text
stringlengths
4
1.02M
meta
dict
"""Python implementation of 'Mountain Car' environment. An underpowered car must drive up a hill, to succeed you must go back/forth. This is a classic environment in RL research, first described by: A Moore, Efficient Memory-Based Learning for Robot Control, PhD thesis, University of Cambridge, 1990. """ from typing import Optional from bsuite.environments import base from bsuite.experiments.mountain_car import sweep import dm_env from dm_env import specs import numpy as np class MountainCar(base.Environment): """Mountain Car, an underpowered car must power up a hill.""" def __init__(self, max_steps: int = 1000, seed: Optional[int] = None): """Mountain Car, an underpowered car must power up a hill. Args: max_steps : maximum number of steps to perform per episode seed : randomization seed """ super().__init__() self._min_pos = -1.2 self._max_pos = 0.6 self._max_speed = 0.07 self._goal_pos = 0.5 self._force = 0.001 self._gravity = 0.0025 self._max_steps = max_steps self._rng = np.random.RandomState(seed) self._timestep = 0 self._raw_return = 0. self._position = 0. self._velocity = 0. self.bsuite_num_episodes = sweep.NUM_EPISODES def _get_observation(self): obs = [self._position, self._velocity, self._timestep / self._max_steps] return np.array([obs], dtype=np.float32) def _reset(self) -> dm_env.TimeStep: """Random initialize in [-0.6, -0.4] and zero velocity.""" self._timestep = 0 self._position = self._rng.uniform(-0.6, -0.4) self._velocity = 0 return dm_env.restart(self._get_observation()) def _step(self, action: int) -> dm_env.TimeStep: self._timestep += 1 reward = -1. self._raw_return += reward # Step the environment self._velocity += (action - 1) * self._force + np.cos( 3 * self._position) * -self._gravity self._velocity = np.clip(self._velocity, -self._max_speed, self._max_speed) self._position += self._velocity self._position = np.clip(self._position, self._min_pos, self._max_pos) if self._position == self._min_pos: self._velocity = np.clip(self._velocity, 0, self._max_speed) observation = self._get_observation() if self._position >= self._goal_pos or self._timestep >= self._max_steps: return dm_env.termination(reward=reward, observation=observation) return dm_env.transition(reward=reward, observation=observation) def observation_spec(self): return specs.Array(shape=(1, 3), dtype=np.float32, name='observation') def action_spec(self): """Actions [0,1,2] -> [Left, Stay, Right].""" return specs.DiscreteArray(3, name='action') def bsuite_info(self): return dict(raw_return=self._raw_return)
{ "content_hash": "f09e8d4e6db95ff1838cea0f1a24930a", "timestamp": "", "source": "github", "line_count": 87, "max_line_length": 79, "avg_line_length": 32.14942528735632, "alnum_prop": 0.6571326421165534, "repo_name": "deepmind/bsuite", "id": "4eb3e7d91f269285ea0cda25940aaf7f91f8e780", "size": "3527", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "bsuite/environments/mountain_car.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Jupyter Notebook", "bytes": "106470" }, { "name": "Python", "bytes": "448602" }, { "name": "Shell", "bytes": "2425" }, { "name": "TeX", "bytes": "233184" } ], "symlink_target": "" }
''' A demo of Kivy Properties and why they rule ''' from kivy.app import App from kivy.properties import ObjectProperty from kivy.uix.boxlayout import BoxLayout from kivy.lang import Builder from kivy.animation import Animation, AnimationTransition Builder.load_string(''' <ButtonBox>: b1: b1 b2: b2 b3: b3 orientation: 'horizontal' spacing: '10sp' padding: 10, 0, 10, 0 Button: id: b1 text: "one" Button: id: b2 text: "two" Button: id: b3 text: "three" ''') class ButtonBox(BoxLayout): ''' Illustrate animation ''' b1 = ObjectProperty() b2 = ObjectProperty() b3 = ObjectProperty() def start(self): ''' Create and start the animations Note. In production code, you would probably want a different 'on_complete' callback for each animation. We use the same on here for simplicity sake. ''' anim = Animation(size_hint_y=0 if self.b1.size_hint_y > 0.5 else 1, duration=1) anim.bind(on_complete=lambda x, y: self.start()) anim.start(self.b1) anim2 = Animation(size_hint_y=0 if self.b2.size_hint_y > 0.5 else 1, duration=1, transition=AnimationTransition.in_bounce) anim2.start(self.b2) anim3 = Animation(size_hint_y=0 if self.b3.size_hint_y > 0.5 else 1, duration=1, transition=AnimationTransition.in_circ) anim3.start(self.b3) class AnimDemo(App): def build(self): bb = ButtonBox() bb.start() return bb if __name__ == '__main__': AnimDemo().run()
{ "content_hash": "eb496164ccf7b8ee4f0b3fd6c730b9a8", "timestamp": "", "source": "github", "line_count": 69, "max_line_length": 76, "avg_line_length": 25.028985507246375, "alnum_prop": 0.5715112912565142, "repo_name": "Zen-CODE/kivybits", "id": "0e9b8f0d255d874b4f07878fb8418ad5b3bad471", "size": "1727", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Examples/Properties/main.py", "mode": "33261", "license": "mit", "language": [ { "name": "HTML", "bytes": "758604" }, { "name": "Jupyter Notebook", "bytes": "48393" }, { "name": "Python", "bytes": "6343" } ], "symlink_target": "" }
from conure.libs.db import db from .user import UserAccesser # user <-> sites class Sub(db.Document,UserAccesser): feedsite = db.ReferenceField("FeedSite") #counter = db.IntField(default=0) unread_counter = db.IntField(default=0) start_date = db.DateTimeField() meta = { 'allow_inheritance': False, 'index_types': False, 'indexes': [ {'fields': ['userid','feedsite'],'unique': True}, ] } @classmethod def get_sub_by_userid_feedsite(cls,userid=None,feedsite=None): return cls.objects(userid=userid,feedsite=feedsite).first() @classmethod def get_unread_counter_by_userid_feedsite(cls,userid=None,feedsite=None): return cls.objects(userid=userid,feedsite=feedsite).only("unread_counter").first().unread_counter @classmethod def add_sub(cls,userid,feedsite): from feed import Feed self = cls(userid=userid,feedsite=feedsite) self.userid = userid self.feedsite = feedsite temp = feedsite.feed_item_counter self.unread_counter = temp if temp <=15 else 15 self.start_date = feedsite.get_last_feed(skip=self.unread_counter-1).create_date self.save() feeds = Feed.get_feed_items_by_siteid(siteid=feedsite.id, limit=temp) for feed in feeds: ReadFeed.add(feed,userid) return self @classmethod def exist_sub(cls,userid=None,feedsite=None): return cls.objects(userid=userid,feedsite=feedsite).first() is not None # all user sub subscript is in uncategoried folder # user <-> folder <- sites <- feed # for only for view, ignore at first class FeedFolder(db.Document,UserAccesser): name = db.StringField(required=True) site_list = db.ListField(db.ReferenceField("FeedSite")) has_open = db.BooleanField(default=False) meta = { 'allow_inheritance': False, 'index_types': False, 'indexes': [ {'fields': ['userid']}, ] } @classmethod def get_folders_by_userid(cls,userid): return cls.objects(userid=userid) def safe_save(self): self.save() def safe_delete(self): self.delete() @property def unread_feeds(self): pass @property def unread_feeds_counter(self): #100+ not 1000+ sum_counter = 0 for fs in self.site_list: t = self.user.get_unread_feeds_on_feedsite(fs) sum_counter += t return sum_counter if sum_counter <= 100 else "100+" #user <-> feeds, means use start a feed; #it is possible that user can star a feed but have not read it class StarFeed(db.Document,UserAccesser): pass #user <-> feeds, means user has read the feed class ReadFeed(db.Document,UserAccesser): feed = db.ReferenceField("Feed") unread = db.BooleanField(default=True) meta = { 'allow_inheritance': False, 'index_types': False, 'indexes': [ {'fields': ['feed','userid'], 'unique': True}, ] } @classmethod def add(cls,feed,userid): return cls(feed=feed,userid=userid).save() def safe_save(self): self.save() @classmethod def get_readfeed_by_feed_and_userid(cls,feed=None, userid=None): return ReadFeed.objects(feed=feed,userid=userid).first()
{ "content_hash": "6fd60b00e0586e2f42a0dac9a6918b56", "timestamp": "", "source": "github", "line_count": 127, "max_line_length": 105, "avg_line_length": 28.165354330708663, "alnum_prop": 0.586525020967291, "repo_name": "zhy0216/google-read-clone", "id": "26f44d8c5b749a3bc3992490bf677f0cca94e548", "size": "3579", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "conure/model/user_feed.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "405167" }, { "name": "JavaScript", "bytes": "103219" }, { "name": "Python", "bytes": "17153" } ], "symlink_target": "" }
import json import logging import ssl import threading import websocket from ..compat import queue from .event_factory import SlackEventDict def send_messages(q, websocket, keep_alive=True, donotdie=True): logger = logging.getLogger(__name__) ping_msg = json.dumps({'type': 'ping'}).encode('utf-8') while True: try: msg = q.get(timeout=3) websocket.send(msg) raise RuntimeError except queue.Empty: if keep_alive: websocket.send(ping_msg) except Exception as e: if donotdie: logger.debug("Something went wrong in the message sender: {}".format(e), exc_info=True) continue else: logger.exception(e) raise e def receive_messages(q, websocket, ignore_pong=True, donotdie=True): logger = logging.getLogger(__name__) while True: try: msg = json.loads(websocket.recv()) if msg['type'] == 'pong' and ignore_pong: continue else: q.put(msg) raise RuntimeError except ssl.SSLError as e: if e.errno == 2: logger.debug("Something went wrong in the message receiver: {}".format(e), exc_info=True) continue except Exception as e: if donotdie: logger.debug("Something went wrong in the message receiver: {}".format(e), exc_info=True) continue else: logger.exception(e) raise e class SlackRTMClient(object): """The RTM Client """ def __init__(self, token, url, event_factory=SlackEventDict, client=None, keep_alive=True, ignore_pong=True, donotdie=True): """ :param token: A :class:`str` token :param url: A :class:`str` the base url for slack :param event_factory: A class to process events coming off the real time messaging api :param client: A :class:`slackly.SlackClient` or None. :param keep_alive: The option to have the websocket automatically written to at least every 3 seconds :param ignore_pong: Whether to emit or squash the response to pings """ if client is None: from .api_client import SlackClient client = SlackClient(token=token) self.client = client self.token = token self.url = url self.event_factory = event_factory self.donotdie = True self.websocket = None self.send_queue = queue.Queue() self.send_daemon = None self.keep_alive = keep_alive self.receive_queue = queue.Queue() self.receive_daemon = None self.ignore_pong = ignore_pong self.connected = False @classmethod def from_response(cls, endpoint, token, response): url = response['url'] rtm_client = cls(token=token, url=url) rtm_client.connect() return rtm_client @classmethod def from_token(cls, token): from .api_client import SlackClient from ..api import SlackAPI client = SlackClient(token=token) api = SlackAPI() api.bind = client return api.rtm.connect() @classmethod def from_client(cls, client): from ..api import SlackAPI api = SlackAPI() api.bind = client rtm_client = api.rtm.connect() rtm_client.client = client return rtm_client def connect(self): self.websocket = websocket.create_connection(self.url) self.websocket.sock.setblocking(True) self.send_daemon = threading.Thread(target=send_messages, args=(self.send_queue, self.websocket, self.keep_alive, self.donotdie), daemon=True) self.send_daemon.start() self.receive_daemon = threading.Thread(target=receive_messages, args=(self.receive_queue, self.websocket, self.donotdie), daemon=True) self.receive_daemon.start() self.connected = True def get_event(self, timeout=None): try: return self.event_factory(self.receive_queue.get(timeout=timeout)) except queue.Empty: pass def get_events(self): while True: try: yield self.event_factory(self.receive_queue.get(block=False)) except queue.Empty: break def get_events_forever(self): while True: yield self.get_event() def send_event(self, event): event_bytes = json.dumps(event).encode('utf-8') self.send_queue.put(event_bytes) def __repr__(self): inbox = self.receive_queue.qsize() outbox = self.send_queue.qsize() token = "...{}".format(self.token[-5:]) return "{cls.__class__.__name__}(token='{token}' | " \ "connected: {cls.connected} | " \ "inbox: {inbox} | " \ "outbox: {outbox})".format(cls=self, token=token, inbox=inbox, outbox=outbox)
{ "content_hash": "960a0ab267253933fd633130ae18ee0c", "timestamp": "", "source": "github", "line_count": 157, "max_line_length": 150, "avg_line_length": 32.21656050955414, "alnum_prop": 0.582839066824832, "repo_name": "huntcsg/slackly", "id": "18e7d631360ffe470d42fc5ab4ecbf832ad66379", "size": "5058", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/slackly/client/rtm_client.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "362475" }, { "name": "Shell", "bytes": "1497" } ], "symlink_target": "" }
from math import sqrt, acos, pi from decimal import Decimal, getcontext getcontext().prec = 30 class Vector(object): CANNOT_NORMALIZE_ZERO_VECTOR_MESG = 'Cannot normalize the zero vector' def __init__(self, coordinates): try: if not coordinates: raise ValueError self.coordinates = tuple([Decimal(x) for x in coordinates]) self.dimension = len(self.coordinates) except ValueError: raise ValueError('The coordinates must be nonempty') except TypeError: raise TypeError('The coordinates must be an iterable') def __str__(self): return 'Vector: {}'.format(self.coordinates) def __eq__(self, v): return self.coordinates == v.coordinates def plus(self, v): new_coordinates = [x+y for x,y in zip(self.coordinates, v.coordinates)] return Vector(new_coordinates) def minus(self, v): new_coordinates = [x-y for x,y in zip(self.coordinates, v.coordinates)] return Vector(new_coordinates) def times_scalar(self, c): new_coordinates = [x*c for x in self.coordinates] return Vector(new_coordinates) def magnitude(self): coordinates_squared = [x**2 for x in self.coordinates] return sqrt(sum(coordinates_squared)) def normalized(self): try: magnitude = self.magnitude() return self.times_scalar(Decimal('1.0')/magnitude) except ZeroDivisionError: raise Exception('Cannot normalize the zero vector') def dot(self, v): return sum([x*y for x,y in zip(self.coordinates, v.coordinates)]) # in_degrees will return either degrees or radians def angle_with(self, v, in_degrees=False): try: u1 = self.normalized() u2 = v.normalized() angle_in_radians = acos(u1.dot(u2)) if in_degrees: degrees_per_radian = 180. / pi return angle_in_radians * degrees_per_radian else: return angle_in_radians except Exception as e: if str(e) == self.CANNOT_NORMALIZE_ZERO_VECTOR_MESG: raise Exception('Cannot compute an angle with the zero vector') else: raise e v = Vector(['7.887', '4.138']) w = Vector(['-8.802', '6.776']) print v.dot(w)
{ "content_hash": "5b045545b8a24a5dcaecb733f0bbdb27", "timestamp": "", "source": "github", "line_count": 81, "max_line_length": 79, "avg_line_length": 29.51851851851852, "alnum_prop": 0.5943120033458804, "repo_name": "famunity/deep-learning-term1", "id": "4067d024ba4b34e20928db9e26b05f314c05b5e4", "size": "2391", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "3LinearAlgebra/lesson1/vector.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "903" }, { "name": "HTML", "bytes": "375105" }, { "name": "Jupyter Notebook", "bytes": "42842" }, { "name": "Python", "bytes": "60143" } ], "symlink_target": "" }
""" This module defines the FeffInputSet abstract base class and a concrete implementation for the Materials Project. The basic concept behind an input set is to specify a scheme to generate a consistent set of Feff inputs from a structure without further user intervention. This ensures comparability across runs. """ import abc import logging import os import sys from copy import deepcopy import numpy as np from monty.json import MSONable from monty.os.path import zpath from monty.serialization import loadfn from pymatgen.io.feff.inputs import Atoms, Header, Potential, Tags __author__ = "Kiran Mathew" __credits__ = "Alan Dozier, Anubhav Jain, Shyue Ping Ong" __version__ = "1.1" __maintainer__ = "Kiran Mathew" __email__ = "kmathew@lbl.gov" __date__ = "Sept 10, 2016" MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s: %(levelname)s: %(name)s: %(message)s") sh = logging.StreamHandler(stream=sys.stdout) sh.setFormatter(formatter) logger.addHandler(sh) class AbstractFeffInputSet(MSONable, metaclass=abc.ABCMeta): """ Abstract base class representing a set of Feff input parameters. The idea is that using a FeffInputSet, a complete set of input files (feffPOT, feffXANES, feffEXAFS, ATOMS, feff.inp)set_ can be generated in an automated fashion for any structure. """ @abc.abstractmethod def header(self): """ Returns header to be used in feff.inp file from a pymatgen structure """ @property @abc.abstractmethod def atoms(self): """ Returns Atoms string from a structure that goes in feff.inp file. Returns: Atoms object. """ @property @abc.abstractmethod def tags(self): """ Returns standard calculation parameters. """ return @property @abc.abstractmethod def potential(self): """ Returns POTENTIAL section used in feff.inp from a structure. """ def all_input(self): """ Returns all input files as a dict of {filename: feffio object} """ d = {"HEADER": self.header(), "PARAMETERS": self.tags} if "RECIPROCAL" not in self.tags: d.update({"POTENTIALS": self.potential, "ATOMS": self.atoms}) return d def write_input(self, output_dir=".", make_dir_if_not_present=True): """ Writes a set of FEFF input to a directory. Args: output_dir: Directory to output the FEFF input files make_dir_if_not_present: Set to True if you want the directory ( and the whole path) to be created if it is not present. """ if make_dir_if_not_present and not os.path.exists(output_dir): os.makedirs(output_dir) feff = self.all_input() feff_input = "\n\n".join(str(feff[k]) for k in ["HEADER", "PARAMETERS", "POTENTIALS", "ATOMS"] if k in feff) for k, v in feff.items(): with open(os.path.join(output_dir, k), "w") as f: f.write(str(v)) with open(os.path.join(output_dir, "feff.inp"), "w") as f: f.write(feff_input) # write the structure to cif file if "ATOMS" not in feff: self.atoms.struct.to(fmt="cif", filename=os.path.join(output_dir, feff["PARAMETERS"]["CIF"])) class FEFFDictSet(AbstractFeffInputSet): """ Standard implementation of FeffInputSet, which can be extended by specific implementations. """ def __init__( self, absorbing_atom, structure, radius, config_dict, edge="K", spectrum="EXAFS", nkpts=1000, user_tag_settings=None, ): """ Args: absorbing_atom (str/int): absorbing atom symbol or site index structure (Structure): input structure radius (float): cluster radius config_dict (dict): control tag settings dict edge (str): absorption edge spectrum (str): type of spectrum to calculate, available options : EXAFS, XANES, DANES, XMCD, ELNES, EXELFS, FPRIME, NRIXS, XES. The default is EXAFS. nkpts (int): Total number of kpoints in the brillouin zone. Used only when feff is run in the reciprocal space mode. user_tag_settings (dict): override default tag settings. To delete tags, set the key '_del' in the user_tag_settings. eg: user_tag_settings={"_del": ["COREHOLE", "EXCHANGE"]} """ self.absorbing_atom = absorbing_atom self.structure = structure self.radius = radius self.config_dict = deepcopy(config_dict) self.edge = edge self.spectrum = spectrum self.nkpts = nkpts self.user_tag_settings = user_tag_settings or {} self.config_dict["EDGE"] = self.edge self.config_dict.update(self.user_tag_settings) if "_del" in self.user_tag_settings: for tag in self.user_tag_settings["_del"]: if tag in self.config_dict: del self.config_dict[tag] del self.config_dict["_del"] # k-space feff only for small systems. The hardcoded system size in # feff is around 14 atoms. self.small_system = len(self.structure) < 14 and "EXAFS" not in self.config_dict def header(self, source="", comment=""): """ Creates header string from structure object Args: source: Source identifier used to create structure, can be defined however user wants to organize structures, calculations, etc. example would be Materials Project material ID number. comment: comment to include in header Returns: Header """ return Header(self.structure, source, comment) @property def tags(self): """ FEFF job parameters. Returns: Tags """ if "RECIPROCAL" in self.config_dict: if self.small_system: self.config_dict["CIF"] = f"{self.structure.formula.replace(' ', '')}.cif" self.config_dict["TARGET"] = self.atoms.center_index + 1 self.config_dict["COREHOLE"] = "RPA" logger.warning("Setting COREHOLE = RPA for K-space calculation") if not self.config_dict.get("KMESH", None): abc = self.structure.lattice.abc mult = (self.nkpts * abc[0] * abc[1] * abc[2]) ** (1 / 