File size: 5,761 Bytes
0bb99db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
_CITATION = ''
_DESCRIPTION = """The dataset contains 6339 training samples, 815 validation samples and 785 test samples.
Each sample represents a sentence and includes the following features: sentence ID ('sent_id'),
list of tokens ('tokens'), list of lemmas ('lemmas'), list of UPOS tags ('upos_tags'),
list of Multext-East tags ('xpos_tags), list of morphological features ('feats'),
and list of IOB tags ('iob_tags'), which are encoded as class labels.
"""
_HOMEPAGE = ''
_LICENSE = ''
_URL = 'https://huggingface.co/datasets/classla/reldi_hr/raw/main/data.zip'
_TRAINING_FILE = 'train_ner.conllu'
_DEV_FILE = 'dev_ner.conllu'
_TEST_FILE = 'test_ner.conllu'
class ReldiHr(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version('1.0.0')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name='reldi_hr',
version=VERSION,
description=''
)
]
def _info(self):
features = datasets.Features(
{
'sent_id': datasets.Value('string'),
'tokens': datasets.Sequence(datasets.Value('string')),
'lemmas': datasets.Sequence(datasets.Value('string')),
'upos_tags': datasets.Sequence(datasets.Value('string')),
'xpos_tags': datasets.Sequence(datasets.Value('string')),
'feats': datasets.Sequence(datasets.Value('string')),
'iob_tags': datasets.Sequence(
datasets.features.ClassLabel(
names=[
'I-org',
'B-misc',
'B-per',
'B-deriv-per',
'B-org',
'B-loc',
'I-deriv-per',
'I-misc',
'I-loc',
'I-per',
'O'
]
)
)
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={
'filepath': os.path.join(data_dir, _TRAINING_FILE),
'split': 'train'}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={
'filepath': os.path.join(data_dir, _DEV_FILE),
'split': 'dev'}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={
'filepath': os.path.join(data_dir, _TEST_FILE),
'split': 'test'}
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding='utf-8') as f:
sent_id = ''
tokens = []
lemmas = []
upos_tags = []
xpos_tags = []
feats = []
iob_tags = []
data_id = 0
for line in f:
if line and not line == '\n':
if line.startswith('# sent_id'):
if tokens:
yield data_id, {
'sent_id': sent_id,
'tokens': tokens,
'lemmas': lemmas,
'upos_tags': upos_tags,
'xpos_tags': xpos_tags,
'feats': feats,
'iob_tags': iob_tags
}
tokens = []
lemmas = []
upos_tags = []
xpos_tags = []
feats = []
iob_tags = []
data_id += 1
sent_id = line.split(' = ')[1].strip()
else:
splits = line.split('\t')
tokens.append(splits[1].strip())
lemmas.append(splits[2].strip())
upos_tags.append(splits[3].strip())
xpos_tags.append(splits[4].strip())
feats.append(splits[5].strip())
iob_tags.append(splits[9].strip())
yield data_id, {
'sent_id': sent_id,
'tokens': tokens,
'lemmas': lemmas,
'upos_tags': upos_tags,
'xpos_tags': xpos_tags,
'feats': feats,
'iob_tags': iob_tags
}
|