|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = '' |
|
_DESCRIPTION = """The hr500k training corpus contains about 500,000 tokens manually annotated on the levels of |
|
tokenisation, sentence segmentation, morphosyntactic tagging, lemmatisation and named entities. |
|
|
|
On the sentence level, the dataset contains 20159 training samples, 1963 validation samples and 2672 test samples |
|
across the respective data splits. Each sample represents a sentence and includes the following features: |
|
sentence ID ('sent_id'), sentence text ('text'), list of tokens ('tokens'), list of lemmas ('lemmas'), |
|
list of Multext-East tags ('xpos_tags), list of UPOS tags ('upos_tags'), |
|
list of morphological features ('feats'), and list of IOB tags ('iob_tags'). The 'upos_tags' and 'iob_tags' features |
|
are encoded as class labels. |
|
""" |
|
_HOMEPAGE = 'https://www.clarin.si/repository/xmlui/handle/11356/1183#' |
|
_LICENSE = '' |
|
|
|
_URLs = { |
|
'ner': 'https://huggingface.co/datasets/classla/hr500k/raw/main/data_ner.zip', |
|
'upos': 'https://huggingface.co/datasets/classla/hr500k/raw/main/data_ner.zip', |
|
'ud': 'https://huggingface.co/datasets/classla/hr500k/raw/main/data_ud.zip' |
|
} |
|
|
|
_DATA_DIRS = { |
|
'ner': 'data_ner', |
|
'upos': 'data_ner', |
|
'ud': 'data_ud' |
|
} |
|
|
|
|
|
class Hr500K(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version('1.0.1') |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name='upos', |
|
version=VERSION, |
|
description='' |
|
), |
|
datasets.BuilderConfig( |
|
name='ner', |
|
version=VERSION, |
|
description='' |
|
), |
|
datasets.BuilderConfig( |
|
name='ud', |
|
version=VERSION, |
|
description='' |
|
) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = 'ner' |
|
|
|
def _info(self): |
|
if self.config.name == "upos": |
|
features = datasets.Features( |
|
{ |
|
'sent_id': datasets.Value('string'), |
|
'text': datasets.Value('string'), |
|
'tokens': datasets.Sequence(datasets.Value('string')), |
|
'lemmas': datasets.Sequence(datasets.Value('string')), |
|
'xpos_tags': datasets.Sequence(datasets.Value('string')), |
|
'upos_tags': datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'X', |
|
'INTJ', |
|
'VERB', |
|
'PROPN', |
|
'ADV', |
|
'ADJ', |
|
'PUNCT', |
|
'PRON', |
|
'DET', |
|
'NUM', |
|
'SYM', |
|
'SCONJ', |
|
'NOUN', |
|
'AUX', |
|
'PART', |
|
'CCONJ', |
|
'ADP' |
|
] |
|
) |
|
), |
|
'feats': datasets.Sequence(datasets.Value('string')), |
|
'iob_tags': datasets.Sequence(datasets.Value('string')) |
|
} |
|
) |
|
elif self.config.name == "ner": |
|
features = datasets.Features( |
|
{ |
|
'sent_id': datasets.Value('string'), |
|
'text': datasets.Value('string'), |
|
'tokens': datasets.Sequence(datasets.Value('string')), |
|
'lemmas': datasets.Sequence(datasets.Value('string')), |
|
'xpos_tags': datasets.Sequence(datasets.Value('string')), |
|
'upos_tags': datasets.Sequence(datasets.Value('string')), |
|
'feats': datasets.Sequence(datasets.Value('string')), |
|
'iob_tags': datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'I-org', |
|
'B-misc', |
|
'B-per', |
|
'B-deriv-per', |
|
'B-org', |
|
'B-loc', |
|
'I-deriv-per', |
|
'I-misc', |
|
'I-loc', |
|
'I-per', |
|
'O' |
|
] |
|
) |
|
) |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
'sent_id': datasets.Value('string'), |
|
'text': datasets.Value('string'), |
|
'tokens': datasets.Sequence(datasets.Value('string')), |
|
'lemmas': datasets.Sequence(datasets.Value('string')), |
|
'xpos_tags': datasets.Sequence(datasets.Value('string')), |
|
'upos_tags': datasets.Sequence(datasets.Value('string')), |
|
'feats': datasets.Sequence(datasets.Value('string')), |
|
'iob_tags': datasets.Sequence(datasets.Value('string')), |
|
'uds': datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'det', 'aux_pass', 'list', 'cc', 'csubj', 'xcomp', 'nmod', 'dislocated', 'acl', 'fixed', |
|
