Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 34,120 Bytes
5912711
 
 
 
 
4f049ff
5912711
4f049ff
2d3524c
5912711
 
 
 
 
 
 
2d3524c
 
5912711
2d3524c
 
 
 
cbaf58d
064fab9
 
 
 
 
 
 
 
66371db
064fab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe9d5f8
064fab9
 
fe9d5f8
064fab9
 
fe9d5f8
064fab9
fe9d5f8
 
66371db
 
 
 
 
 
 
 
cbaf58d
 
 
 
 
 
 
 
 
 
66371db
 
064fab9
66371db
4ddaec5
064fab9
4ddaec5
66371db
064fab9
66371db
064fab9
 
66371db
 
 
 
 
 
 
 
cbaf58d
 
 
 
 
 
 
 
 
 
66371db
 
352f732
66371db
4ddaec5
352f732
4ddaec5
66371db
352f732
66371db
352f732
 
66371db
 
 
 
 
 
 
 
cbaf58d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66371db
 
d3e022f
66371db
4ddaec5
d3e022f
4ddaec5
66371db
d3e022f
66371db
d3e022f
 
66371db
 
 
 
 
 
 
 
cbaf58d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66371db
 
6af614c
66371db
4ddaec5
6af614c
4ddaec5
66371db
6af614c
66371db
6af614c
 
064fab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa3e5f
064fab9
 
ffa3e5f
064fab9
 
ffa3e5f
064fab9
ffa3e5f
 
66371db
 
 
 
 
 
 
 
cbaf58d
 
 
 
 
 
 
 
66371db
 
b7b8b58
66371db
4ddaec5
b7b8b58
4ddaec5
66371db
b7b8b58
66371db
b7b8b58
 
064fab9
fe9d5f8
 
 
 
 
 
 
 
064fab9
 
 
 
 
 
 
 
352f732
 
 
 
 
 
 
 
d3e022f
 
 
 
 
 
 
 
6af614c
 
 
 
 
 
 
 
ffa3e5f
 
 
 
 
 
 
 
b7b8b58
 
 
 
 
 
 
 
5912711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1c7e8
5912711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733b673
5912711
733b673
5912711
 
733b673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5912711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd4bac5
5912711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1c7e8
5912711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733b673
5912711
 
 
 
 
 
 
 
 
 
733b673
5912711
733b673
 
 
 
5912711
733b673
 
 
5912711
 
 
 
