File size: 23,280 Bytes
5912711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LexGLUE: A Benchmark Dataset for Legal Language Understanding in English."""
import csv
import json
import os
import textwrap
import datasets
MAIN_CITATION = """\
@article{chalkidis-etal-2021-lexglue,
title={{LexGLUE}: A Benchmark Dataset for Legal Language Understanding in English},
author={Chalkidis, Ilias and
Jana, Abhik and
Hartung, Dirk and
Bommarito, Michael and
Androutsopoulos, Ion and
Katz, Daniel Martin and
Aletras, Nikolaos},
year={2021},
eprint={2110.00976},
archivePrefix={arXiv},
primaryClass={cs.CL},
note = {arXiv: 2110.00976},
}"""
_DESCRIPTION = """\
Legal General Language Understanding Evaluation (LexGLUE) benchmark is
a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks
"""
ECTHR_ARTICLES = ["2", "3", "5", "6", "8", "9", "10", "11", "14", "P1-1"]
EUROVOC_CONCEPTS = [
"100163",
"100164",
"100165",
"100166",
"100167",
"100168",
"100169",
"100170",
"100171",
"100172",
"100173",
"100174",
"100175",
"100176",
"100177",
"100178",
"100179",
"100180",
"100181",
"100182",
"100183",
"100184",
"100185",
"100186",
"100187",
"100188",
"100189",
"100190",
"100191",
"100192",
"100193",
"100194",
"100195",
"100196",
"100197",
"100198",
"100199",
"100200",
"100201",
"100202",
"100203",
"100204",
"100205",
"100206",
"100207",
"100208",
"100209",
"100210",
"100211",
"100212",
"100213",
"100214",
"100215",
"100216",
"100217",
"100218",
"100219",
"100220",
"100221",
"100222",
"100223",
"100224",
"100225",
"100226",
"100227",
"100228",
"100229",
"100230",
"100231",
"100232",
"100233",
"100234",
"100235",
"100236",
"100237",
"100238",
"100239",
"100240",
"100241",
"100242",
"100243",
"100244",
"100245",
"100246",
"100247",
"100248",
"100249",
"100250",
"100251",
"100252",
"100253",
"100254",
"100255",
"100256",
"100257",
"100258",
"100259",
"100260",
"100261",
"100262",
"100263",
"100264",
"100265",
"100266",
"100267",
"100268",
"100269",
"100270",
"100271",
"100272",
"100273",
"100274",
"100275",
"100276",
"100277",
"100278",
"100279",
"100280",
"100281",
"100282",
"100283",
"100284",
"100285",
"100286",
"100287",
"100288",
"100289",
]
LEDGAR_CATEGORIES = [
"Adjustments",
"Agreements",
"Amendments",
"Anti-Corruption Laws",
"Applicable Laws",
"Approvals",
"Arbitration",
"Assignments",
"Assigns",
"Authority",
"Authorizations",
"Base Salary",
"Benefits",
"Binding Effects",
"Books",
"Brokers",
"Capitalization",
"Change In Control",
"Closings",
"Compliance With Laws",
"Confidentiality",
"Consent To Jurisdiction",
"Consents",
"Construction",
"Cooperation",
"Costs",
"Counterparts",
"Death",
"Defined Terms",
"Definitions",
"Disability",
"Disclosures",
"Duties",
"Effective Dates",
"Effectiveness",
"Employment",
"Enforceability",
"Enforcements",
"Entire Agreements",
"Erisa",
"Existence",
"Expenses",
"Fees",
"Financial Statements",
"Forfeitures",
"Further Assurances",
"General",
"Governing Laws",
"Headings",
"Indemnifications",
"Indemnity",
"Insurances",
"Integration",
"Intellectual Property",
"Interests",
"Interpretations",
"Jurisdictions",
"Liens",
"Litigations",
"Miscellaneous",
"Modifications",
"No Conflicts",
"No Defaults",
"No Waivers",
"Non-Disparagement",
"Notices",
"Organizations",
"Participations",
"Payments",
"Positions",
"Powers",
"Publicity",
"Qualifications",
"Records",
"Releases",
"Remedies",
"Representations",
"Sales",
"Sanctions",
"Severability",
"Solvency",
"Specific Performance",
"Submission To Jurisdiction",
"Subsidiaries",
"Successors",
"Survival",
"Tax Withholdings",
"Taxes",
"Terminations",
"Terms",
"Titles",
"Transactions With Affiliates",
"Use Of Proceeds",
"Vacations",
"Venues",
"Vesting",
"Waiver Of Jury Trials",
"Waivers",
"Warranties",
"Withholdings",
]
SCDB_ISSUE_AREAS = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13"]
UNFAIR_CATEGORIES = [
"Limitation of liability",
"Unilateral termination",
"Unilateral change",
"Content removal",
"Contract by using",
"Choice of law",
"Jurisdiction",
"Arbitration",
]
CASEHOLD_LABELS = ["0", "1", "2", "3", "4"]
class LexGlueConfig(datasets.BuilderConfig):
"""BuilderConfig for LexGLUE."""
