Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Size:
10K - 100K
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,97 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- ar
|
7 |
+
- bn
|
8 |
+
- fi
|
9 |
+
- ja
|
10 |
+
- ko
|
11 |
+
- ru
|
12 |
+
- te
|
13 |
+
language_creators:
|
14 |
+
- crowdsourced
|
15 |
+
license:
|
16 |
+
- mit
|
17 |
+
multilinguality:
|
18 |
+
- multilingual
|
19 |
+
pretty_name: XORQA Reading Comprehension
|
20 |
+
size_categories:
|
21 |
+
- '10K<n<100K'
|
22 |
+
source_datasets:
|
23 |
+
- extended|wikipedia
|
24 |
+
task_categories:
|
25 |
+
- question-answering
|
26 |
+
task_ids:
|
27 |
+
- extractive-qa
|
28 |
+
---
|
29 |
+
|
30 |
+
# Dataset Card for "tydi_xor_rc_yes_no_unanswerable"
|
31 |
+
|
32 |
+
|
33 |
+
## Dataset Description
|
34 |
+
|
35 |
+
- **Homepage:** [https://github.com/google-research-datasets/tydiqa](https://github.com/google-research-datasets/tydiqa)
|
36 |
+
- **Paper:** [Paper](https://aclanthology.org/2021.naacl-main.46)
|
37 |
+
|
38 |
+
### Dataset Summary
|
39 |
+
|
40 |
+
[TyDi QA](https://huggingface.co/datasets/tydiqa) is a question answering dataset covering 11 typologically diverse languages.
|
41 |
+
[XORQA](https://github.com/AkariAsai/XORQA) is an extension of the original TyDi QA dataset to also include unanswerable questions, where context documents are only in English but questions are in 7 languages.
|
42 |
+
This dataset is a simplified version of the [Reading Comprehension data](https://nlp.cs.washington.edu/xorqa/XORQA_site/data/tydi_xor_rc_yes_no_unanswerable.zip) from XORQA.
|
43 |
+
|
44 |
+
## Dataset Structure
|
45 |
+
|
46 |
+
The dataset contains a train and a validation set, with 15445 and 3646 examples, respectively. Access them with
|
47 |
+
|
48 |
+
```py
|
49 |
+
from datasets import load_dataset
|
50 |
+
dataset = load_dataset("coastalcph/tydi_xor_rc_yes_no_unanswerable")
|
51 |
+
train_set = dataset["train"]
|
52 |
+
validation_set = dataset["validation"]
|
53 |
+
```
|
54 |
+
|
55 |
+
### Data Instances
|
56 |
+
|
57 |
+
Description of the dataset columns:
|
58 |
+
|
59 |
+
| Column name | type | Description |
|
60 |
+
| ----------- | ----------- | ----------- |
|
61 |
+
| lang | str | The language of the data instance |
|
62 |
+
| question | str | The question to answer |
|
63 |
+
| context | str | The context, a Wikipedia paragraph that might or might not contain the answer to the question |
|
64 |
+
| is_impossible | bool | FALSE if the question can be answered given the context, TRUE otherwise |
|
65 |
+
| answer_start | int | The character index in 'context' where the answer starts. If the question is unanswerable, this is -1 |
|
66 |
+
| answer | str | The answer, a span of text from 'context'. If the question is unanswerable given the context, this can be 'yes' or 'no' |
|
67 |
+
|
68 |
+
|
69 |
+
## Useful stuff
|
70 |
+
|
71 |
+
Check out the [datasets ducumentations](https://huggingface.co/docs/datasets/quickstart) to learn how to manipulate and use the dataset. Specifically, you might find the following functions useful:
|
72 |
+
|
73 |
+
`dataset.filter`, for filtering out data (useful for keeping instances of specific languages, for example).
|
74 |
+
|
75 |
+
`dataset.map`, for manipulating the dataset.
|
76 |
+
|
77 |
+
`dataset.to_pandas`, to convert the dataset into a pandas.DataFrame format.
|
78 |
+
|
79 |
+
|
80 |
+
```
|
81 |
+
@inproceedings{xorqa,
|
82 |
+
title = {{XOR} {QA}: Cross-lingual Open-Retrieval Question Answering},
|
83 |
+
author = {Akari Asai and Jungo Kasai and Jonathan H. Clark and Kenton Lee and Eunsol Choi and Hannaneh Hajishirzi},
|
84 |
+
booktitle={NAACL-HLT},
|
85 |
+
year = {2021}
|
86 |
+
}
|
87 |
+
```
|
88 |
+
|
89 |
+
```
|
90 |
+
@article{tydiqa,
|
91 |
+
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
|
92 |
+
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
|
93 |
+
year = {2020},
|
94 |
+
journal = {Transactions of the Association for Computational Linguistics}
|
95 |
+
}
|
96 |
+
|
97 |
+
```
|