 
66371db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
---
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended
task_categories:
- question-answering
- text-classification
task_ids:
- multi-class-classification
- multi-label-classification
- multiple-choice-qa
- topic-classification
pretty_name: LexGLUE
config_names:
- case_hold
- ecthr_a
- ecthr_b
- eurlex
- ledgar
- scotus
- unfair_tos
dataset_info:
- config_name: case_hold
  features:
  - name: context
    dtype: string
  - name: endings
    sequence: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '0'
          '1': '1'
          '2': '2'
          '3': '3'
          '4': '4'
  splits:
  - name: train
    num_bytes: 74781706
    num_examples: 45000
  - name: test
    num_bytes: 5989952
    num_examples: 3600
  - name: validation
    num_bytes: 6474603
    num_examples: 3900
  download_size: 47303537
  dataset_size: 87246261
- config_name: ecthr_a
  features:
  - name: text
    sequence: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '2'
          '1': '3'
          '2': '5'
          '3': '6'
          '4': '8'
          '5': '9'
          '6': '10'
          '7': '11'
          '8': '14'
          '9': P1-1
  splits:
  - name: train
    num_bytes: 89637449
    num_examples: 9000
  - name: test
    num_bytes: 11884168
    num_examples: 1000
  - name: validation
    num_bytes: 10985168
    num_examples: 1000
  download_size: 53352586
  dataset_size: 112506785
- config_name: ecthr_b
  features:
  - name: text
    sequence: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '2'
          '1': '3'
          '2': '5'
          '3': '6'
          '4': '8'
          '5': '9'
          '6': '10'
          '7': '11'
          '8': '14'
          '9': P1-1
  splits:
  - name: train
    num_bytes: 89657649
    num_examples: 9000
  - name: test
    num_bytes: 11886928
    num_examples: 1000
  - name: validation
    num_bytes: 10987816
    num_examples: 1000
  download_size: 53352494
  dataset_size: 112532393
- config_name: eurlex
  features:
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': '100163'
          '1': '100168'
          '2': '100169'
          '3': '100170'
          '4': '100171'
          '5': '100172'
          '6': '100173'
          '7': '100174'
          '8': '100175'
          '9': '100176'
          '10': '100177'
          '11': '100179'
          '12': '100180'
          '13': '100183'
          '14': '100184'
          '15': '100185'
          '16': '100186'
          '17': '100187'
          '18': '100189'
          '19': '100190'
          '20': '100191'
          '21': '100192'
          '22': '100193'
          '23': '100194'
          '24': '100195'
          '25': '100196'
          '26': '100197'
          '27': '100198'
          '28': '100199'
          '29': '100200'
          '30': '100201'
          '31': '100202'
          '32': '100204'
          '33': '100205'
          '34': '100206'
          '35': '100207'
          '36': '100212'
          '37': '100214'
          '38': '100215'
          '39': '100220'
          '40': '100221'
          '41': '100222'
          '42': '100223'
          '43': '100224'
          '44': '100226'
          '45': '100227'
          '46': '100229'
          '47': '100230'
          '48': '100231'
          '49': '100232'
          '50': '100233'
          '51': '100234'
          '52': '100235'
          '53': '100237'
          '54': '100238'
          '55': '100239'
          '56': '100240'
          '57': '100241'
          '58': '100242'
          '59': '100243'
          '60': '100244'
          '61': '100245'
          '62': '100246'
          '63': '100247'
          '64': '100248'
          '65': '100249'
          '66': '100250'
          '67': '100252'
          '68': '100253'
          '69': '100254'
          '70': '100255'
          '71': '100256'
          '72': '100257'
          '73': '100258'
          '74': '100259'
          '75': '100260'
          '76': '100261'
          '77': '100262'
          '78': '100263'
          '79': '100264'
          '80': '100265'
          '81': '100266'
          '82': '100268'
          '83': '100269'
          '84': '100270'
          '85': '100271'
          '86': '100272'
          '87': '100273'
          '88': '100274'
          '89': '100275'
          '90': '100276'
          '91': '100277'
          '92': '100278'
          '93': '100279'
          '94': '100280'
          '95': '100281'
          '96': '100282'
          '97': '100283'
          '98': '100284'
          '99': '100285'
  splits:
  - name: train
    num_bytes: 390770241
    num_examples: 55000
  - name: test
    num_bytes: 59739094
    num_examples: 5000
  - name: validation
    num_bytes: 41544476
    num_examples: 5000
  download_size: 208028049
  dataset_size: 492053811
- config_name: ledgar
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': Adjustments
          '1': Agreements
          '2': Amendments
          '3': Anti-Corruption Laws
          '4': Applicable Laws
          '5': Approvals
          '6': Arbitration
          '7': Assignments
          '8': Assigns
          '9': Authority
          '10': Authorizations
          '11': Base Salary