3) self.config_dict["KMESH"] = [int(round(mult / l)) for l in abc] else: logger.warning( "Large system(>=14 atoms) or EXAFS calculation, \ removing K-space settings" ) del self.config_dict["RECIPROCAL"] self.config_dict.pop("CIF", None) self.config_dict.pop("TARGET", None) self.config_dict.pop("KMESH", None) self.config_dict.pop("STRFAC", None) return Tags(self.config_dict) @property def potential(self): """ FEFF potential Returns: Potential """ return Potential(self.structure, self.absorbing_atom) @property def atoms(self): """ absorber + the rest Returns: Atoms """ return Atoms(self.structure, self.absorbing_atom, self.radius) def __str__(self): output = [self.spectrum] output.extend([f"{k} = {v}" for k, v in self.config_dict.items()]) output.append("") return "\n".join(output) @staticmethod def from_directory(input_dir): """ Read in a set of FEFF input files from a directory, which is useful when existing FEFF input needs some adjustment. """ sub_d = {} for fname, ftype in [("HEADER", Header), ("PARAMETERS", Tags)]: fullzpath = zpath(os.path.join(input_dir, fname)) sub_d[fname.lower()] = ftype.from_file(fullzpath) # Generation of FEFFDict set requires absorbing atom, need to search # the index of absorption atom in the structure according to the # distance matrix and shell species information contained in feff.inp absorber_index = [] radius = None feffinp = zpath(os.path.join(input_dir, "feff.inp")) if "RECIPROCAL" not in sub_d["parameters"]: input_atoms = Atoms.cluster_from_file(feffinp) shell_species = np.array([x.species_string for x in input_atoms]) # First row of distance matrix represents the distance from the absorber to # the rest atoms distance_matrix = input_atoms.distance_matrix[0, :] # Get radius value from math import ceil radius = int( ceil( input_atoms.get_distance( input_atoms.index(input_atoms[0]), input_atoms.index(input_atoms[-1]), ) ) ) for site_index, site in enumerate(sub_d["header"].struct): if site.specie == input_atoms[0].specie: site_atoms = Atoms(sub_d["header"].struct, absorbing_atom=site_index, radius=radius) site_distance = np.array(site_atoms.get_lines())[:, 5].astype(np.float64) site_shell_species = np.array(site_atoms.get_lines())[:, 4] shell_overlap = min(shell_species.shape[0], site_shell_species.shape[0]) if np.allclose(distance_matrix[:shell_overlap], site_distance[:shell_overlap]) and np.all( site_shell_species[:shell_overlap] == shell_species[:shell_overlap] ): absorber_index.append(site_index) if "RECIPROCAL" in sub_d["parameters"]: absorber_index = sub_d["parameters"]["TARGET"] absorber_index[0] = int(absorber_index[0]) - 1 # Generate the input set if "XANES" in sub_d["parameters"]: CONFIG = loadfn(os.path.join(MODULE_DIR, "MPXANESSet.yaml")) if radius is None: radius = 10 return FEFFDictSet( absorber_index[0], sub_d["header"].struct, radius=radius, config_dict=CONFIG, edge=sub_d["parameters"]["EDGE"], nkpts=1000, user_tag_settings=sub_d["parameters"], ) raise ValueError("Bad input directory.") class MPXANESSet(FEFFDictSet): """ FeffDictSet for XANES spectroscopy. """ CONFIG = loadfn(os.path.join(MODULE_DIR, "MPXANESSet.yaml")) def __init__( self, absorbing_atom, structure, edge="K", radius=10.0, nkpts=1000, user_tag_settings=None, ): """ Args: absorbing_atom (str/int): absorbing atom symbol or site index structure (Structure): input edge (str): absorption edge radius (float): cluster radius in Angstroms. nkpts (int): Total number of kpoints in the brillouin zone. Used only when feff is run in the reciprocal space mode. user_tag_settings (dict): override default tag settings """ super().__init__( absorbing_atom, structure, radius, MPXANESSet.CONFIG, edge=edge, spectrum="XANES", nkpts=nkpts, user_tag_settings=user_tag_settings, ) class MPEXAFSSet(FEFFDictSet): """ FeffDictSet for EXAFS spectroscopy. """ CONFIG = loadfn(os.path.join(MODULE_DIR, "MPEXAFSSet.yaml")) def __init__( self, absorbing_atom, structure, edge="K", radius=10.0, nkpts=1000, user_tag_settings=None, ): """ Args: absorbing_atom (str/int): absorbing atom symbol or site index structure (Structure): input structure edge (str): absorption edge radius (float): cluster radius in Angstroms. nkpts (int): Total number of kpoints in the brillouin zone. Used only when feff is run in the reciprocal space mode. user_tag_settings (dict): override default tag settings """ super().__init__( absorbing_atom, structure, radius, MPEXAFSSet.CONFIG, edge=edge, spectrum="EXAFS", nkpts=nkpts, user_tag_settings=user_tag_settings, ) class MPEELSDictSet(FEFFDictSet): """ FeffDictSet for ELNES spectroscopy. """ def __init__( self, absorbing_atom, structure, edge, spectrum, radius, beam_energy, beam_direction, collection_angle, convergence_angle, config_dict, user_eels_settings=None, nkpts=1000, user_tag_settings=None, ): """ Args: absorbing_atom (str/int): absorbing atom symbol or site index structure (Structure): input structure edge (str): absorption edge spectrum (str): ELNES or EXELFS radius (float): cluster radius in Angstroms. beam_energy (float): Incident beam energy in keV beam_direction (list): Incident beam direction. If None, the cross section will be averaged. collection_angle (float): Detector collection angle in mrad. convergence_angle (float): Beam convergence angle in mrad. user_eels_settings (dict): override default EELS config. See MPELNESSet.yaml for supported keys. nkpts (int): Total number of kpoints in the brillouin zone. Used only when feff is run in the reciprocal space mode. user_tag_settings (dict): override default tag settings """ self.beam_energy = beam_energy self.beam_direction = beam_direction self.collection_angle = collection_angle self.convergence_angle = convergence_angle self.user_eels_settings = user_eels_settings eels_config_dict = deepcopy(config_dict) if beam_direction: beam_energy_list = [beam_energy, 0, 1, 1] eels_config_dict[spectrum]["BEAM_DIRECTION"] = beam_direction else: beam_energy_list = [beam_energy, 1, 0, 1] del eels_config_dict[spectrum]["BEAM_DIRECTION"] eels_config_dict[spectrum]["BEAM_ENERGY"] = beam_energy_list eels_config_dict[spectrum]["ANGLES"] = [collection_angle, convergence_angle] if user_eels_settings: eels_config_dict[spectrum].update(user_eels_settings) super().__init__( absorbing_atom, structure, radius, eels_config_dict, edge=edge, spectrum=spectrum, nkpts=nkpts, user_tag_settings=user_tag_settings, ) class MPELNESSet(MPEELSDictSet): """ FeffDictSet for ELNES spectroscopy. """ CONFIG = loadfn(os.path.join(MODULE_DIR, "MPELNESSet.yaml")) def __init__( self, absorbing_atom, structure, edge="K", radius=10.0, beam_energy=100, beam_direction=None, collection_angle=1, convergence_angle=1, user_eels_settings=None, nkpts=1000, user_tag_settings=None, ): """ Args: absorbing_atom (str/int): absorbing atom symbol or site index structure (Structure): input structure edge (str): absorption edge radius (float): cluster radius in Angstroms. beam_energy (float): Incident beam energy in keV beam_direction (list): Incident beam direction. If None, the cross section will be averaged. collection_angle (float): Detector collection angle in mrad. convergence_angle (float): Beam convergence angle in mrad. user_eels_settings (dict): override default EELS config. See MPELNESSet.yaml for supported keys. nkpts (int): Total number of kpoints in the brillouin zone. Used only when feff is run in the reciprocal space mode. user_tag_settings (dict): override default tag settings """ super().__init__( absorbing_atom, structure, edge, "ELNES", radius, beam_energy, beam_direction, collection_angle, convergence_angle, MPELNESSet.CONFIG, user_eels_settings=user_eels_settings, nkpts=nkpts, user_tag_settings=user_tag_settings, ) class MPEXELFSSet(MPEELSDictSet): """ FeffDictSet for EXELFS spectroscopy. """ CONFIG = loadfn(os.path.join(MODULE_DIR, "MPEXELFSSet.yaml")) def __init__( self, absorbing_atom, structure, edge="K", radius=10.0, beam_energy=100, beam_direction=None, collection_angle=1, convergence_angle=1, user_eels_settings=None, nkpts=1000, user_tag_settings=None, ): """ Args: absorbing_atom (str/int): absorbing atom symbol or site index structure (Structure): input structure edge (str): absorption edge radius (float): cluster radius in Angstroms. beam_energy (float): Incident beam energy in keV beam_direction (list): Incident beam direction. If None, the cross section will be averaged. collection_angle (float): Detector collection angle in mrad. convergence_angle (float): Beam convergence angle in mrad. user_eels_settings (dict): override default EELS config. See MPEXELFSSet.yaml for supported keys. nkpts (int): Total number of kpoints in the brillouin zone. Used only when feff is run in the reciprocal space mode. user_tag_settings (dict): override default tag settings """ super().__init__( absorbing_atom, structure, edge, "EXELFS", radius, beam_energy, beam_direction, collection_angle, convergence_angle, MPEXELFSSet.CONFIG, user_eels_settings=user_eels_settings, nkpts=nkpts, user_tag_settings=user_tag_settings, )
{ "content_hash": "efd27d0cebe957badd8a7188c402bf24", "timestamp": "", "source": "github", "line_count": 571, "max_line_length": 116, "avg_line_length": 33.486865148861646, "alnum_prop": 0.5665498666387742, "repo_name": "fraricci/pymatgen", "id": "d4c36025dd65b4e702c6c405cd520d7ee39b131f", "size": "19215", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pymatgen/io/feff/sets.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "87" }, { "name": "CSS", "bytes": "7572" }, { "name": "Cython", "bytes": "38793" }, { "name": "HTML", "bytes": "12642493" }, { "name": "OpenEdge ABL", "bytes": "312" }, { "name": "Python", "bytes": "9195124" }, { "name": "Roff", "bytes": "1407429" }, { "name": "Shell", "bytes": "12027" } ], "symlink_target": "" }
