = ["zero", "minus", "plus", "amb"]
URL_PATH = (
"https://huggingface.co/datasets/clarin-pl/polemo2-official/resolve/main/data"
)
_URLS = {
cfg: {
**{
domain: {
split_type: f"{URL_PATH}/{domain}.{cfg}.{split_type}.txt"
for split_type in ["train", "dev", "test"]
}
for domain in _DOMAINS
},
**{
domain: {
split_type: f"{URL_PATH}/{domain}.{cfg}.{split_type}.txt"
for split_type in ["train", "dev"]
}
for domain in _OUT_DOMAINS
},
}
for cfg in _CONFIGS_TEXT
}
@dataclass
class PolEmo2Config(datasets.BuilderConfig):
text_cfg: Optional[str] = None
domain: Optional[str] = None
train_domains: Optional[List[str]] = None
dev_domains: Optional[List[str]] = None
test_domains: Optional[List[str]] = None
class PolEmo2(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = PolEmo2Config
BUILDER_CONFIGS = [
*[
PolEmo2Config(
name=f"{domain}_{text_type}",
domain=domain,
text_cfg=text_type,
train_domains=[domain],
dev_domains=[domain],
test_domains=[domain],
)
for domain in _DOMAINS
for text_type in _CONFIGS_TEXT
]
]
DEFAULT_CONFIG_NAME = "all_text"
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"target": datasets.features.ClassLabel(
names=_LABELS, num_classes=len(_LABELS)
),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE
)
def _get_files_by_domains(self, domains: List[str], split: str) -> List[str]:
return [_URLS[self.config.text_cfg][domain][split] for domain in domains]
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
files = {
"train": dl_manager.download_and_extract(
self._get_files_by_domains(
domains=self.config.train_domains, split="train"
)
),
"dev": dl_manager.download_and_extract(
self._get_files_by_domains(domains=self.config.dev_domains, split="dev")
),
"test": dl_manager.download_and_extract(
self._get_files_by_domains(
domains=self.config.test_domains, split="test"
)
),
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": files["dev"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": files["test"]},
),
]
def _generate_examples(
self, filepath: Union[str, List[str]]
) -> Generator[Tuple[int, Dict[str, str]], None, None]:
gid = 0
for path in filepath:
with open(path, "r") as f:
for line in f:
splitted_line = line.split(" ")
yield gid, {
"text": " ".join(splitted_line[:-1]),
"target": (
splitted_line[-1]
.strip()
.replace("minus_m", "minus")
.replace("plus_m", "plus")
.split("_")[-1]
),
}
gid += 1