Datasets:

File size: 13,441 Bytes
a7f96f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263d8a5
 
a7f96f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103a7d7
 
 
 
 
a7f96f1
6a5ed65
 
 
 
 
 
a7f96f1
 
103a7d7
a7f96f1
 
 
103a7d7
 
 
 
 
 
 
 
 
 
 
a7f96f1
 
 
 
 
103a7d7
 
a7f96f1
103a7d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f96f1
103a7d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f96f1
103a7d7
 
a7f96f1
 
 
 
 
 
 
 
 
 
 
6ef5980
6a5ed65
103a7d7
 
82efead
 
 
103a7d7
 
 
 
6ef5980
a7f96f1
 
263d8a5
103a7d7
263d8a5
a7f96f1
 
263d8a5
103a7d7
263d8a5
a7f96f1
 
263d8a5
103a7d7
263d8a5
a7f96f1
 
 
 
103a7d7
 
 
 
 
 
 
 
 
 
 
 
 
6a5ed65
103a7d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os

import datasets


_CITATION = ''
_DESCRIPTION = """The hr500k training corpus contains about 500,000 tokens manually annotated on the levels of 
tokenisation, sentence segmentation, morphosyntactic tagging, lemmatisation and named entities. 

On the sentence level, the dataset contains 20159 training samples, 1963 validation samples and 2672 test samples 
across the respective data splits. Each sample represents a sentence and includes the following features:
sentence ID ('sent_id'), sentence text ('text'), list of tokens ('tokens'), list of lemmas ('lemmas'), 
list of Multext-East tags ('xpos_tags), list of UPOS tags ('upos_tags'),
list of morphological features ('feats'), and list of IOB tags ('iob_tags'). The 'upos_tags' and 'iob_tags' features
are encoded as class labels.
"""
_HOMEPAGE = 'https://www.clarin.si/repository/xmlui/handle/11356/1183#'
_LICENSE = ''

_URLs = {
    'ner': 'https://huggingface.co/datasets/classla/hr500k/raw/main/data_ner.zip',
    'upos': 'https://huggingface.co/datasets/classla/hr500k/raw/main/data_ner.zip',
    'ud': 'https://huggingface.co/datasets/classla/hr500k/raw/main/data_ud.zip'
}

_DATA_DIRS = {
    'ner': 'data_ner',
    'upos': 'data_ner',
    'ud': 'data_ud'
}


class Hr500K(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version('1.0.1')

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name='upos',
            version=VERSION,
            description=''
        ),
        datasets.BuilderConfig(
            name='ner',
            version=VERSION,
            description=''
        ),
        datasets.BuilderConfig(
            name='ud',
            version=VERSION,
            description=''
        )
    ]

    DEFAULT_CONFIG_NAME = 'ner'

    def _info(self):
        if self.config.name == "upos":
            features = datasets.Features(
                {
                    'sent_id': datasets.Value('string'),
                    'text': datasets.Value('string'),
                    'tokens': datasets.Sequence(datasets.Value('string')),
                    'lemmas': datasets.Sequence(datasets.Value('string')),
                    'xpos_tags': datasets.Sequence(datasets.Value('string')),
                    'upos_tags': datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                'X',
                                'INTJ',
                                'VERB',
                                'PROPN',
                                'ADV',
                                'ADJ',
                                'PUNCT',
                                'PRON',
                                'DET',
                                'NUM',
                                'SYM',
                                'SCONJ',
                                'NOUN',
                                'AUX',
                                'PART',
                                'CCONJ',
                                'ADP'
                            ]
                        )
                    ),
                    'feats': datasets.Sequence(datasets.Value('string')),
                    'iob_tags': datasets.Sequence(datasets.Value('string'))
                }
            )
        elif self.config.name == "ner":
            features = datasets.Features(
                {
                    'sent_id': datasets.Value('string'),
                    'text': datasets.Value('string'),
                    'tokens': datasets.Sequence(datasets.Value('string')),
                    'lemmas': datasets.Sequence(datasets.Value('string')),
                    'xpos_tags': datasets.Sequence(datasets.Value('string')),
                    'upos_tags': datasets.Sequence(datasets.Value('string')),
                    'feats': datasets.Sequence(datasets.Value('string')),
                    'iob_tags': datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                'I-org',
                                'B-misc',
                                'B-per',
                                'B-deriv-per',
                                'B-org',
                                'B-loc',
                                'I-deriv-per',
                                'I-misc',
                                'I-loc',
                                'I-per',
                                'O'
                            ]
                        )
                    )
                }
            )
        else:
            features = datasets.Features(
                {
                    'sent_id': datasets.Value('string'),
                    'text': datasets.Value('string'),
                    'tokens': datasets.Sequence(datasets.Value('string')),
                    'lemmas': datasets.Sequence(datasets.Value('string')),
                    'xpos_tags': datasets.Sequence(datasets.Value('string')),
                    'upos_tags': datasets.Sequence(datasets.Value('string')),
                    'feats': datasets.Sequence(datasets.Value('string')),
                    'iob_tags': datasets.Sequence(datasets.Value('string')),
                    'uds': datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                'det', 'aux_pass', 'list', 'cc', 'csubj', 'xcomp', 'nmod', 'dislocated', 'acl', 'fixed',
                                'obj', 'dep', 'advmod_emph', 'goeswith', 'advmod', 'nsubj', 'punct', 'amod', 'expl_pv',
                                'mark', 'obl', 'flat_foreign', 'conj', 'compound', 'expl', 'csubj_pass', 'appos',
                                'case', 'advcl', 'parataxis', 'iobj', 'root', 'cop', 'aux', 'orphan', 'discourse',
                                'nummod', 'nsubj_pass', 'vocative', 'flat', 'ccomp'
                            ]
                        )
                    )
                }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = os.path.join(dl_manager.download_and_extract(_URLs[self.config.name]), _DATA_DIRS[self.config.name])