import copy as cp import numpy as np from scipy import linalg from .mixin import TransformerMixin from ..cov import _regularized_covariance class CSP(TransformerMixin): """M/EEG signal decomposition using the Common Spatial Patterns (CSP). This object can be used as a supervised decomposition to estimate spatial filters for feature extraction in a 2 class decoding problem. CSP in the context of EEG was first described in [1]; a comprehensive tutorial on CSP can be found in [2]. Parameters ---------- n_components : int (default 4) The number of components to decompose M/EEG signals. This number should be set by cross-validation. reg : float | str | None (default None) if not None, allow regularization for covariance estimation if float, shrinkage covariance is used (0 <= shrinkage <= 1). if str, optimal shrinkage using Ledoit-Wolf Shrinkage ('ledoit_wolf') or Oracle Approximating Shrinkage ('oas'). log : bool (default True) If true, apply log to standardize the features. If false, features are just z-scored. Attributes ---------- filters_ : ndarray, shape (n_channels, n_channels) If fit, the CSP components used to decompose the data, else None. patterns_ : ndarray, shape (n_channels, n_channels) If fit, the CSP patterns used to restore M/EEG signals, else None. mean_ : ndarray, shape (n_channels,) If fit, the mean squared power for each component. std_ : ndarray, shape (n_channels,) If fit, the std squared power for each component. References ---------- [1] Zoltan J. Koles, Michael S. Lazar, Steven Z. Zhou. Spatial Patterns Underlying Population Differences in the Background EEG. Brain Topography 2(4), 275-284, 1990. [2] Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe, Klaus-Robert Müller. Optimizing Spatial Filters for Robust EEG Single-Trial Analysis. IEEE Signal Processing Magazine 25(1), 41-56, 2008. """ def __init__(self, n_components=4, reg=None, log=True): """Init of CSP.""" self.n_components = n_components self.reg = reg self.log = log self.filters_ = None self.patterns_ = None self.mean_ = None self.std_ = None def fit(self, epochs_data, y): """Estimate the CSP decomposition on epochs. Parameters ---------- epochs_data : ndarray, shape (n_epochs, n_channels, n_times) The data to estimate the CSP on. y : array, shape (n_epochs,) The class for each epoch. Returns ------- self : instance of CSP Returns the modified instance. """ if not isinstance(epochs_data, np.ndarray): raise ValueError("epochs_data should be of type ndarray (got %s)." % type(epochs_data)) epochs_data = np.atleast_3d(epochs_data) # check number of epochs if epochs_data.shape[0] != len(y): raise ValueError("n_epochs must be the same for epochs_data and y") classes = np.unique(y) if len(classes) != 2: raise ValueError("More than two different classes in the data.") # concatenate epochs class_1 = np.transpose(epochs_data[y == classes[0]], [1, 0, 2]).reshape(epochs_data.shape[1], -1) class_2 = np.transpose(epochs_data[y == classes[1]], [1, 0, 2]).reshape(epochs_data.shape[1], -1) cov_1 = _regularized_covariance(class_1, reg=self.reg) cov_2 = _regularized_covariance(class_2, reg=self.reg) cov_1 /= np.trace(cov_1) cov_2 /= np.trace(cov_2) e, w = linalg.eigh(cov_1, cov_1 + cov_2) n_vals = len(e) # Rearrange vectors ind = np.empty(n_vals, dtype=int) ind[::2] = np.arange(n_vals - 1, n_vals // 2 - 1, -1) ind[1::2] = np.arange(0, int(np.ceil(n_vals / 2.0)) - 1) w = w[:, ind] # first, last, second, second last, third, ... self.filters_ = w.T self.patterns_ = linalg.pinv(w) pick_filters = self.filters_[:self.n_components] X = np.asarray([np.dot(pick_filters, epoch) for epoch in epochs_data]) # compute features (mean band power) X = (X ** 2).mean(axis=-1) # To standardize features self.mean_ = X.mean(axis=0) self.std_ = X.std(axis=0) return self def transform(self, epochs_data, y=None): """Estimate epochs sources given the CSP filters. Parameters ---------- epochs_data : array, shape (n_epochs, n_channels, n_times) The data. y : None Not used. Returns ------- X : ndarray of shape (n_epochs, n_sources) The CSP features averaged over time. """ if not isinstance(epochs_data, np.ndarray): raise ValueError("epochs_data should be of type ndarray (got %s)." % type(epochs_data)) if self.filters_ is None: raise RuntimeError('No filters available. Please first fit CSP ' 'decomposition.') pick_filters = self.filters_[:self.n_components] X = np.asarray([np.dot(pick_filters, epoch) for epoch in epochs_data]) # compute features (mean band power) X = (X ** 2).mean(axis=-1) if self.log: X = np.log(X) else: X -= self.mean_ X /= self.std_ return X def plot_patterns(self, info, components=None, ch_type=None, layout=None, vmin=None, vmax=None, cmap='RdBu_r', sensors=True, colorbar=True, scale=None, scale_time=1, unit=None, res=64, size=1, cbar_fmt='%3.1f', name_format='CSP%01d', proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', average=None, head_pos=None): """Plot topographic patterns of CSP components. The CSP patterns explain how the measured data was generated from the neural sources (a.k.a. the forward model). Parameters ---------- info : instance of Info Info dictionary of the epochs used to fit CSP. If not possible, consider using ``create_info``. components : float | array of floats | None. The CSP patterns to plot. If None, n_components will be shown. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then channels are chosen in the order given above. layout : None | Layout Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout file is inferred from the data; if no appropriate layout file was found the layout is automatically generated from the sensor locations. vmin : float | callable The value specfying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data). If callable, the output equals vmin(data). vmax : float | callable The value specfying the upper bound of the color range. If None, the maximum absolute value is used. If vmin is None, but vmax is not, defaults to np.min(data). If callable, the output equals vmax(data). cmap : matplotlib colormap Colormap. For magnetometers and eeg defaults to 'RdBu_r', else 'Reds'. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. colorbar : bool Plot a colorbar. scale : dict | float | None Scale the data for plotting. If None, defaults to 1e6 for eeg, 1e13 for grad and 1e15 for mag. scale_time : float | None Scale the time labels. Defaults to 1. unit : dict | str | None The unit of the channel type used for colorbar label. If scale is None the unit is automatically determined. res : int The resolution of the topomap image (n pixels along each side). size : float Side length per topomap in inches. cbar_fmt : str String format for colorbar values. name_format : str String format for topomap values. Defaults to "CSP%01d" proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be show. show : bool Show figure if True. show_names : bool | callable If True, show channel names on top of the map. If a callable is passed, channel names will be formatted using the callable; e.g., to delete the prefix 'MEG ' from all channel names, pass the function lambda x: x.replace('MEG ', ''). If `mask` is not None, only significant sensors will be shown. title : str | None Title. If None (default), no title is displayed. mask : ndarray of bool, shape (n_channels, n_times) | None The channels to be marked as significant at a given time point. Indicies set to `True` will be considered. Defaults to None. mask_params : dict | None Additional plotting parameters for plotting significant sensors. Default (None) equals:: dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0, markersize=4) outlines : 'head' | 'skirt' | dict | None The outlines to be drawn. If 'head', the default head scheme will be drawn. If 'skirt' the head scheme will be drawn, but sensors are allowed to be plotted outside of the head circle. If dict, each key refers to a tuple of x and y positions, the values in 'mask_pos' will serve as image mask, and the 'autoshrink' (bool) field will trigger automated shrinking of the positions due to points outside the outline. Alternatively, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). If None, nothing will be drawn. Defaults to 'head'. contours : int | False | None The number of contour lines to draw. If 0, no contours will be drawn. image_interp : str The image interpolation to be used. All matplotlib options are accepted. average : float | None The time window around a given time to be used for averaging (seconds). For example, 0.01 would translate into window that starts 5 ms before and ends 5 ms after a given time point. Defaults to None, which means no averaging. head_pos : dict | None If None (default), the sensors are positioned such that they span the head circle. If dict, can have entries 'center' (tuple) and 'scale' (tuple) for what the center and scale of the head should be relative to the electrode locations. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ from .. import EvokedArray if components is None: components = np.arange(self.n_components) # set sampling frequency to have 1 component per time point info = cp.deepcopy(info) info['sfreq'] = 1. # create an evoked patterns = EvokedArray(self.patterns_.T, info, tmin=0) # the call plot_topomap return patterns.plot_topomap(times=components, ch_type=ch_type, layout=layout, vmin=vmin, vmax=vmax, cmap=cmap, colorbar=colorbar, res=res, cbar_fmt=cbar_fmt, sensors=sensors, scale=1, scale_time=1, unit='a.u.', time_format=name_format, size=size, show_names=show_names, mask_params=mask_params, mask=mask, outlines=outlines, contours=contours, image_interp=image_interp, show=show, head_pos=head_pos) def plot_filters(self, info, components=None, ch_type=None, layout=None, vmin=None, vmax=None, cmap='RdBu_r', sensors=True, colorbar=True, scale=None, scale_time=1, unit=None, res=64, size=1, cbar_fmt='%3.1f', name_format='CSP%01d', proj=False, show=True, show_names=False, title=None, mask=None, mask_params=None, outlines='head', contours=6, image_interp='bilinear', average=None, head_pos=None): """Plot topographic filters of CSP components. The CSP filters are used to extract discriminant neural sources from the measured data (a.k.a. the backward model). Parameters ---------- info : instance of Info Info dictionary of the epochs used to fit CSP. If not possible, consider using ``create_info``. components : float | array of floats | None. The CSP patterns to plot. If None, n_components will be shown. ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None, then channels are chosen in the order given above. layout : None | Layout Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout file is inferred from the data; if no appropriate layout file was found the layout is automatically generated from the sensor locations. vmin : float | callable The value specfying the lower bound of the color range. If None, and vmax is None, -vmax is used. Else np.min(data). If callable, the output equals vmin(data). vmax : float | callable The value specfying the upper bound of the color range. If None, the maximum absolute value is used. If vmin is None, but vmax is not, defaults to np.min(data). If callable, the output equals vmax(data). cmap : matplotlib colormap Colormap. For magnetometers and eeg defaults to 'RdBu_r', else 'Reds'. sensors : bool | str Add markers for sensor locations to the plot. Accepts matplotlib plot format string (e.g., 'r+' for red plusses). If True, a circle will be used (via .add_artist). Defaults to True. colorbar : bool Plot a colorbar. scale : dict | float | None Scale the data for plotting. If None, defaults to 1e6 for eeg, 1e13 for grad and 1e15 for mag. scale_time : float | None Scale the time labels. Defaults to 1. unit : dict | str | None The unit of the channel type used for colorbar label. If scale is None the unit is automatically determined. res : int The resolution of the topomap image (n pixels along each side). size : float Side length per topomap in inches. cbar_fmt : str String format for colorbar values. name_format : str String format for topomap values. Defaults to "CSP%01d" proj : bool | 'interactive' If true SSP projections are applied before display. If 'interactive', a check box for reversible selection of SSP projection vectors will be show. show : bool Show figure if True. show_names : bool | callable If True, show channel names on top of the map. If a callable is passed, channel names will be formatted using the callable; e.g., to delete the prefix 'MEG ' from all channel names, pass the function lambda x: x.replace('MEG ', ''). If `mask` is not None, only significant sensors will be shown. title : str | None Title. If None (default), no title is displayed. mask : ndarray of bool, shape (n_channels, n_times) | None The channels to be marked as significant at a given time point. Indicies set to `True` will be considered. Defaults to None. mask_params : dict | None Additional plotting parameters for plotting significant sensors. Default (None) equals:: dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0, markersize=4) outlines : 'head' | 'skirt' | dict | None The outlines to be drawn. If 'head', the default head scheme will be drawn. If 'skirt' the head scheme will be drawn, but sensors are allowed to be plotted outside of the head circle. If dict, each key refers to a tuple of x and y positions, the values in 'mask_pos' will serve as image mask, and the 'autoshrink' (bool) field will trigger automated shrinking of the positions due to points outside the outline. Alternatively, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). If None, nothing will be drawn. Defaults to 'head'. contours : int | False | None The number of contour lines to draw. If 0, no contours will be drawn. image_interp : str The image interpolation to be used. All matplotlib options are accepted. average : float | None The time window around a given time to be used for averaging (seconds). For example, 0.01 would translate into window that starts 5 ms before and ends 5 ms after a given time point. Defaults to None, which means no averaging. head_pos : dict | None If None (default), the sensors are positioned such that they span the head circle. If dict, can have entries 'center' (tuple) and 'scale' (tuple) for what the center and scale of the head should be relative to the electrode locations. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ from .. import EvokedArray if components is None: components = np.arange(self.n_components) # set sampling frequency to have 1 component per time point info = cp.deepcopy(info) info['sfreq'] = 1. # create an evoked filters = EvokedArray(self.filters_, info, tmin=0) # the call plot_topomap return filters.plot_topomap(times=components, ch_type=ch_type, layout=layout, vmin=vmin, vmax=vmax, cmap=cmap, colorbar=colorbar, res=res, cbar_fmt=cbar_fmt, sensors=sensors, scale=1, scale_time=1, unit='a.u.', time_format=name_format, size=size, show_names=show_names, mask_params=mask_params, mask=mask, outlines=outlines, contours=contours, image_interp=image_interp, show=show, head_pos=head_pos)
{ "content_hash": "c3188da5342b9e260c7745eab337e67e", "timestamp": "", "source": "github", "line_count": 442, "max_line_length": 79, "avg_line_length": 47.17420814479638, "alnum_prop": 0.5776221763944175, "repo_name": "yousrabk/mne-python", "id": "e1dd3f803bab4a9fda86aa09705045edd9f6897e", "size": "21142", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "mne/decoding/csp.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "3171" }, { "name": "PowerShell", "bytes": "2988" }, { "name": "Python", "bytes": "4489354" }, { "name": "Shell", "bytes": "936" } ], "symlink_target": "" }
import os from django.core.management.base import BaseCommand from parkmap.models import Park, Neighborhood class Command(BaseCommand): help = 'Assigns intersecting neighborhoods to parks.' def handle(self, *args, **options): parks = Park.objects.all() for park in parks: neighborhoods = Neighborhood.objects.filter(geometry__intersects=park.geometry) park.neighborhoods.add(*neighborhoods) self.stdout.write('Updated "%s"\n' % park.name)
{ "content_hash": "72a45a1aa9394f210e3ceedf7ba542fc", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 91, "avg_line_length": 31.5, "alnum_prop": 0.6904761904761905, "repo_name": "MAPC/bostonparks", "id": "37395a9927499aeb165254e33507bdcd90f6e901", "size": "504", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "parkmap/management/commands/parks2neighborhoods.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "JavaScript", "bytes": "116604" }, { "name": "Python", "bytes": "61825" } ], "symlink_target": "" }
""" State Space Representation, Kalman Filter, Smoother, and Simulation Smoother Author: Chad Fulton License: Simplified-BSD """ import numpy as np from .kalman_smoother import KalmanSmoother from .cfa_simulation_smoother import CFASimulationSmoother from . import tools SIMULATION_STATE = 0x01 SIMULATION_DISTURBANCE = 0x04 SIMULATION_ALL = ( SIMULATION_STATE | SIMULATION_DISTURBANCE ) class SimulationSmoother(KalmanSmoother): r""" State space representation of a time series process, with Kalman filter and smoother, and with simulation smoother. Parameters ---------- k_endog : {array_like, int} The observed time-series process :math:`y` if array like or the number of variables in the process if an integer. k_states : int The dimension of the unobserved state process. k_posdef : int, optional The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation. Must be less than or equal to `k_states`. Default is `k_states`. simulation_smooth_results_class : class, optional Default results class to use to save output of simulation smoothing. Default is `SimulationSmoothResults`. If specified, class must extend from `SimulationSmoothResults`. simulation_smoother_classes : dict, optional Dictionary with BLAS prefixes as keys and classes as values. **kwargs Keyword arguments may be used to provide default values for state space matrices, for Kalman filtering options, for Kalman smoothing options, or for Simulation smoothing options. See `Representation`, `KalmanFilter`, and `KalmanSmoother` for more details. """ simulation_outputs = [ 'simulate_state', 'simulate_disturbance', 'simulate_all' ] def __init__(self, k_endog, k_states, k_posdef=None, simulation_smooth_results_class=None, simulation_smoother_classes=None, **kwargs): super(SimulationSmoother, self).__init__( k_endog, k_states, k_posdef, **kwargs ) if simulation_smooth_results_class is None: simulation_smooth_results_class = SimulationSmoothResults self.simulation_smooth_results_class = simulation_smooth_results_class self.prefix_simulation_smoother_map = ( simulation_smoother_classes if simulation_smoother_classes is not None else tools.prefix_simulation_smoother_map.copy()) # Holder for an model-level simulation smoother objects, to use in # simulating new time series. self._simulators = {} def get_simulation_output(self, simulation_output=None, simulate_state=None, simulate_disturbance=None, simulate_all=None, **kwargs): r""" Get simulation output bitmask Helper method to get final simulation output bitmask from a set of optional arguments including the bitmask itself and possibly boolean flags. Parameters ---------- simulation_output : int, optional Simulation output bitmask. If this is specified, it is simply returned and the other arguments are ignored. simulate_state : bool, optional Whether or not to include the state in the simulation output. simulate_disturbance : bool, optional Whether or not to include the state and observation disturbances in the simulation output. simulate_all : bool, optional Whether or not to include all simulation output. \*\*kwargs Additional keyword arguments. Present so that calls to this method can use \*\*kwargs without clearing out additional arguments. """ # If we do not explicitly have simulation_output, try to get it from # kwargs if simulation_output is None: simulation_output = 0 if simulate_state: simulation_output |= SIMULATION_STATE if simulate_disturbance: simulation_output |= SIMULATION_DISTURBANCE if simulate_all: simulation_output |= SIMULATION_ALL # Handle case of no information in kwargs if simulation_output == 0: # If some arguments were passed, but we still do not have any # simulation output, raise an exception argument_set = not all([ simulate_state is None, simulate_disturbance is None, simulate_all is None ]) if argument_set: raise ValueError("Invalid simulation output options:" " given options would result in no" " output.") # Otherwise set simulation output to be the same as smoother # output simulation_output = self.smoother_output return simulation_output def _simulate(self, nsimulations, measurement_shocks, state_shocks, initial_state): # Initialize the filter and representation prefix, dtype, create_smoother, create_filter, create_statespace = ( self._initialize_smoother()) # Initialize the state self._initialize_state(prefix=prefix) # Create the simulator if necessary if (prefix not in self._simulators or not nsimulations == self._simulators[prefix].nobs): simulation_output = 0 # Kalman smoother parameters smoother_output = -1 # Kalman filter parameters filter_method = self.filter_method inversion_method = self.inversion_method stability_method = self.stability_method conserve_memory = self.conserve_memory filter_timing = self.filter_timing loglikelihood_burn = self.loglikelihood_burn