File size: 5,207 Bytes
1461df2 d1c28a9 1461df2 eae87d2 fbba2c2 1461df2 57ac608 1461df2 fbba2c2 110413a fbba2c2 57ac608 fbba2c2 57ac608 fbba2c2 57ac608 fbba2c2 57ac608 fbba2c2 75fcb6a eae87d2 75fcb6a eae87d2 75fcb6a eae87d2 75fcb6a eae87d2 75fcb6a eae87d2 75fcb6a eae87d2 75fcb6a eae87d2 75fcb6a 57ac608 75fcb6a eae87d2 75fcb6a eae87d2 75fcb6a 57ac608 eae87d2 57ac608 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
size_categories:
- 1M<n<10M
viewer: false
---
# Imagenet.int8: Entire Imagenet dataset in 5GB
<p align="center">
<img src="contents/vae.png" alt="small" width="800">
</p>
*original, reconstructed from float16, reconstructed from uint8*
Find 138 GB of imagenet dataset too bulky? Did you know entire imagenet actually just fits inside apple watch?
* Resized, Center-croped to 256x256
* VAE compressed with [SDXL's VAE](https://huggingface.co/stabilityai/sdxl-vae)
* Further quantized to int8 near-lossless manner, compressing the entire training dataset of 1,281,167 images down to just 5GB!
Introducing Imagenet.int8, the new MNIST of 2024. After the great popularity of the [Latent Diffusion](https://arxiv.org/abs/2112.10752) (Thank you stable diffusion!), its *almost* the standard to use VAE version of the imagenet for diffusion-model training. As you might know, lot of great diffusion research is based on latent variation of the imagenet.
These include:
* [DiT](https://arxiv.org/abs/2212.09748)
* [Improving Traning Dynamics](https://arxiv.org/abs/2312.02696v1)
* [SiT](https://arxiv.org/abs/2401.08740)
* [U-ViT](https://openaccess.thecvf.com/content/CVPR2023/html/Bao_All_Are_Worth_Words_A_ViT_Backbone_for_Diffusion_Models_CVPR_2023_paper.html)
* [Min-SNR](https://openaccess.thecvf.com/content/ICCV2023/html/Hang_Efficient_Diffusion_Training_via_Min-SNR_Weighting_Strategy_ICCV_2023_paper.html)
* [MDT](https://openaccess.thecvf.com/content/ICCV2023/papers/Gao_Masked_Diffusion_Transformer_is_a_Strong_Image_Synthesizer_ICCV_2023_paper.pdf)
... but so little material online on the actual preprocessed dataset. I'm here to fix that. One thing I noticed was that latent doesn't have to be full precision! Indeed, they can be as small as int-8, and it doesn't hurt!
So clearly, it doesn't make sense to download entire Imagenet and process with VAE everytime. Just download this, `to('cuda')` the entire dataset just to flex, and call it a day.😌
(BTW If you think you'll need higher precision, you can always further fine-tune your model on higher precision. But I doubt that.)
# How do I use this?
First download this. You can use `huggingface-cli` for that.
```bash
# Pro tip : use `hf_transfer` to get faster download speed.
pip install hf_transfer
export HF_HUB_ENABLE_HF_TRANSFER=True
# actual download script.
huggingface-cli download --repo-type dataset cloneofsimo/imagenet.int8 --local-dir ./vae_mds
```
Then, you need to install [streaming dataset](https://github.com/mosaicml/streaming) to use this. The dataset is MDS format.
```bash
pip install mosaicml-streaming
```
Then, you can very simply use the dataset like this:
(for more info on using Mosaic's StreamingDataset and MDS format, [reference here](https://docs.mosaicml.com/projects/streaming/en/stable/index.html))
```python
from streaming.base.format.mds.encodings import Encoding, _encodings
import numpy as np
from typing import Any
import torch
from streaming import StreamingDataset
class uint8(Encoding):
def encode(self, obj: Any) -> bytes:
return obj.tobytes()
def decode(self, data: bytes) -> Any:
x= np.frombuffer(data, np.uint8).astype(np.float32)
return (x / 255.0 - 0.5) * 24.0
_encodings["uint8"] = uint8
remote_train_dir = "./vae_mds" # this is the path you installed this dataset.
local_train_dir = "./local_train_dir"
train_dataset = StreamingDataset(
local=local_train_dir,
remote=remote_train_dir,
split=None,
shuffle=True,
shuffle_algo="naive",
num_canonical_nodes=1,
batch_size = 32
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=32,
num_workers=3,
)
```
By default, batch will have three attributes: `vae_output`, `label`, `label_as_text`.
Thats the dataloader! Now, below is the example usage. Notice how you have to reshape the data back to `(B, 4, 32, 32)` as they are decoded flattened.
```python
###### Example Usage. Decode back the 5th image. BTW shuffle plz
from diffusers.models import AutoencoderKL
from diffusers.image_processor import VaeImageProcessor
model = "stabilityai/your-stable-diffusion-model"
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae").to("cuda:0")
batch = next(iter(train_dataloader))
i = 5
vae_latent = batch["vae_output"].reshape(-1, 4, 32, 32)[i:i+1].cuda().float()
idx = batch["label"][i]
text_label = batch['label_as_text'][i]
print(f"idx: {idx}, text_label: {text_label}, latent: {vae_latent.shape}")
# idx: 402, text_label: acoustic guitar, latent: torch.Size([1, 4, 32, 32])
# example decoding
x = vae.decode(vae_latent.cuda()).sample
img = VaeImageProcessor().postprocess(image = x.detach(), do_denormalize = [True, True])[0]
img.save("5th_image.png")
```
Enjoy!
# Citations
If you find this material helpful, consider citation!
```bibtex
@misc{imagenet_int8,
author = {Simo Ryu},
title = {Imagenet.int8: Entire Imagenet dataset in 5GB},
year = 2024,
publisher = {Hugging Face Datasets},
url = {https://huggingface.co/datasets/cloneofsimo/imagenet.int8},
note = {Entire Imagenet dataset compressed to 5GB using VAE and quantized with int8}
}
```
|