          '12': Benefits
          '13': Binding Effects
          '14': Books
          '15': Brokers
          '16': Capitalization
          '17': Change In Control
          '18': Closings
          '19': Compliance With Laws
          '20': Confidentiality
          '21': Consent To Jurisdiction
          '22': Consents
          '23': Construction
          '24': Cooperation
          '25': Costs
          '26': Counterparts
          '27': Death
          '28': Defined Terms
          '29': Definitions
          '30': Disability
          '31': Disclosures
          '32': Duties
          '33': Effective Dates
          '34': Effectiveness
          '35': Employment
          '36': Enforceability
          '37': Enforcements
          '38': Entire Agreements
          '39': Erisa
          '40': Existence
          '41': Expenses
          '42': Fees
          '43': Financial Statements
          '44': Forfeitures
          '45': Further Assurances
          '46': General
          '47': Governing Laws
          '48': Headings
          '49': Indemnifications
          '50': Indemnity
          '51': Insurances
          '52': Integration
          '53': Intellectual Property
          '54': Interests
          '55': Interpretations
          '56': Jurisdictions
          '57': Liens
          '58': Litigations
          '59': Miscellaneous
          '60': Modifications
          '61': No Conflicts
          '62': No Defaults
          '63': No Waivers
          '64': Non-Disparagement
          '65': Notices
          '66': Organizations
          '67': Participations
          '68': Payments
          '69': Positions
          '70': Powers
          '71': Publicity
          '72': Qualifications
          '73': Records
          '74': Releases
          '75': Remedies
          '76': Representations
          '77': Sales
          '78': Sanctions
          '79': Severability
          '80': Solvency
          '81': Specific Performance
          '82': Submission To Jurisdiction
          '83': Subsidiaries
          '84': Successors
          '85': Survival
          '86': Tax Withholdings
          '87': Taxes
          '88': Terminations
          '89': Terms
          '90': Titles
          '91': Transactions With Affiliates
          '92': Use Of Proceeds
          '93': Vacations
          '94': Venues
          '95': Vesting
          '96': Waiver Of Jury Trials
          '97': Waivers
          '98': Warranties
          '99': Withholdings
  splits:
  - name: train
    num_bytes: 43358291
    num_examples: 60000
  - name: test
    num_bytes: 6845581
    num_examples: 10000
  - name: validation
    num_bytes: 7143588
    num_examples: 10000
  download_size: 27650585
  dataset_size: 57347460
- config_name: scotus
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': '1'
          '1': '2'
          '2': '3'
          '3': '4'
          '4': '5'
          '5': '6'
          '6': '7'
          '7': '8'
          '8': '9'
          '9': '10'
          '10': '11'
          '11': '12'
          '12': '13'
  splits:
  - name: train
    num_bytes: 178959316
    num_examples: 5000
  - name: test
    num_bytes: 76213279
    num_examples: 1400
  - name: validation
    num_bytes: 75600243
    num_examples: 1400
  download_size: 173411399
  dataset_size: 330772838
- config_name: unfair_tos
  features:
  - name: text
    dtype: string
  - name: labels
    sequence:
      class_label:
        names:
          '0': Limitation of liability
          '1': Unilateral termination
          '2': Unilateral change
          '3': Content removal
          '4': Contract by using
          '5': Choice of law
          '6': Jurisdiction
          '7': Arbitration
  splits:
  - name: train
    num_bytes: 1041782
    num_examples: 5532
  - name: test
    num_bytes: 303099
    num_examples: 1607
  - name: validation
    num_bytes: 452111
    num_examples: 2275
  download_size: 865604
  dataset_size: 1796992
configs:
- config_name: case_hold
  data_files:
  - split: train
    path: case_hold/train-*
  - split: test
    path: case_hold/test-*
  - split: validation
    path: case_hold/validation-*
- config_name: ecthr_a
  data_files:
  - split: train
    path: ecthr_a/train-*
  - split: test
    path: ecthr_a/test-*
  - split: validation
    path: ecthr_a/validation-*
- config_name: ecthr_b
  data_files:
  - split: train
    path: ecthr_b/train-*
  - split: test
    path: ecthr_b/test-*
  - split: validation
    path: ecthr_b/validation-*
- config_name: eurlex
  data_files:
  - split: train
    path: eurlex/train-*
  - split: test
    path: eurlex/test-*
  - split: validation
    path: eurlex/validation-*
- config_name: ledgar
  data_files:
  - split: train
    path: ledgar/train-*
  - split: test
    path: ledgar/test-*
  - split: validation
    path: ledgar/validation-*
- config_name: scotus
  data_files:
  - split: train
    path: scotus/train-*
  - split: test
    path: scotus/test-*
  - split: validation
    path: scotus/validation-*
- config_name: unfair_tos
  data_files:
  - split: train
    path: unfair_tos/train-*
  - split: test
    path: unfair_tos/test-*
  - split: validation
    path: unfair_tos/validation-*
---

