|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""An annotated dataset for classifying offensive or acceptable speech.""" |
|
|
|
import os |
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@misc{ljubešić2019frenk, |
|
title={The FRENK Datasets of Socially Unacceptable Discourse in Slovene and English}, |
|
author={Nikola Ljubešić and Darja Fišer and Tomaž Erjavec}, |
|
year={2019}, |
|
eprint={1906.02045}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/1906.02045} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The FRENK Datasets of Socially Unacceptable Discourse in Croatian. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.clarin.si/repository/xmlui/handle/11356/1433" |
|
|
|
_LICENSE = "CLARIN.SI Licence ACA ID-BY-NC-INF-NORED 1.0" |
|
|
|
_URL = "https://huggingface.co/datasets/classla/FRENK-hate-hr/resolve/main/data.zip" |
|
|
|
_CLASS_MAP_MULTICLASS = { |
|
'Acceptable speech': 0, |
|
'Inappropriate': 1, |
|
'Background offensive': 2, |
|
'Other offensive': 3, |
|
'Background violence': 4, |
|
'Other violence': 5, |
|
} |
|
|
|
_CLASS_MAP_BINARY = { |
|
'Acceptable': 0, |
|
'Offensive': 1, |
|
} |
|
|
|
|
|
class FRENKHateSpeechHR(datasets.GeneratorBasedBuilder): |
|
"""The FRENK Datasets of Socially Unacceptable Discourse in Croatian.""" |
|
|
|
VERSION = datasets.Version("0.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="binary", version=VERSION, |
|
description="Labels are either 'Offensive' or 'Acceptable'."), |
|
datasets.BuilderConfig(name="multiclass", version=VERSION, |
|
description="Labels are 'Acceptable speech', 'Other offensive', 'Background offensive', 'Inappropriate', 'Other violence', 'Background violence'"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "binary" |
|
|
|
def _info(self): |
|
feature_dict = { |
|
"text": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
} |
|
if self.config.name == "binary": |
|
features = datasets.Features( |
|
{ |
|
**feature_dict, |
|
"label": datasets.ClassLabel(names=["Acceptable", "Offensive"]), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
**feature_dict, |
|
"label": datasets.ClassLabel(names=['Acceptable speech', 'Other offensive', 'Background offensive', 'Inappropriate', 'Other violence', 'Background violence']), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
data_file = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={ |
|
'filepath': os.path.join(data_file, "train.tsv"), |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={ |
|
'filepath': os.path.join(data_file, "dev.tsv"), |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={ |
|
'filepath': os.path.join(data_file, "test.tsv"), |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.reader(f, delimiter="\t") |
|
for id_, row in enumerate(reader): |
|
if id_ == 0: |
|
continue |
|
to_return_dict = { |
|
"text": row[1], |
|
"target": row[4] , |
|
"topic": row[5] |
|
} |
|
yield id_, { |
|
**to_return_dict, |
|
**{"label": _CLASS_MAP_BINARY[row[3]] if self.config.name == "binary" else _CLASS_MAP_MULTICLASS[row[2]]} |
|
} |