def __init__(
self,
text_column,
label_column,
url,
data_url,
data_file,
citation,
label_classes=None,
multi_label=None,
dev_column="dev",
**kwargs,
):
"""BuilderConfig for LexGLUE.
Args:
text_column: ``string`, name of the column in the jsonl file corresponding
to the text
label_column: `string`, name of the column in the jsonl file corresponding
to the label
url: `string`, url for the original project
data_url: `string`, url to download the zip file from
data_file: `string`, filename for data set
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
multi_label: `boolean`, True if the task is multi-label
dev_column: `string`, name for the development subset
**kwargs: keyword arguments forwarded to super.
"""
super(LexGlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_column = text_column
self.label_column = label_column
self.label_classes = label_classes
self.multi_label = multi_label
self.dev_column = dev_column
self.url = url
self.data_url = data_url
self.data_file = data_file
self.citation = citation
class LexGLUE(datasets.GeneratorBasedBuilder):
"""LexGLUE: A Benchmark Dataset for Legal Language Understanding in English. Version 1.0"""
BUILDER_CONFIGS = [
LexGlueConfig(
name="ecthr_a",
description=textwrap.dedent(
"""\
The European Court of Human Rights (ECtHR) hears allegations that a state has
breached human rights provisions of the European Convention of Human Rights (ECHR).
For each case, the dataset provides a list of factual paragraphs (facts) from the case description.
Each case is mapped to articles of the ECHR that were violated (if any)."""
),
text_column="facts",
label_column="violated_articles",
label_classes=ECTHR_ARTICLES,
multi_label=True,
dev_column="dev",
data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz",
data_file="ecthr.jsonl",
url="https://archive.org/details/ECtHR-NAACL2021",
citation=textwrap.dedent(
"""\
@inproceedings{chalkidis-etal-2021-paragraph,
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
author = "Chalkidis, Ilias and
Fergadiotis, Manos and
Tsarapatsanis, Dimitrios and
Aletras, Nikolaos and
Androutsopoulos, Ion and
Malakasiotis, Prodromos",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.naacl-main.22",
doi = "10.18653/v1/2021.naacl-main.22",
pages = "226--241",
}
}"""
),
),
LexGlueConfig(
name="ecthr_b",
description=textwrap.dedent(
"""\
The European Court of Human Rights (ECtHR) hears allegations that a state has
breached human rights provisions of the European Convention of Human Rights (ECHR).
For each case, the dataset provides a list of factual paragraphs (facts) from the case description.
Each case is mapped to articles of ECHR that were allegedly violated (considered by the court)."""
