Datasets:
File size: 6,955 Bytes
a7f96f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datasets
_CITATION = ''
_DESCRIPTION = """The hr500k training corpus contains about 500,000 tokens manually annotated on the levels of
tokenisation, sentence segmentation, morphosyntactic tagging, lemmatisation and named entities.
On the sentence level, the dataset contains 20159 training samples, 1963 validation samples and 2672 test samples
across the respective data splits. Each sample represents a sentence and includes the following features:
sentence ID ('sent_id'), sentence text ('text'), list of tokens ('tokens'), list of lemmas ('lemmas'),
list of Multext-East tags ('xpos_tags), list of UPOS tags ('upos_tags'),
list of morphological features ('feats'), and list of IOB tags ('iob_tags'). The 'upos_tags' and 'iob_tags' features
are encoded as class labels.
"""
_HOMEPAGE = 'https://www.clarin.si/repository/xmlui/handle/11356/1183#'
_LICENSE = ''
_TRAINING_FILE = 'train_ner.conllu'
_DEV_FILE = 'dev_ner.conllu'
_TEST_FILE = 'test_ner.conllu'
class Hr500K(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version('1.1.0')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name='hr500k',
version=VERSION,
data_files=[_TRAINING_FILE, _DEV_FILE, _TEST_FILE],
description=''
)
]
def _info(self):
features = datasets.Features(
{
'sent_id': datasets.Value('string'),
'text': datasets.Value('string'),
'tokens': datasets.Sequence(datasets.Value('string')),
'lemmas': datasets.Sequence(datasets.Value('string')),
'xpos_tags': datasets.Sequence(datasets.Value('string')),
'upos_tags': datasets.Sequence(
datasets.features.ClassLabel(
names=[
'X',
'INTJ',
'VERB',
'PROPN',
'ADV',
'ADJ',
'PUNCT',
'PRON',
'DET',
'NUM',
'SYM',
'SCONJ',
'NOUN',
'AUX',
'PART',
'CCONJ',
'ADP'
]
)
),
'feats': datasets.Sequence(datasets.Value('string')),
'iob_tags': datasets.Sequence(
datasets.features.ClassLabel(
names=[
'I-org',
'B-misc',
'B-per',
'B-deriv-per',
'B-org',
'B-loc',
'I-deriv-per',
'I-misc',
'I-loc',
'I-per',
'O'
]
)
)
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={'filepath': _TRAINING_FILE, 'split': 'train'}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={'filepath': _DEV_FILE, 'split': 'dev'}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={'filepath': _TEST_FILE, 'split': 'test'}
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding='utf-8') as f:
sent_id = ''
text = ''
tokens = []
lemmas = []
xpos_tags = []
upos_tags = []
feats = []
iob_tags = []
data_id = 0
for line in f:
if line and not line == '\n':
if line.startswith('#'):
if line.startswith('# sent_id'):
if tokens:
yield data_id, {
'sent_id': sent_id,
'text': text,
'tokens': tokens,
'lemmas': lemmas,
'xpos_tags': xpos_tags,
'upos_tags': upos_tags,
'feats': feats,
'iob_tags': iob_tags
}
tokens = []
lemmas = []
xpos_tags = []
upos_tags = []
feats = []
iob_tags = []
data_id += 1
sent_id = line.split(' = ')[1].strip()
elif line.startswith('# text'):
text = line.split(' = ')[1].strip()
elif not line.startswith('_'):
splits = line.split('\t')
tokens.append(splits[1].strip())
lemmas.append(splits[2].strip())
xpos_tags.append(splits[3].strip())
upos_tags.append(splits[4].strip())
feats.append(splits[5].strip())
iob_tags.append(splits[9].strip())
yield data_id, {
'sent_id': sent_id,
'text': text,
'tokens': tokens,
'lemmas': lemmas,
'xpos_tags': xpos_tags,
'upos_tags': upos_tags,
'feats': feats,
'iob_tags': iob_tags
}
|