Datasets:

File size: 6,955 Bytes
a7f96f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import datasets


_CITATION = ''
_DESCRIPTION = """The hr500k training corpus contains about 500,000 tokens manually annotated on the levels of 
tokenisation, sentence segmentation, morphosyntactic tagging, lemmatisation and named entities. 

On the sentence level, the dataset contains 20159 training samples, 1963 validation samples and 2672 test samples 
across the respective data splits. Each sample represents a sentence and includes the following features:
sentence ID ('sent_id'), sentence text ('text'), list of tokens ('tokens'), list of lemmas ('lemmas'), 
list of Multext-East tags ('xpos_tags), list of UPOS tags ('upos_tags'),
list of morphological features ('feats'), and list of IOB tags ('iob_tags'). The 'upos_tags' and 'iob_tags' features
are encoded as class labels.
"""
_HOMEPAGE = 'https://www.clarin.si/repository/xmlui/handle/11356/1183#'
_LICENSE = ''

_TRAINING_FILE = 'train_ner.conllu'
_DEV_FILE = 'dev_ner.conllu'
_TEST_FILE = 'test_ner.conllu'


class Hr500K(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version('1.1.0')

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name='hr500k',
            version=VERSION,
            data_files=[_TRAINING_FILE, _DEV_FILE, _TEST_FILE],
            description=''
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                'sent_id': datasets.Value('string'),
                'text': datasets.Value('string'),
                'tokens': datasets.Sequence(datasets.Value('string')),
                'lemmas': datasets.Sequence(datasets.Value('string')),
                'xpos_tags': datasets.Sequence(datasets.Value('string')),
                'upos_tags': datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=[
                            'X',
                            'INTJ',
                            'VERB',
                            'PROPN',
                            'ADV',
                            'ADJ',
                            'PUNCT',
                            'PRON',
                            'DET',
                            'NUM',
                            'SYM',
                            'SCONJ',
                            'NOUN',
                            'AUX',
                            'PART',
                            'CCONJ',
                            'ADP'
                        ]
                    )
                ),
                'feats': datasets.Sequence(datasets.Value('string')),
                'iob_tags': datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=[
                            'I-org',
                            'B-misc',
                            'B-per',
                            'B-deriv-per',
                            'B-org',
                            'B-loc',
                            'I-deriv-per',
                            'I-misc',
                            'I-loc',
                            'I-per',
                            'O'
                        ]
                    )
                )
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={'filepath': _TRAINING_FILE, 'split': 'train'}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={'filepath': _DEV_FILE, 'split': 'dev'}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={'filepath': _TEST_FILE, 'split': 'test'}
            ),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding='utf-8') as f:
            sent_id = ''
            text = ''
            tokens = []
            lemmas = []
            xpos_tags = []
            upos_tags = []
            feats = []
            iob_tags = []
            data_id = 0
            for line in f:
                if line and not line == '\n':
                    if line.startswith('#'):
                        if line.startswith('# sent_id'):
                            if tokens:
                                yield data_id, {
                                    'sent_id': sent_id,
                                    'text': text,
                                    'tokens': tokens,
                                    'lemmas': lemmas,
                                    'xpos_tags': xpos_tags,
                                    'upos_tags': upos_tags,
                                    'feats': feats,
                                    'iob_tags': iob_tags
                                }
                                tokens = []
                                lemmas = []
                                xpos_tags = []
                                upos_tags = []
                                feats = []
                                iob_tags = []
                                data_id += 1
                            sent_id = line.split(' = ')[1].strip()
                        elif line.startswith('# text'):
                            text = line.split(' = ')[1].strip()
                    elif not line.startswith('_'):
                        splits = line.split('\t')
                        tokens.append(splits[1].strip())
                        lemmas.append(splits[2].strip())
                        xpos_tags.append(splits[3].strip())
                        upos_tags.append(splits[4].strip())
                        feats.append(splits[5].strip())
                        iob_tags.append(splits[9].strip())

            yield data_id, {
                'sent_id': sent_id,
                'text': text,
                'tokens': tokens,
                'lemmas': lemmas,
                'xpos_tags': xpos_tags,
                'upos_tags': upos_tags,
                'feats': feats,
                'iob_tags': iob_tags
            }