tolerance = self.tolerance # Create a new simulation smoother object cls = self.prefix_simulation_smoother_map[prefix] self._simulators[prefix] = cls( self._statespaces[prefix], filter_method, inversion_method, stability_method, conserve_memory, filter_timing, tolerance, loglikelihood_burn, smoother_output, simulation_output, nsimulations ) simulator = self._simulators[prefix] # Set the disturbance variates if measurement_shocks is not None and state_shocks is not None: disturbance_variates = np.atleast_1d(np.array( np.r_[measurement_shocks.ravel(), state_shocks.ravel()], dtype=self.dtype ).squeeze()) simulator.set_disturbance_variates(disturbance_variates, pretransformed=True) elif measurement_shocks is None and state_shocks is None: pass elif measurement_shocks is not None: raise ValueError('Must set `state_shocks` if `measurement_shocks`' ' is set.') elif state_shocks is not None: raise ValueError('Must set `measurement_shocks` if `state_shocks`' ' is set.') # Set the intial state vector initial_state = np.atleast_1d(np.array( initial_state, dtype=self.dtype ).squeeze()) simulator.set_initial_state(initial_state) # Perform simulation smoothing # Note: simulation_output=-1 corresponds to whatever was setup when # the simulation smoother was constructed simulator.simulate(-1) simulated_obs = np.array(simulator.generated_obs, copy=True) simulated_state = np.array(simulator.generated_state, copy=True) return ( simulated_obs[:, :nsimulations].T, simulated_state[:, :nsimulations].T ) def simulation_smoother(self, simulation_output=None, method='kfs', results_class=None, prefix=None, **kwargs): r""" Retrieve a simulation smoother for the statespace model. Parameters ---------- simulation_output : int, optional Determines which simulation smoother output is calculated. Default is all (including state and disturbances). method : {'kfs', 'cfa'}, optional Method for simulation smoothing. If `method='kfs'`, then the simulation smoother is based on Kalman filtering and smoothing recursions. If `method='cfa'`, then the simulation smoother is based on the Cholesky Factor Algorithm (CFA) approach. The CFA approach is not applicable to all state space models, but can be faster for the cases in which it is supported. simulation_smooth_results_class : class, optional Default results class to use to save output of simulation smoothing. Default is `SimulationSmoothResults`. If specified, class must extend from `SimulationSmoothResults`. prefix : str The prefix of the datatype. Usually only used internally. **kwargs Additional keyword arguments, used to set the simulation output. See `set_simulation_output` for more details. Returns ------- SimulationSmoothResults """ method = method.lower() # Short-circuit for CFA if method == 'cfa': if simulation_output not in [None, 1, -1]: raise ValueError('Can only retrieve simulations of the state' ' vector using the CFA simulation smoother.') return CFASimulationSmoother(self) elif method != 'kfs': raise ValueError('Invalid simulation smoother method "%s". Valid' ' methods are "kfs" or "cfa".' % method) # Set the class to be the default results class, if None provided if results_class is None: results_class = self.simulation_smooth_results_class # Instantiate a new results object if not issubclass(results_class, SimulationSmoothResults): raise ValueError('Invalid results class provided.') # Make sure we have the required Statespace representation prefix, dtype, create_smoother, create_filter, create_statespace = ( self._initialize_smoother()) # Simulation smoother parameters simulation_output = self.get_simulation_output(simulation_output, **kwargs) # Kalman smoother parameters smoother_output = kwargs.get('smoother_output', simulation_output) # Kalman filter parameters filter_method = kwargs.get('filter_method', self.filter_method) inversion_method = kwargs.get('inversion_method', self.inversion_method) stability_method = kwargs.get('stability_method', self.stability_method) conserve_memory = kwargs.get('conserve_memory', self.conserve_memory) filter_timing = kwargs.get('filter_timing', self.filter_timing) loglikelihood_burn = kwargs.get('loglikelihood_burn', self.loglikelihood_burn) tolerance = kwargs.get('tolerance', self.tolerance) # Create a new simulation smoother object cls = self.prefix_simulation_smoother_map[prefix] simulation_smoother = cls( self._statespaces[prefix], filter_method, inversion_method, stability_method, conserve_memory, filter_timing, tolerance, loglikelihood_burn, smoother_output, simulation_output ) # Create results object results = results_class(self, simulation_smoother) return results class SimulationSmoothResults(object): r""" Results from applying the Kalman smoother and/or filter to a state space model. Parameters ---------- model : Representation A Statespace representation simulation_smoother : {{prefix}}SimulationSmoother object The Cython simulation smoother object with which to simulation smooth. Attributes ---------- model : Representation A Statespace representation dtype : dtype Datatype of representation matrices prefix : str BLAS prefix of representation matrices simulation_output : int Bitmask controlling simulation output. simulate_state : bool Flag for if the state is included in simulation output. simulate_disturbance : bool Flag for if the state and observation disturbances are included in simulation output. simulate_all : bool Flag for if simulation output should include everything. generated_measurement_disturbance : ndarray Measurement disturbance variates used to genereate the observation vector. generated_state_disturbance : ndarray State disturbance variates used to genereate the state and observation vectors. generated_obs : ndarray Generated observation vector produced as a byproduct of simulation smoothing. generated_state : ndarray Generated state vector produced as a byproduct of simulation smoothing. simulated_state : ndarray Simulated state. simulated_measurement_disturbance : ndarray Simulated measurement disturbance. simulated_state_disturbance : ndarray Simulated state disturbance. """ def __init__(self, model, simulation_smoother): self.model = model self.prefix = model.prefix self.dtype = model.dtype self._simulation_smoother = simulation_smoother # Output self._generated_measurement_disturbance = None self._generated_state_disturbance = None self._generated_obs = None self._generated_state = None self._simulated_state = None self._simulated_measurement_disturbance = None self._simulated_state_disturbance = None @property def simulation_output(self): return self._simulation_smoother.simulation_output @simulation_output.setter def simulation_output(self, value): self._simulation_smoother.simulation_output = value @property def simulate_state(self): return bool(self.simulation_output & SIMULATION_STATE) @simulate_state.setter def simulate_state(self, value): if bool(value): self.simulation_output = self.simulation_output | SIMULATION_STATE else: self.simulation_output = self.simulation_output & ~SIMULATION_STATE @property def simulate_disturbance(self): return bool(self.simulation_output & SIMULATION_DISTURBANCE) @simulate_disturbance.setter def simulate_disturbance(self, value): if bool(value): self.simulation_output = ( self.simulation_output | SIMULATION_DISTURBANCE) else: self.simulation_output = ( self.simulation_output & ~SIMULATION_DISTURBANCE) @property def simulate_all(self): return bool(self.simulation_output & SIMULATION_ALL) @simulate_all.setter def simulate_all(self, value): if bool(value): self.simulation_output = self.simulation_output | SIMULATION_ALL else: self.simulation_output = self.simulation_output & ~SIMULATION_ALL @property def generated_measurement_disturbance(self): r""" Randomly drawn measurement disturbance variates Used to construct `generated_obs`. Notes ----- .. math:: \varepsilon_t^+ ~ N(0, H_t) If `disturbance_variates` were provided to the `simulate()` method, then this returns those variates (which were N(0,1)) transformed to the distribution above. """ if self._generated_measurement_disturbance is None: end = self.model.nobs * self.model.k_endog self._generated_measurement_disturbance = np.array( self._simulation_smoother.disturbance_variates[:end], copy=True).reshape(self.model.nobs, self.model.k_endog) return self._generated_measurement_disturbance @property def generated_state_disturbance(self): r""" Randomly drawn state disturbance variates, used to construct `generated_state` and `generated_obs`. Notes ----- .. math:: \eta_t^+ ~ N(0, Q_t) If `disturbance_variates` were provided to the `simulate()` method, then this returns those variates (which were N(0,1)) transformed to the distribution above. """ if self._generated_state_disturbance is None: start = self.model.nobs * self.model.k_endog self._generated_state_disturbance = np.array( self._simulation_smoother.disturbance_variates[start:], copy=True).reshape(self.model.nobs, self.model.k_posdef) return self._generated_state_disturbance @property def generated_obs(self): r""" Generated vector of observations by iterating on the observation and transition equations, given a random initial state draw and random disturbance draws. Notes ----- .. math:: y_t^+ = d_t + Z_t \alpha_t^+ + \varepsilon_t^+ """ if self._generated_obs is None: self._generated_obs = np.array( self._simulation_smoother.generated_obs, copy=True ) return self._generated_obs @property def generated_state(self): r""" Generated vector of states by iterating on the transition equation, given a random initial state draw and random disturbance draws. Notes ----- .. math:: \alpha_{t+1}^+ = c_t + T_t \alpha_t^+ + \eta_t^+ """ if self._generated_state is None: self._generated_state = np.array( self._simulation_smoother.generated_state, copy=True ) return self._generated_state @property def simulated_state(self): r""" Random draw of the state vector from its conditional distribution. Notes ----- .. math:: \alpha ~ p(\alpha \mid Y_n) """ if self._simulated_state is None: self._simulated_state = np.array( self._simulation_smoother.simulated_state, copy=True ) return self._simulated_state @property def simulated_measurement_disturbance(self): r""" Random draw of the measurement disturbance vector from its conditional distribution. Notes ----- .. math:: \varepsilon ~ N(\hat \varepsilon, Var(\hat \varepsilon \mid Y_n)) """ if self._simulated_measurement_disturbance