        if self.config.name == 'ud':
            training_file = 'train_ner_ud.conllup'
            dev_file = 'dev_ner_ud.conllup'
            test_file = 'test_ner_ud.conllup'
        else:
            training_file = 'train_ner.conllu'
            dev_file = 'dev_ner.conllu'
            test_file = 'test_ner.conllu'

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={
                    'filepath': os.path.join(data_dir, training_file),
                    'split': 'train'}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION, gen_kwargs={
                    'filepath': os.path.join(data_dir, dev_file),
                    'split': 'dev'}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={
                    'filepath': os.path.join(data_dir, test_file),
                    'split': 'test'}
            ),
        ]

    def _generate_examples(self, filepath, split):
        if self.config.name == 'ud':
            with open(filepath, encoding='utf-8') as f:
                sent_id = ''
                text = ''
                tokens = []
                lemmas = []
                xpos_tags = []
                upos_tags = []
                feats = []
                iob_tags = []
                uds = []
                data_id = 0
                for line in f:
                    if line and not line == '\n' and not line.startswith('# global.columns'):
                        if line.startswith('#'):
                            if line.startswith('# sent_id'):
                                if tokens:
                                    yield data_id, {
                                        'sent_id': sent_id,
                                        'text': text,
                                        'tokens': tokens,
                                        'lemmas': lemmas,
                                        'upos_tags': upos_tags,
                                        'xpos_tags': xpos_tags,
                                        'feats': feats,
                                        'iob_tags': iob_tags,
                                        'uds': uds
                                    }
                                    tokens = []
                                    lemmas = []
                                    upos_tags = []
                                    xpos_tags = []
                                    feats = []
                                    iob_tags = []
                                    uds = []
                                    data_id += 1
                                sent_id = line.split(' = ')[1].strip()
                            elif line.startswith('# text'):
                                text = line.split(' = ')[1].strip()
                        elif not line.startswith('_'):
                            splits = line.split('\t')
                            tokens.append(splits[1].strip())
                            lemmas.append(splits[2].strip())
                            upos_tags.append(splits[3].strip())
                            xpos_tags.append(splits[4].strip())
                            feats.append(splits[5].strip())
                            uds.append(splits[7].strip())

                yield data_id, {
                    'sent_id': sent_id,
                    'text': text,
                    'tokens': tokens,
                    'lemmas': lemmas,
                    'upos_tags': upos_tags,
                    'xpos_tags': xpos_tags,
                    'feats': feats,
                    'iob_tags': iob_tags,
                    'uds': uds
                }
        else:
            with open(filepath, encoding='utf-8') as f:
                sent_id = ''
                text = ''
                tokens = []
                lemmas = []
                xpos_tags = []
                upos_tags = []
                feats = []
                iob_tags = []
                data_id = 0
                for line in f:
                    if line and not line == '\n':
                        if line.startswith('#'):
                            if line.startswith('# sent_id'):
                                if tokens:
                                    yield data_id, {
                                        'sent_id': sent_id,
                                        'text': text,
                                        'tokens': tokens,
                                        'lemmas': lemmas,
                                        'upos_tags': upos_tags,
                                        'xpos_tags': xpos_tags,
                                        'feats': feats,
                                        'iob_tags': iob_tags
                                    }
                                    tokens = []
                                    lemmas = []
                                    upos_tags = []
                                    xpos_tags = []
                                    feats = []
                                    iob_tags = []
                                    data_id += 1
                                sent_id = line.split(' = ')[1].strip()
                            elif line.startswith('# text'):
                                text = line.split(' = ')[1].strip()
                        elif not line.startswith('_'):
                            splits = line.split('\t')
                            tokens.append(splits[1].strip())
                            lemmas.append(splits[2].strip())
                            upos_tags.append(splits[3].strip())
                            xpos_tags.append(splits[4].strip())
                            feats.append(splits[5].strip())
                            iob_tags.append(splits[9].strip())

                yield data_id, {
                    'sent_id': sent_id,
                    'text': text,
                    'tokens': tokens,
                    'lemmas': lemmas,
                    'upos_tags': upos_tags,
                    'xpos_tags': xpos_tags,
                    'feats': feats,
                    'iob_tags': iob_tags
                }