# Dataset Card for "LexGLUE"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/coastalcph/lex-glue
- **Repository:** https://github.com/coastalcph/lex-glue
- **Paper:** https://arxiv.org/abs/2110.00976
- **Leaderboard:** https://github.com/coastalcph/lex-glue
- **Point of Contact:** [Ilias Chalkidis](mailto:ilias.chalkidis@di.ku.dk)

### Dataset Summary

Inspired by the recent widespread use of the GLUE multi-task benchmark NLP dataset (Wang et al., 2018), the subsequent more difficult SuperGLUE (Wang et al., 2019), other previous multi-task NLP benchmarks (Conneau and Kiela, 2018; McCann et al., 2018), and similar initiatives in other domains (Peng et al., 2019), we introduce the *Legal General Language Understanding Evaluation (LexGLUE) benchmark*, a benchmark dataset to evaluate the performance of NLP methods in legal tasks. LexGLUE is based on seven existing legal NLP datasets, selected using criteria largely from SuperGLUE.

As in GLUE and SuperGLUE (Wang et al., 2019b,a), one of our goals is to push towards generic (or ‘foundation’) models that can cope with multiple NLP tasks, in our case legal NLP tasks possibly with limited task-specific fine-tuning. Another goal is to provide a convenient and informative entry point for NLP researchers and practitioners wishing to explore or develop methods for legalNLP. Having these goals in mind, the datasets we include in LexGLUE and the tasks they address have been simplified in several ways to make it easier for newcomers and generic models to address all tasks.

LexGLUE benchmark is accompanied by experimental infrastructure that relies on Hugging Face Transformers library and resides at: https://github.com/coastalcph/lex-glue.

### Supported Tasks and Leaderboards

The supported tasks are the following:

<table>
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><td>Classes</td><tr>
<tr><td>ECtHR (Task A)</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>Multi-label classification</td><td>10+1</td></tr>
<tr><td>ECtHR (Task B)</td><td> <a href="https://aclanthology.org/2021.naacl-main.22/">Chalkidis et al. (2021a)</a> </td><td>ECHR</td><td>Multi-label classification </td><td>10+1</td></tr>
<tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>Multi-class classification</td><td>14</td></tr>
<tr><td>EUR-LEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. (2021b)</a></td><td>EU Law</td><td>Multi-label classification</td><td>100</td></tr>
<tr><td>LEDGAR</td><td> <a href="https://aclanthology.org/2020.lrec-1.155/">Tuggener et al. (2020)</a></td><td>Contracts</td><td>Multi-class classification</td><td>100</td></tr>
<tr><td>UNFAIR-ToS</td><td><a href="https://arxiv.org/abs/1805.01217"> Lippi et al. (2019)</a></td><td>Contracts</td><td>Multi-label classification</td><td>8+1</td></tr>
<tr><td>CaseHOLD</td><td><a href="https://arxiv.org/abs/2104.08671">Zheng et al. (2021)</a></td><td>US Law</td><td>Multiple choice QA</td><td>n/a</td></tr>
</table>

#### ecthr_a

The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of the ECHR that were violated (if any).

#### ecthr_b

The European Court of Human Rights (ECtHR) hears allegations that a state has breached human rights provisions of the European Convention of Human Rights (ECHR). For each case, the dataset provides a list of factual paragraphs (facts) from the case description. Each case is mapped to articles of ECHR that were allegedly violated (considered by the court).

#### scotus

The US Supreme Court (SCOTUS) is the highest federal court in the United States of America and generally hears only the most controversial or otherwise complex cases which have not been sufficiently well solved by lower courts. This is a single-label multi-class classification task, where given a document (court opinion), the task is to predict the relevant issue areas. The 14 issue areas cluster 278 issues whose focus is on the subject matter of the controversy (dispute).

#### eurlex

European Union (EU) legislation is published in EUR-Lex portal. All EU laws are annotated by EU's Publications Office with multiple concepts from the EuroVoc thesaurus, a multilingual thesaurus maintained by the Publications Office. The current version of EuroVoc contains more than 7k concepts referring to various activities of the EU and its Member States (e.g., economics, health-care, trade). Given a document, the task is to predict its EuroVoc labels (concepts).

#### ledgar

LEDGAR dataset aims contract provision (paragraph) classification. The contract provisions come from contracts obtained from the US Securities and Exchange Commission (SEC) filings, which are publicly available from EDGAR. Each label represents the single main topic (theme) of the corresponding contract provision.

#### unfair_tos

The UNFAIR-ToS dataset contains 50 Terms of Service (ToS) from on-line platforms (e.g., YouTube, Ebay, Facebook, etc.). The dataset has been annotated on the sentence-level with 8 types of unfair contractual terms (sentences), meaning terms that potentially violate user rights according to the European consumer law.

#### case_hold

The CaseHOLD (Case Holdings on Legal Decisions) dataset includes multiple choice questions about holdings of US court cases from the Harvard Law Library case law corpus. Holdings are short summaries of legal rulings accompany referenced decisions relevant for the present case. The input consists of an excerpt (or prompt) from a court decision, containing a reference to a particular case, while the holding statement is masked out. The model must identify the correct (masked) holding statement from a selection of five choices.