'obj', 'dep', 'advmod_emph', 'goeswith', 'advmod', 'nsubj', 'punct', 'amod', 'expl_pv', |
|
'mark', 'obl', 'flat_foreign', 'conj', 'compound', 'expl', 'csubj_pass', 'appos', |
|
'case', 'advcl', 'parataxis', 'iobj', 'root', 'cop', 'aux', 'orphan', 'discourse', |
|
'nummod', 'nsubj_pass', 'vocative', 'flat', 'ccomp' |
|
] |
|
) |
|
) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = os.path.join(dl_manager.download_and_extract(_URLs[self.config.name]), _DATA_DIRS[self.config.name]) |
|
|
|
if self.config.name == 'ud': |
|
training_file = 'train_ner_ud.conllup' |
|
dev_file = 'dev_ner_ud.conllup' |
|
test_file = 'test_ner_ud.conllup' |
|
else: |
|
training_file = 'train_ner.conllu' |
|
dev_file = 'dev_ner.conllu' |
|
test_file = 'test_ner.conllu' |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={ |
|
'filepath': os.path.join(data_dir, training_file), |
|
'split': 'train'} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={ |
|
'filepath': os.path.join(data_dir, dev_file), |
|
'split': 'dev'} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={ |
|
'filepath': os.path.join(data_dir, test_file), |
|
'split': 'test'} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
if self.config.name == 'ud': |
|
with open(filepath, encoding='utf-8') as f: |
|
sent_id = '' |
|
text = '' |
|
tokens = [] |
|
lemmas = [] |
|
xpos_tags = [] |
|
upos_tags = [] |
|
feats = [] |
|
iob_tags = [] |
|
uds = [] |
|
data_id = 0 |
|
for line in f: |
|
if line and not line == '\n' and not line.startswith('# global.columns'): |
|
if line.startswith('#'): |
|
if line.startswith('# sent_id'): |
|
if tokens: |
|
yield data_id, { |
|
'sent_id': sent_id, |
|
'text': text, |
|
'tokens': tokens, |
|
'lemmas': lemmas, |
|
'upos_tags': upos_tags, |
|
'xpos_tags': xpos_tags, |
|
'feats': feats, |
|
'iob_tags': iob_tags, |
|
'uds': uds |
|
} |
|
tokens = [] |
|
lemmas = [] |
|
upos_tags = [] |
|
xpos_tags = [] |
|
feats = [] |
|
iob_tags = [] |
|
uds = [] |
|
data_id += 1 |
|
sent_id = line.split(' = ')[1].strip() |
|
elif line.startswith('# text'): |
|
text = line.split(' = ')[1].strip() |
|
elif not line.startswith('_'): |
|
splits = line.split('\t') |
|
tokens.append(splits[1].strip()) |
|
lemmas.append(splits[2].strip()) |
|
upos_tags.append(splits[3].strip()) |
|
xpos_tags.append(splits[4].strip()) |
|
feats.append(splits[5].strip()) |
|
uds.append(splits[7].strip()) |
|
|
|
yield data_id, { |
|
'sent_id': sent_id, |
|
'text': text, |
|
'tokens': tokens, |
|
'lemmas': lemmas, |
|
'upos_tags': upos_tags, |
|
'xpos_tags': xpos_tags, |
|
'feats': feats, |
|
'iob_tags': iob_tags, |
|
'uds': uds |
|
} |
|
else: |
|
with open(filepath, encoding='utf-8') as f: |
|
sent_id = '' |
|
text = '' |
|
tokens = [] |
|
lemmas = [] |
|
xpos_tags = [] |
|
upos_tags = [] |
|
feats = [] |
|
iob_tags = [] |
|
data_id = 0 |
|
for line in f: |
|
if line and not line == '\n': |
|
if line.startswith('#'): |
|
if line.startswith('# sent_id'): |
|
if tokens: |
|
yield data_id, { |
|
'sent_id': sent_id, |
|
'text': text, |
|
'tokens': tokens, |
|
'lemmas': lemmas, |
|
'upos_tags': upos_tags, |
|
'xpos_tags': xpos_tags, |
|
'feats': feats, |
|
'iob_tags': iob_tags |
|
} |
|
tokens = [] |
|
lemmas = [] |
|
upos_tags = [] |
|
xpos_tags = [] |
|
feats = [] |
|
iob_tags = [] |
|
data_id += 1 |
|
sent_id = line.split(' = ')[1].strip() |
|
elif line.startswith('# text'): |
|
text = line.split(' = ')[1].strip() |
|
elif not line.startswith('_'): |
|
splits = line.split('\t') |
|
tokens.append(splits[1].strip()) |
|
lemmas.append(splits[2].strip()) |
|
upos_tags.append(splits[3].strip()) |
|
xpos_tags.append(splits[4].strip()) |
|
feats.append(splits[5].strip()) |
|
iob_tags.append(splits[9].strip()) |
|
|
|
yield data_id, { |
|
'sent_id': sent_id, |
|
'text': text, |
|
'tokens': tokens, |
|
'lemmas': lemmas, |
|
'upos_tags': upos_tags, |
|
'xpos_tags': xpos_tags, |
|
'feats': feats, |
|
'iob_tags': iob_tags |
|
} |
|
|