),
text_column="facts",
label_column="allegedly_violated_articles",
label_classes=ECTHR_ARTICLES,
multi_label=True,
dev_column="dev",
url="https://archive.org/details/ECtHR-NAACL2021",
data_url="https://zenodo.org/record/5532997/files/ecthr.tar.gz",
data_file="ecthr.jsonl",
citation=textwrap.dedent(
"""\
@inproceedings{chalkidis-etal-2021-paragraph,
title = "Paragraph-level Rationale Extraction through Regularization: A case study on {E}uropean Court of Human Rights Cases",
author = "Chalkidis, Ilias
and Fergadiotis, Manos
and Tsarapatsanis, Dimitrios
and Aletras, Nikolaos
and Androutsopoulos, Ion
and Malakasiotis, Prodromos",
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
year = "2021",
address = "Online",
url = "https://aclanthology.org/2021.naacl-main.22",
}
}"""
),
),
LexGlueConfig(
name="eurlex",
description=textwrap.dedent(
"""\
European Union (EU) legislation is published in EUR-Lex portal.
All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus,
a multilingual thesaurus maintained by the Publications Office.
The current version of EuroVoc contains more than 7k concepts referring to various activities
of the EU and its Member States (e.g., economics, health-care, trade).
Given a document, the task is to predict its EuroVoc labels (concepts)."""
),
text_column="text",
label_column="labels",
label_classes=EUROVOC_CONCEPTS,
multi_label=True,
dev_column="dev",
url="https://zenodo.org/record/5363165#.YVJOAi8RqaA",
data_url="https://zenodo.org/record/5532997/files/eurlex.tar.gz",
data_file="eurlex.jsonl",
citation=textwrap.dedent(
"""\
@inproceedings{chalkidis-etal-2021-multieurlex,
author = {Chalkidis, Ilias and
Fergadiotis, Manos and
Androutsopoulos, Ion},
title = {MultiEURLEX -- A multi-lingual and multi-label legal document
classification dataset for zero-shot cross-lingual transfer},
booktitle = {Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing},
year = {2021},
location = {Punta Cana, Dominican Republic},
}
}"""
),
),
LexGlueConfig(
name="scotus",
description=textwrap.dedent(
"""\
The US Supreme Court (SCOTUS) is the highest federal court in the United States of America
and generally hears only the most controversial or otherwise complex cases which have not
been sufficiently well solved by lower courts. This is a single-label multi-class classification
task, where given a document (court opinion), the task is to predict the relevant issue areas.
The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute)."""
),
text_column="text",
label_column="issueArea",
label_classes=SCDB_ISSUE_AREAS,
multi_label=False,
dev_column="dev",
url="http://scdb.wustl.edu/data.php",
data_url="https://zenodo.org/record/5532997/files/scotus.tar.gz",
data_file="scotus.jsonl",
citation=textwrap.dedent(
"""\
@misc{spaeth2020,
author = {Harold J. Spaeth and Lee Epstein and Andrew D. Martin, Jeffrey A. Segal
and Theodore J. Ruger and Sara C. Benesh},
year = {2020},
title ={{Supreme Court Database, Version 2020 Release 01}},
url= {http://Supremecourtdatabase.org},
howpublished={Washington University Law}
}"""
),
),
LexGlueConfig(
name="ledgar",
description=textwrap.dedent(
"""\
LEDGAR dataset aims contract provision (paragraph) classification.
The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC)
filings, which are publicly available from EDGAR. Each label represents the single main topic
(theme) of the corresponding contract provision."""
),
text_column="text",
label_column="clause_type",
label_classes=LEDGAR_CATEGORIES,
multi_label=False,
dev_column="dev",
url="https://metatext.io/datasets/ledgar",
data_url="https://zenodo.org/record/5532997/files/ledgar.tar.gz",
data_file="ledgar.jsonl",
citation=textwrap.dedent(
"""\
@inproceedings{tuggener-etal-2020-ledgar,
title = "{LEDGAR}: A Large-Scale Multi-label Corpus for Text Classification of Legal Provisions in Contracts",
author = {Tuggener, Don and
von D{\"a}niken, Pius and
Peetz, Thomas and
Cieliebak, Mark},
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference",
year = "2020",
address = "Marseille, France",
url = "https://aclanthology.org/2020.lrec-1.155",
}
}"""
),
),
LexGlueConfig(
name="unfair_tos",
description=textwrap.dedent(
"""\
The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube,
Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of
unfair contractual terms (sentences), meaning terms that potentially violate user rights
according to the European consumer law."""
