The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 2 new columns ({'validation_accuracy', 'validation_loss'}) and 2 missing columns ({'test_accuracy', 'test_loss'}).

This happened while the csv dataset builder was generating data using

hf://datasets/cmpatino/uq_decision_making/predictions/init_scores_fitzpatrick_clean/training_history.csv (at revision e75122a6ecbbd9c9e96bc188932bee8bbf4d4882)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              epoch: int64
              train_loss: double
              train_accuracy: double
              validation_loss: double
              validation_accuracy: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 888
              to
              {'epoch': Value(dtype='int64', id=None), 'train_loss': Value(dtype='float64', id=None), 'train_accuracy': Value(dtype='float64', id=None), 'test_loss': Value(dtype='float64', id=None), 'test_accuracy': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 2 new columns ({'validation_accuracy', 'validation_loss'}) and 2 missing columns ({'test_accuracy', 'test_loss'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/cmpatino/uq_decision_making/predictions/init_scores_fitzpatrick_clean/training_history.csv (at revision e75122a6ecbbd9c9e96bc188932bee8bbf4d4882)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

epoch
int64
train_loss
float64
train_accuracy
float64
test_loss
float64
test_accuracy
float64
1
595.325968
5.417471
552.028407
10.519966
2
501.10113
16.167954
499.326718
16.576185
3
437.632304
23.962355
463.950199
20.822777
4
389.79
31.129344
441.117239
23.730245
5
349.728316
37.451737
424.106453
26.22753
6
315.88144
42.531371
412.076531
28.097479
7
287.781658
47.502413
401.174088
29.882977
8
260.141856
52.014961
395.997913
30.43793
9
235.547169
56.973938
393.955987
30.5827
10
213.562271
60.617761
390.706867
31.90976
1
133.801872
3.360151
null
null
2
125.553545
8.613346
null
null
3
116.96189
14.978703
null
null
4
108.179788
19.995267
null
null
5
102.87344
24.420256
null
null
6
97.689906
27.472788
null
null
7
92.967923
31.566493
null
null
8
89.155752
33.577851
null
null
9
85.984746
37.363938
null
null
10
81.931191
40.534785
null
null
11
76.995569
42.262186
null
null
12
75.01795
44.557501
null
null
13
72.448126
47.539044
null
null
14
68.595883
48.509229
null
null
15
66.416163
50.828206
null
null
16
63.667105
53.880738
null
null
17
62.006703
54.212021
null
null
18
60.254217
55.91576
null
null
19
56.724343
58.660672
null
null
20
54.743819
59.867487
null
null
21
53.419657
62.920019
null
null
22
52.36443
62.233791
null
null
23
49.635847
63.700899
null
null
24
47.049807
66.800757
null
null
25
46.975302
67.108377
null
null
26
44.042832
68.480833
null
null
27
42.916278
68.646474
null
null
28
42.465645
70.373876
null
null
29
41.795201
71.225745
null
null
30
40.333278
72.598202
null
null
31
37.956334
74.017984
null
null
32
36.145035
74.988168
null
null
33
36.753283
75.485092
null
null
34
35.513207
76.975864
null
null
35
33.035108
77.543777
null
null
36
31.764158
78.916233
null
null
37
30.14708
79.271178
null
null
38
30.413381
80.312352
null
null
39
30.805808
81.3062
null
null
40
29.680489
81.992428
null
null
41
27.048874
82.418363
null
null
42
26.591944
83.435873
null
null
43
26.754056
84.145764
null
null
44
24.531927
84.548036
null
null
45
23.926651
84.808329
null
null
46
23.797109
85.967818
null
null
47
22.404961
86.06247
null
null
48
23.198922
87.032655
null
null
49
21.414986
87.340274
null
null
50
21.943857
88.405111
null
null
51
18.218208
89.162328
null
null
52
20.297129
88.334122
null
null
53
20.91536
89.446285
null
null
54
18.249564
89.848557
null
null
55
17.86312
90.298154
null
null
56
19.909599
90.10885
null
null
57
17.329793
91.339328
null
null
58
16.944728
91.102698
null
null
59
16.093946
90.937056
null
null
60
16.95721
91.575958
null
null
61
16.381983
92.333176
null
null
62
15.162214
91.907241
null
null
63
15.09941
93.232371
null
null
64
14.136049
92.640795
null
null
65
14.924829
92.924752
null
null
66
12.456906
93.279697
null
null
67
12.111853
93.800284
null
null
68
11.298331
93.989588
null
null
69
13.613881
94.131566
null
null
70
13.652822
93.776621
null
null
71
13.010067
93.681969
null
null
72
13.260865
93.871273
null
null
73
13.143745
94.439186
null
null
74
11.528584
95.007099
null
null
75
10.253374
95.669664
null
null
76
11.624322
94.62849
null
null
77
10.737632
95.007099
null
null
78
10.334126
94.841458
null
null
79
9.423328
95.622338
null
null
80
10.593757
95.787979
null
null
81
9.927815
95.669664
null
null
82
13.137595
95.527686
null
null
83
10.111153
95.929957
null
null
84
8.756556
96.284903
null
null
85
9.300085
96.190251
null
null
86
11.512818
96.355892
null
null
87
9.422899
96.332229
null
null
88
8.10851
96.474207
null
null
89
9.445977
96.521533
null
null
90
9.752863
96.190251
null
null
End of preview.