The current leaderboard includes several Transformer-based (Vaswaniet al., 2017) pre-trained language models, which achieve state-of-the-art performance in most NLP tasks (Bommasani et al., 2021) and NLU benchmarks (Wang et al., 2019a). Results reported by [Chalkidis et al. (2021)](https://arxiv.org/abs/2110.00976):

*Task-wise Test Results*

<table>
        <tr><td><b>Dataset</b></td><td><b>ECtHR A</b></td><td><b>ECtHR B</b></td><td><b>SCOTUS</b></td><td><b>EUR-LEX</b></td><td><b>LEDGAR</b></td><td><b>UNFAIR-ToS</b></td><td><b>CaseHOLD</b></td></tr>
<tr><td><b>Model</b></td><td>μ-F1  / m-F1 </td><td>μ-F1  / m-F1 </td><td>μ-F1  / m-F1 </td><td>μ-F1  / m-F1 </td><td>μ-F1  / m-F1 </td><td>μ-F1  / m-F1</td><td>μ-F1 / m-F1  </td></tr>
<tr><td>TFIDF+SVM</td><td> 64.7 / 51.7  </td><td>74.6 / 65.1 </td><td> <b>78.2</b> / <b>69.5</b> </td><td>71.3  / 51.4 </td><td>87.2   / 82.4 </td><td>95.4  / 78.8</td><td>n/a   </td></tr>
<tr><td colspan="8" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr>
<td>BERT</td> <td> 71.2 /  63.6 </td> <td> 79.7 /  73.4 </td> <td> 68.3 /  58.3 </td> <td> 71.4 /  57.2 </td> <td> 87.6 /  81.8 </td> <td> 95.6 /  81.3 </td> <td> 70.8 </td> </tr>
<td>RoBERTa</td> <td> 69.2 /  59.0 </td> <td> 77.3 /  68.9 </td> <td> 71.6 /  62.0 </td> <td> 71.9 /  <b>57.9</b> </td> <td> 87.9 /  82.3 </td> <td> 95.2 /  79.2 </td> <td> 71.4 </td> </tr>
<td>DeBERTa</td> <td> 70.0 /  60.8 </td> <td> 78.8 /  71.0 </td> <td> 71.1 /  62.7 </td> <td> <b>72.1</b> /  57.4 </td> <td> 88.2 /  83.1 </td> <td> 95.5 /  80.3 </td> <td> 72.6 </td> </tr>
<td>Longformer</td> <td> 69.9 / 64.7 </td> <td> 79.4 /  71.7 </td> <td> 72.9 /  64.0 </td> <td> 71.6 /  57.7 </td> <td> 88.2 /  83.0 </td> <td> 95.5 /  80.9 </td> <td> 71.9 </td> </tr>
<td>BigBird</td> <td> 70.0 /  62.9 </td> <td> 78.8 /  70.9 </td> <td> 72.8 /  62.0 </td> <td> 71.5 /  56.8 </td> <td> 87.8 /  82.6 </td> <td> 95.7 /  81.3 </td> <td> 70.8 </td> </tr>
<td>Legal-BERT</td> <td> 70.0 /  64.0 </td> <td> <b>80.4</b> /  <b>74.7</b> </td> <td> 76.4 /  66.5 </td> <td> <b>72.1</b> /  57.4 </td> <td> 88.2 /  83.0 </td> <td> <b>96.0</b> /  <b>83.0</b> </td> <td> 75.3 </td> </tr>
<td>CaseLaw-BERT</td> <td> 69.8 /  62.9 </td> <td> 78.8 /  70.3 </td> <td> 76.6 /  65.9 </td> <td> 70.7 /  56.6 </td> <td> 88.3 /  83.0 </td> <td> <b>96.0</b> /  82.3 </td> <td> <b>75.4</b> </td> </tr>
<tr><td colspan="8" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr>
<tr><td>RoBERTa</td> <td> <b>73.8</b> /  <b>67.6</b> </td> <td> 79.8 /  71.6 </td> <td> 75.5 /  66.3 </td> <td> 67.9 /  50.3 </td> <td> <b>88.6</b> /  <b>83.6</b> </td> <td> 95.8 /  81.6 </td> <td> 74.4 </td> </tr>
</table>