),
text_column="text",
label_column="labels",
label_classes=UNFAIR_CATEGORIES,
multi_label=True,
dev_column="val",
url="http://claudette.eui.eu",
data_url="https://zenodo.org/record/5532997/files/unfair_tos.tar.gz",
data_file="unfair_tos.jsonl",
citation=textwrap.dedent(
"""\
@article{lippi-etal-2019-claudette,
title = "{CLAUDETTE}: an automated detector of potentially unfair clauses in online terms of service",
author = {Lippi, Marco
and Pałka, Przemysław
and Contissa, Giuseppe
and Lagioia, Francesca
and Micklitz, Hans-Wolfgang
and Sartor, Giovanni
and Torroni, Paolo},
journal = "Artificial Intelligence and Law",
year = "2019",
publisher = "Springer",
url = "https://doi.org/10.1007/s10506-019-09243-2",
pages = "117--139",
}"""
),
),
LexGlueConfig(
name="case_hold",
description=textwrap.dedent(
"""\
The CaseHOLD (Case Holdings on Legal Decisions) dataset contains approx. 53k multiple choice
questions about holdings of US court cases from the Harvard Law Library case law corpus.
Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case.
The input consists of an excerpt (or prompt) from a court decision, containing a reference
to a particular case, while the holding statement is masked out. The model must identify
the correct (masked) holding statement from a selection of five choices."""
),
text_column="text",
label_column="labels",
dev_column="dev",
multi_label=False,
label_classes=CASEHOLD_LABELS,
url="https://github.com/reglab/casehold",
data_url="https://zenodo.org/record/5532997/files/casehold.tar.gz",
data_file="casehold.csv",
citation=textwrap.dedent(
"""\
@inproceedings{Zheng2021,
author = {Lucia Zheng and
Neel Guha and
Brandon R. Anderson and
Peter Henderson and
Daniel E. Ho},
title = {When Does Pretraining Help? Assessing Self-Supervised Learning for
Law and the CaseHOLD Dataset},
year = {2021},
booktitle = {International Conference on Artificial Intelligence and Law},
}"""
),
),
]
def _info(self):
if self.config.name == "case_hold":
features = {
"question": datasets.Value("string"),
"contexts": datasets.features.Sequence(datasets.Value("string")),
"endings": datasets.features.Sequence(datasets.Value("string")),
}
elif "ecthr" in self.config.name:
features = {"text": datasets.features.Sequence(datasets.Value("string"))}
else:
features = {"text": datasets.Value("string")}
if self.config.multi_label:
features["labels"] = datasets.features.Sequence(datasets.ClassLabel(names=self.config.label_classes))
else:
features["label"] = datasets.ClassLabel(names=self.config.label_classes)
return datasets.DatasetInfo(
description=self.config.description,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + MAIN_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_file), "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_file), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, self.config.data_file),
"split": self.config.dev_column,
},
),
]
def _generate_examples(self, filepath, split):
"""This function returns the examples in the raw (text) form."""
if self.config.name == "case_hold":
if "dummy" in filepath:
SPLIT_RANGES = {"train": (1, 3), "dev": (3, 5), "test": (5, 7)}
else:
SPLIT_RANGES = {"train": (1, 45001), "dev": (45001, 48901), "test": (48901, 52501)}
with open(filepath, "r", encoding="utf-8") as f:
for id_, row in enumerate(list(csv.reader(f))[SPLIT_RANGES[split][0] : SPLIT_RANGES[split][1]]):
yield id_, {
"context": row[1],
"holdings": [row[2], row[3], row[4], row[5], row[6]],
"label": str(row[12]),
}
elif self.config.multi_label:
with open(filepath, "r", encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
labels = sorted(
list(set(data[self.config.label_column]).intersection(set(self.config.label_classes)))
)
if data["data_type"] == split:
yield id_, {
"text": data[self.config.text_column],
"labels": labels,
}
else:
with open(filepath, "r", encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
if data["data_type"] == split:
yield id_, {
"text": data[self.config.text_column],
"label": data[self.config.label_column],
}
|