*Averaged (Mean over Tasks) Test Results*

<table>
<tr><td><b>Averaging</b></td><td><b>Arithmetic</b></td><td><b>Harmonic</b></td><td><b>Geometric</b></td></tr>
<tr><td><b>Model</b></td><td>μ-F1  / m-F1 </td><td>μ-F1  / m-F1 </td><td>μ-F1  / m-F1 </td></tr>
<tr><td colspan="4" style='text-align:center'><b>Medium-sized Models (L=12, H=768, A=12)</b></td></tr>
<tr><td>BERT</td><td> 77.8 /  69.5 </td><td> 76.7 /  68.2 </td><td> 77.2 /  68.8 </td></tr>
<tr><td>RoBERTa</td><td> 77.8 /  68.7 </td><td> 76.8 /  67.5 </td><td> 77.3 /  68.1 </td></tr>
<tr><td>DeBERTa</td><td> 78.3 /  69.7 </td><td> 77.4 /  68.5 </td><td> 77.8 /  69.1 </td></tr>
<tr><td>Longformer</td><td> 78.5 /  70.5 </td><td> 77.5 /  69.5 </td><td> 78.0 /  70.0 </td></tr>
<tr><td>BigBird</td><td> 78.2 /  69.6 </td><td> 77.2 /  68.5 </td><td> 77.7 /  69.0 </td></tr>
<tr><td>Legal-BERT</td><td> <b>79.8</b> /  <b>72.0</b> </td><td> <b>78.9</b> /  <b>70.8</b> </td><td> <b>79.3</b> /  <b>71.4</b> </td></tr>
<tr><td>CaseLaw-BERT</td><td> 79.4 /  70.9 </td><td> 78.5 /  69.7 </td><td> 78.9 /  70.3 </td></tr> 
<tr><td colspan="4" style='text-align:center'><b>Large-sized Models (L=24, H=1024, A=18)</b></td></tr>
<tr><td>RoBERTa</td><td> 79.4 /  70.8 </td><td> 78.4 /  69.1 </td><td> 78.9 /  70.0 </td></tr>
</table>

### Languages

We only consider English datasets, to make experimentation easier for researchers across the globe.

## Dataset Structure

### Data Instances

#### ecthr_a

An example of 'train' looks as follows. 
```json
{
  "text": ["8. The applicant was arrested in the early morning of 21 October 1990 ...", ...],
  "labels": [6]
}
```

#### ecthr_b

An example of 'train' looks as follows.
```json
{
  "text": ["8. The applicant was arrested in the early morning of 21 October 1990 ...", ...],
  "label": [5, 6]
}
```

#### scotus

An example of 'train' looks as follows.
```json
{
  "text": "Per Curiam\nSUPREME COURT OF THE UNITED STATES\nRANDY WHITE, WARDEN v. ROGER L. WHEELER\n Decided December 14, 2015\nPER CURIAM.\nA death sentence imposed by a Kentucky trial court and\naffirmed by the ...",
  "label": 8
}
```

#### eurlex

An example of 'train' looks as follows.
```json
{
  "text": "COMMISSION REGULATION (EC) No 1629/96 of 13 August 1996 on an invitation to tender for the refund on export of wholly milled round grain rice to certain third countries ...",
  "labels": [4, 20, 21, 35, 68]
}
```

#### ledgar

An example of 'train' looks as follows.
```json
{
  "text": "All Taxes shall be the financial responsibility of the party obligated to pay such Taxes as determined by applicable law and neither party is or shall be liable at any time for any of the other party ...",
  "label": 32
}
```

#### unfair_tos

An example of 'train' looks as follows.
```json
{
  "text": "tinder may terminate your account at any time without notice if it believes that you have violated this agreement.",
  "label": 2
}
```

#### casehold

An example of 'test' looks as follows.
```json
{
  "context": "In Granato v. City and County of Denver, No. CIV 11-0304 MSK/BNB, 2011 WL 3820730 (D.Colo. Aug. 20, 2011), the Honorable Marcia S. Krieger, now-Chief United States District Judge for the District of Colorado, ruled similarly: At a minimum, a party asserting a Mo-nell claim must plead sufficient facts to identify ... to act pursuant to City or State policy, custom, decision, ordinance, re d 503, 506-07 (3d Cir.l985)(<HOLDING>).",
  "endings": ["holding that courts are to accept allegations in the complaint as being true including monell policies and writing that a federal court reviewing the sufficiency of a complaint has a limited task",
    "holding that for purposes of a class certification motion the court must accept as true all factual allegations in the complaint and may draw reasonable inferences therefrom", 
    "recognizing that the allegations of the complaint must be accepted as true on a threshold motion to dismiss", 
    "holding that a court need not accept as true conclusory allegations which are contradicted by documents referred to in the complaint", 
    "holding that where the defendant was in default the district court correctly accepted the fact allegations of the complaint as true"
  ],
  "label": 0
}
```

### Data Fields

#### ecthr_a
- `text`: a list of `string` features (list of factual paragraphs (facts) from the case description).
- `labels`: a list of classification labels (a list of violated ECHR articles, if any) .
<details>
  <summary>List of ECHR articles</summary>
 "Article 2", "Article 3", "Article 5", "Article 6", "Article 8", "Article 9", "Article 10", "Article 11", "Article 14", "Article 1 of Protocol 1"
</details>

#### ecthr_b
- `text`: a list of `string` features (list of factual paragraphs (facts) from the case description)
- `labels`: a list of classification labels (a list of articles considered).
<details>
  <summary>List of ECHR articles</summary>
 "Article 2", "Article 3", "Article 5", "Article 6", "Article 8", "Article 9", "Article 10", "Article 11", "Article 14", "Article 1 of Protocol 1"
</details>

#### scotus
- `text`: a `string` feature (the court opinion).
- `label`: a classification label (the relevant issue area).
<details>
  <summary>List of issue areas</summary>
(1, Criminal Procedure), (2, Civil Rights), (3, First Amendment), (4, Due Process), (5, Privacy), (6, Attorneys), (7, Unions), (8, Economic Activity), (9, Judicial Power), (10, Federalism), (11, Interstate Relations), (12, Federal Taxation), (13, Miscellaneous), (14, Private Action)
</details>

#### eurlex
- `text`: a `string` feature (an EU law).
- `labels`: a list of classification labels (a list of relevant EUROVOC concepts).
<details>
  <summary>List of EUROVOC concepts</summary>
  The list is very long including 100 EUROVOC concepts. You can find the EUROVOC concepts descriptors <a href="https://raw.githubusercontent.com/nlpaueb/multi-eurlex/master/data/eurovoc_descriptors.json">here</a>.
</details>

#### ledgar
- `text`: a `string` feature (a contract provision/paragraph).
- `label`: a classification label (the type of contract provision).
<details>
  <summary>List of contract provision types</summary>
"Adjustments", "Agreements", "Amendments", "Anti-Corruption Laws", "Applicable Laws", "Approvals", "Arbitration", "Assignments", "Assigns", "Authority", "Authorizations", "Base Salary", "Benefits", "Binding Effects", "Books", "Brokers", "Capitalization", "Change In Control", "Closings", "Compliance With Laws", "Confidentiality", "Consent To Jurisdiction", "Consents", "Construction", "Cooperation", "Costs", "Counterparts", "Death", "Defined Terms", "Definitions", "Disability", "Disclosures", "Duties", "Effective Dates", "Effectiveness", "Employment", "Enforceability", "Enforcements", "Entire Agreements", "Erisa", "Existence", "Expenses", "Fees", "Financial Statements", "Forfeitures", "Further Assurances", "General", "Governing Laws", "Headings", "Indemnifications", "Indemnity", "Insurances", "Integration", "Intellectual Property", "Interests", "Interpretations", "Jurisdictions", "Liens", "Litigations", "Miscellaneous", "Modifications", "No Conflicts", "No Defaults", "No Waivers", "Non-Disparagement", "Notices", "Organizations", "Participations", "Payments", "Positions", "Powers", "Publicity", "Qualifications", "Records", "Releases", "Remedies", "Representations", "Sales", "Sanctions", "Severability", "Solvency", "Specific Performance", "Submission To Jurisdiction", "Subsidiaries", "Successors", "Survival", "Tax Withholdings", "Taxes", "Terminations", "Terms", "Titles", "Transactions With Affiliates", "Use Of Proceeds", "Vacations", "Venues", "Vesting", "Waiver Of Jury Trials", "Waivers", "Warranties", "Withholdings",
</details>

#### unfair_tos
- `text`: a `string` feature (a ToS sentence)
- `labels`: a list of classification labels (a list of unfair types, if any).
<details>
  <summary>List of unfair types</summary>
    "Limitation of liability", "Unilateral termination", "Unilateral change", "Content removal", "Contract by using", "Choice of law", "Jurisdiction", "Arbitration"
</details>

#### casehold
- `context`: a `string` feature (a context sentence incl. a masked holding statement).
- `holdings`: a list of `string` features (a list of candidate holding statements).
- `label`: a classification label (the id of the original/correct holding).


### Data Splits

<table>
<tr><td>Dataset </td><td>Training</td><td>Development</td><td>Test</td><td>Total</td></tr>
<tr><td>ECtHR (Task A)</td><td>9,000</td><td>1,000</td><td>1,000</td><td>11,000</td></tr>
<tr><td>ECtHR (Task B)</td><td>9,000</td><td>1,000</td><td>1,000</td><td>11,000</td></tr>
<tr><td>SCOTUS</td><td>5,000</td><td>1,400</td><td>1,400</td><td>7,800</td></tr>
<tr><td>EUR-LEX</td><td>55,000</td><td>5,000</td><td>5,000</td><td>65,000</td></tr>
<tr><td>LEDGAR</td><td>60,000</td><td>10,000</td><td>10,000</td><td>80,000</td></tr>
<tr><td>UNFAIR-ToS</td><td>5,532</td><td>2,275</td><td>1,607</td><td>9,414</td></tr>
<tr><td>CaseHOLD</td><td>45,000</td><td>3,900</td><td>3,900</td><td>52,800</td></tr>
</table>

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data 
<table>
<tr><td>Dataset</td><td>Source</td><td>Sub-domain</td><td>Task Type</td><tr>
<tr><td>ECtHR (Task A)</td><td> <a href="https://aclanthology.org/P19-1424/">Chalkidis et al. (2019)</a> </td><td>ECHR</td><td>Multi-label classification</td></tr>
<tr><td>ECtHR (Task B)</td><td> <a href="https://aclanthology.org/2021.naacl-main.22/">Chalkidis et al. (2021a)</a> </td><td>ECHR</td><td>Multi-label classification </td></tr>
<tr><td>SCOTUS</td><td> <a href="http://scdb.wustl.edu">Spaeth et al. (2020)</a></td><td>US Law</td><td>Multi-class classification</td></tr>
<tr><td>EUR-LEX</td><td> <a href="https://arxiv.org/abs/2109.00904">Chalkidis et al. (2021b)</a></td><td>EU Law</td><td>Multi-label classification</td></tr>
<tr><td>LEDGAR</td><td> <a href="https://aclanthology.org/2020.lrec-1.155/">Tuggener et al. (2020)</a></td><td>Contracts</td><td>Multi-class classification</td></tr>
<tr><td>UNFAIR-ToS</td><td><a href="https://arxiv.org/abs/1805.01217"> Lippi et al. (2019)</a></td><td>Contracts</td><td>Multi-label classification</td></tr>
<tr><td>CaseHOLD</td><td><a href="https://arxiv.org/abs/2104.08671">Zheng et al. (2021)</a></td><td>US Law</td><td>Multiple choice QA</td></tr>
</table>

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


## Additional Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)


### Dataset Curators

*Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras.*
*LexGLUE: A Benchmark Dataset for Legal Language Understanding in English.*
*2022. In the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin, Ireland.*


### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

[*Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Martin Katz, and Nikolaos Aletras.*
*LexGLUE: A Benchmark Dataset for Legal Language Understanding in English.*
*2022. In the Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin, Ireland.*](https://arxiv.org/abs/2110.00976)
```
@inproceedings{chalkidis-etal-2021-lexglue,
        title={LexGLUE: A Benchmark Dataset for Legal Language Understanding in English}, 
        author={Chalkidis, Ilias and Jana, Abhik and Hartung, Dirk and
        Bommarito, Michael and Androutsopoulos, Ion and Katz, Daniel Martin and
        Aletras, Nikolaos},
        year={2022},
        booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics},
        address={Dubln, Ireland},
}
```

### Contributions

Thanks to [@iliaschalkidis](https://github.com/iliaschalkidis) for adding this dataset.