is None: self._simulated_measurement_disturbance = np.array( self._simulation_smoother.simulated_measurement_disturbance, copy=True ) return self._simulated_measurement_disturbance @property def simulated_state_disturbance(self): r""" Random draw of the state disturbance vector from its conditional distribution. Notes ----- .. math:: \eta ~ N(\hat \eta, Var(\hat \eta \mid Y_n)) """ if self._simulated_state_disturbance is None: self._simulated_state_disturbance = np.array( self._simulation_smoother.simulated_state_disturbance, copy=True ) return self._simulated_state_disturbance def simulate(self, simulation_output=-1, disturbance_variates=None, initial_state_variates=None, pretransformed_variates=False): r""" Perform simulation smoothing Does not return anything, but populates the object's `simulated_*` attributes, as specified by simulation output. Parameters ---------- simulation_output : int, optional Bitmask controlling simulation output. Default is to use the simulation output defined in object initialization. disturbance_variates : array_likes, optional Random values to use as disturbance variates, distributed standard Normal. Usually only specified if results are to be replicated (e.g. to enforce a seed) or for testing. If not specified, random variates are drawn. initial_state_variates : array_likes, optional Random values to use as initial state variates. Usually only specified if results are to be replicated (e.g. to enforce a seed) or for testing. If not specified, random variates are drawn. """ # Clear any previous output self._generated_measurement_disturbance = None self._generated_state_disturbance = None self._generated_state = None self._generated_obs = None self._generated_state = None self._simulated_state = None self._simulated_measurement_disturbance = None self._simulated_state_disturbance = None # Re-initialize the _statespace representation prefix, dtype, create_smoother, create_filter, create_statespace = ( self.model._initialize_smoother()) # Initialize the state self.model._initialize_state(prefix=prefix) # Draw the (independent) random variates for disturbances in the # simulation if disturbance_variates is not None: self._simulation_smoother.set_disturbance_variates( np.array(disturbance_variates, dtype=self.dtype), pretransformed=pretransformed_variates ) else: self._simulation_smoother.draw_disturbance_variates() # Draw the (independent) random variates for the initial states in the # simulation if initial_state_variates is not None: self._simulation_smoother.set_initial_state_variates( np.array(initial_state_variates, dtype=self.dtype), pretransformed=pretransformed_variates ) else: self._simulation_smoother.draw_initial_state_variates() # Perform simulation smoothing # Note: simulation_output=-1 corresponds to whatever was setup when # the simulation smoother was constructed self._simulation_smoother.simulate(simulation_output)
{ "content_hash": "0143181d88eda17478cb9cb55fa2acae", "timestamp": "", "source": "github", "line_count": 609, "max_line_length": 79, "avg_line_length": 38.05911330049261, "alnum_prop": 0.6167917853136595, "repo_name": "jseabold/statsmodels", "id": "c79db92ce8df975ae8e5e89a41ffb1595b67535f", "size": "23178", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "statsmodels/tsa/statespace/simulation_smoother.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "AGS Script", "bytes": "457842" }, { "name": "Assembly", "bytes": "10509" }, { "name": "Batchfile", "bytes": "351" }, { "name": "C", "bytes": "12088" }, { "name": "HTML", "bytes": "148470" }, { "name": "Matlab", "bytes": "1383" }, { "name": "Python", "bytes": "8609450" }, { "name": "R", "bytes": "34228" }, { "name": "Stata", "bytes": "41179" } ], "symlink_target": "" }
import asyncio import datetime import time from enum import IntEnum, Enum from typing import List, Optional, Union import discord from necrobot.util.necrodancer import level as necrolevel from necrobot.config import Config from necrobot.race.raceconfig import RaceConfig from necrobot.race.raceinfo import RaceInfo from necrobot.race.racer import Racer from necrobot.util import console, racetime from necrobot.util.ordinal import ordinal from necrobot.util.necrodancer import seedgen # from necrobot.util import ratelimit # CHECK_RATE_LIMITS = False # RaceEvent --------------------------------------------- class RaceEvent(object): class EventType(Enum): RACER_ENTER = 0 RACER_UNENTER = 1 RACER_READY = 2 RACER_UNREADY = 3 RACER_FINISH = 4 RACER_UNFINISH = 5 RACER_FORFEIT = 6 RACER_UNFORFEIT = 7 RACE_BEGIN_COUNTDOWN = 101 RACE_CANCEL_COUNTDOWN = 102 RACE_BEGIN = 103 RACE_END = 104 RACE_CANCEL_FINALIZE = 105 RACE_FINALIZE = 106 RACE_CANCEL = 107 RACE_PAUSE = 108 RACE_UNPAUSE = 109 ADD_EXTRANEOUS = 201 CHANGE_RULES = 202 def __init__(self, race, event: EventType, **kwargs): self.race = race self.event = event self._kwargs = kwargs def __getattr__(self, item): return self._kwargs[item] # RaceStatus enum --------------------------------------------------------- class RaceStatus(IntEnum): """An Enum describing the current "phase" of the race. Values ------ uninitialized initialize() should be called on this object (not called in __init__ because coroutine). entry_open The race is open to new entrants. counting_down The bot is counting down to race start. If people .unready during this time, race reverts to the entry_open state. racing The race has begun, and at least one player is still racing. race_completed All players have either finished or forfeited. If players .undone during this time, race reverts to the racing state. race_finalized All players have finished or forfeited, and the race results are marked as final and can be recorded. No further changes possible. canceled The race has been canceled. No further changes possible. """ uninitialized = 0 entry_open = 1 counting_down = 2 racing = 3 paused = 4 completed = 5 finalized = 6 canceled = 7 def __str__(self): status_strs = { RaceStatus.uninitialized: 'Not initialized.', RaceStatus.entry_open: 'Entry open!', RaceStatus.counting_down: 'Starting!', RaceStatus.racing: 'In progress!', RaceStatus.paused: 'Paused!', RaceStatus.completed: 'Complete.', RaceStatus.finalized: 'Results finalized.', RaceStatus.canceled: 'Race canceled.' } return status_strs[self] # Race class -------------------------------------------------------------- class Race(object): # NB: Call the coroutine initialize() to set up the room def __init__(self, parent, race_info: RaceInfo, race_config: RaceConfig = RaceConfig()): self.race_id = None # After recording, the ID of the race in the DB self.parent = parent # The parent managing this race. Must implement write() and process(). self.race_info = RaceInfo.copy(race_info) self.racers = [] # A list of Racer self._status = RaceStatus.uninitialized # The status of this race self._config = race_config # The RaceConfig to use (determines some race behavior) self._countdown = int(0) # The current countdown self._start_datetime = None # UTC time for the beginning of the race self._adj_start_time = float(0) # System clock time for the beginning of the race (modified by pause) self._last_pause_time = float(0) # System clock time for last time we called pause() self._last_no_entrants_time = None # System clock time for the last time the race had zero entrants self._delay_record = False # If true, delay an extra config.FINALIZE_TIME_SEC before recording self._countdown_future = None # The Future object for the race countdown self._finalize_future = None # The Future object for the finalization countdown # Race data # Returns the status string @property def status_str(self) -> str: return str(self._status) # Returns time elapsed in the race in ms @property def current_time(self) -> int or None: if self._status == RaceStatus.paused: return int(100 * (self._last_pause_time - self._adj_start_time)) elif self._status == RaceStatus.racing or self._status == RaceStatus.completed: return int(100 * (time.monotonic() - self._adj_start_time)) else: return None # Returns the current time elapsed as a string "[m]m:ss.hh" @property def current_time_str(self) -> str: current_time_ = self.current_time if current_time_ is not None: return racetime.to_str(current_time_) else: return '' # Returns the UTC time for the beginning of the race @property def start_datetime(self) -> datetime.datetime: return self._start_datetime # True if the race has not started @property def before_race(self) -> bool: return self._status < RaceStatus.racing # True if the race is currently running @property def during_race(self) -> bool: return self._status == RaceStatus.racing or self._status == RaceStatus.paused # True if the race is finalized or canceled @property def complete(self) -> bool: return self._status >= RaceStatus.completed # True if racers can enter the race @property def entry_open(self) -> bool: return self._status == RaceStatus.entry_open # True if the race can no longer be modified (finalized or canceled) @property def final(self) -> bool: return self._status >= RaceStatus.finalized # True if we've passed the "no entrants" warning @property def passed_no_entrants_warning_time(self) -> bool: time_since = datetime.timedelta(seconds=(time.monotonic() - self._last_no_entrants_time)) return self._status != RaceStatus.uninitialized and time_since > Config.NO_ENTRANTS_CLEANUP_WARNING # True if we've passed the "no entrants" clear time @property def passed_no_entrants_cleanup_time(self) -> bool: time_since = datetime.timedelta(seconds=(time.monotonic() - self._last_no_entrants_time)) return self._status != RaceStatus.uninitialized and time_since > Config.NO_ENTRANTS_CLEANUP # True if the race has any entrants @property def any_entrants(self) -> bool: return bool(self.racers) # True if the race is paused @property def paused(self) -> bool: return self._status == RaceStatus.paused @property def race_config(self) -> RaceConfig: return self._config # Racer data # Returns true if all racers are ready and there's enough racers @property def all_racers_ready(self) -> bool: min_length = 1 if self.race_info.can_be_solo else 2 return self.num_not_ready == 0 and len(self.racers) >= min_length # Returns the number of racers not in the 'ready' state @property def num_not_ready(self) -> int: num = 0 for racer in self.racers: if not racer.is_ready: num += 1 return num # Return the number of racers in the 'finished' state @property def num_finished(self) -> int: num = 0 for racer in self.racers: if racer.is_finished: num += 1 return num # Returns a list of racers and their statuses. @property def leaderboard_text(self) -> str: return self._leaderboard_text(False) def _leaderboard_text(self, shortened) -> str: char_limit = int(1900) # The character limit on discord messages racer_list = [] max_name_len = 0 max_time = 0 for racer in self.racers: max_name_len = max(max_name_len, len(racer.name)) racer_list.append(racer) if racer.is_finished: max_time = max(racer.time, max_time) max_time += 1 # Sort racers: (1) Finished racers, by time; (2) Forfeit racers; (3) Racers still racing racer_list.sort(key=lambda r: r.time if r.is_finished else (max_time if r.is_forfeit else max_time+1)) text = '' rank = int(0) for racer in racer_list: rank += 1 rank_str = '{0: >4} '.format(str(rank) + '.' if racer.is_finished else ' ') stat_str = racer.short_status_str if shortened else racer.status_str text += (rank_str + racer.name + (' ' * (max_name_len - len(racer.name))) + ' --- ' + stat_str + '\n') if len(text) > char_limit and not shortened: return self._leaderboard_text(shortened=True) else: return text @property def winner(self) -> int or None: if not self._status == RaceStatus.finalized or not self.racers: return None lead_racer = self.racers[0] return lead_racer if lead_racer.is_finished else None # True if the given discord.User is entered in the race def has_racer(self, racer_usr: Union[discord.User, discord.Member]) -> bool: for racer in self.racers: if racer.member.id == racer_usr.id: return True return False # Returns the given discord.User as a Racer, if possible def get_racer(self, racer_usr: Union[discord.User, discord.Member]) -> Racer: for racer in self.racers: if racer.member.id == racer_usr.id: return racer # Public methods (all coroutines) # Sets up the leaderboard, etc., for the race async def initialize(self): if self._status != RaceStatus.uninitialized: return self._status = RaceStatus.entry_open self._last_no_entrants_time = time.monotonic() # Begins the race if ready. (Writes a message if all racers are ready but an admin is not.) # Returns true on success async def begin_if_ready(self): if self.all_racers_ready: await self.begin_race_countdown() return True # Begin the race countdown and transition race state from 'entry_open' to 'counting_down' async def begin_race_countdown(self): if self._status == RaceStatus.entry_open: self._status = RaceStatus.counting_down self._countdown_future = asyncio.ensure_future(self._race_countdown()) await self._process(RaceEvent.EventType.RACE_BEGIN_COUNTDOWN) # Pause the race timer. async def pause(self, mute=False): if self._status == RaceStatus.racing: self._status = RaceStatus.paused self._last_pause_time = time.monotonic() mention_str = '' for racer in self.racers: mention_str += '{}, '.format(racer.member.mention) mention_str = mention_str[:-2] await self._write(mute=mute, text='Race paused. (Alerting {0}.)'.format(mention_str)) await self._process(RaceEvent.EventType.RACE_PAUSE) # Unpause the race timer. async def unpause(self, mute=False): if self.paused: await self._unpause_countdown(mute=mute) # Enters the given discord Member in the race async def enter_member(self, racer_member: discord.Member, mute=False): if self.has_racer(racer_member): await self._write(mute=mute, text='{0} is already entered.'.format(racer_member.mention)) return if not self.before_race: await self._write( mute=mute, text='{0}: Cannot enter; the race has already started.'.format(racer_member.mention)) return if self._status == RaceStatus.counting_down: await self._cancel_countdown() await self._do_enter_racer(racer_member) await self._write( mute=mute, text='{0} has entered the race. {1} entrants.'.format(racer_member.mention, len(self.racers))) await self._process(RaceEvent.EventType.RACER_ENTER, racer_member=racer_member) # Unenters the given discord Member in the race async def unenter_member(self, racer_member: discord.Member, mute=False): if not self.before_race: await self.forfeit_member(racer_member) return if self.has_racer(racer_member): self.racers = [r for r in self.racers if int(r.member.id) != int(racer_member.id)] if not self.racers: self._last_no_entrants_time = time.monotonic() if (len(self.racers) < 2 and not self.race_info.can_be_solo) or len(self.racers) < 1: await self._cancel_countdown() await self._write(mute=mute, text='{0} is no longer entered.'.format(racer_member.mention)) await self.begin_if_ready() await self._process(RaceEvent.EventType.RACER_UNENTER, racer_member=racer_member) else: await self._write(mute=mute, text='{0} is not entered.'.format(racer_member.mention)) # Enters the racer if not entered, and puts that racer in the 'ready' state async def enter_and_ready_member(self, racer_member: discord.Member, mute=False): already_entered = self.has_racer(racer_member) if not already_entered and not self.before_race: await self._write(mute=mute, text='{0}: The race has already started!'.format(racer_member.mention)) return if not already_entered: await self._do_enter_racer(racer_member) racer = self.get_racer(racer_member) if racer is None: await self._write(mute=mute, text='Unexpected error.') console.warning("Unexpected error in race.race.Race.enter_and_ready_member: " "Couldn't find a Racer for the discord Member {0}.".format(racer_member.name)) return if racer.is_ready: await self._write(mute=mute, text='{0} is already ready!'.format(racer_member.mention)) return racer.ready() if self._status == RaceStatus.counting_down: await self._cancel_countdown() if len(self.racers) == 1 and not self.race_info.can_be_solo: await self._write(mute=mute, text='Waiting on at least one other person to join the race.') elif not already_entered: await self._write( mute=mute, text='{0} has entered and is ready! {1} remaining.'.format(racer_member.mention, self.num_not_ready)) else: await self._write( mute=mute, text='{0} is ready! {1} remaining.'.format(racer_member.mention, self.num_not_ready)) await self.begin_if_ready() if not already_entered: await self._process(RaceEvent.EventType.RACER_ENTER, racer_member=racer_member) await self._process(RaceEvent.EventType.RACER_READY, racer_member=racer_member) # Attempt to put the given Racer in the 'unready' state if they were ready async def unready_member(self, racer_member: discord.Member, mute=False): if not self.before_race: return racer = self.get_racer(racer_member) if racer is None: await self._write( mute=mute, text='{0}: Warning: You have not yet entered the race.'.format(racer_member.mention)) return # See if we can cancel a countdown. If cancel_countdown() returns False, # then there is a countdown and we failed to cancel it, so racer cannot be made unready. success = await self._cancel_countdown() if success and racer.unready(): await self._write(mute=mute, text='{0} is no longer ready.'.format(racer_member.mention)) await self._process(RaceEvent.EventType.RACER_UNREADY, racer_member=racer_member) else: await self._write(mute=mute, text="Can't unready!") # Puts the given Racer in the 'finished' state and gets their time async def finish_member(self, racer_member: discord.Member, mute=False): if not (self._status == RaceStatus.racing or self._status == RaceStatus.completed): return racer = self.get_racer(racer_member) if racer is None: return if racer.finish(self.current_time): await self._write( mute=mute, text='{0} has finished in {1} place with a time of {2}.'.format( racer_member.mention, ordinal(self.num_finished), racer.time_str)) if self._status == RaceStatus.racing: await self._check_for_race_end() await self._process(RaceEvent.EventType.RACER_FINISH, racer_member=racer_member) # Attempt to put the given Racer in the 'racing' state if they were finished async def unfinish_member(self, racer_member: discord.Member, mute=False): if self.before_race or self.final: return racer = self.get_racer(racer_member) if racer is None: return if not racer.is_finished: await self._write(mute=mute, text='{0} is still racing!'.format(racer_member.mention)) # See if we can cancel a (possible) finalization. If cancel_finalization() returns False, # then there is a finalization and we failed to cancel it, so racer cannot be made unready. success = await self._cancel_finalization() if success and racer.unfinish(): await self._write(mute=mute, text='{0} continues to race!'.format(racer_member.mention)) await self._process(RaceEvent.EventType.RACER_UNFINISH, racer_member=racer_member) async def forfeit_racer(self, racer: Racer, mute=False): if self.before_race or self.final: return await self._do_forfeit_racer(racer) await self._write(mute=mute, text='{0} has forfeit the race.'.format(racer.member.mention)) # Puts the given Racer in the 'forfeit' state async def forfeit_member(self, racer_member: discord.Member, mute=False): racer = self.get_racer(racer_member) if racer is not None: await self.forfeit_racer(racer, mute) await self._process(RaceEvent.EventType.RACER_FORFEIT, racer_member=racer_member) # Attempt to put the given Racer in the 'racing' state if they had forfeit async def unforfeit_member(self, racer_member: discord.Member, mute=False): if self.before_race or self.final: return False racer = self.get_racer(racer_member) if racer is None: return if not racer.is_forfeit: return # See if we can cancel a (possible) finalization. If cancel_finalization() returns False, # then there is a finalization and we failed to cancel it, so racer cannot be made unready. success = await self._cancel_finalization() if success and racer.unforfeit(): await self._write( mute=mute, text='{0} is no longer forfeit and continues to race!'.format(racer_member.mention)) await self._process(RaceEvent.EventType.RACER_UNFORFEIT, racer_member=racer_member) # Forfeits all racers that have not yet finished async def forfeit_all_remaining(self, mute=False): if not self.before_race: forfeit_any = False for racer in self.racers: if racer.is_racing: forfeit_any = True await self._do_forfeit_racer(racer) if forfeit_any: await self._write(mute=mute, text='All remaining racers forfeit.') await self._end_race() # Adds the given string as a comment async def add_comment_for_member(self, racer_member: discord.Member, comment_str: str): if self.before_race or self.final: return racer = self.get_racer(racer_member) if racer is None: return racer.add_comment(comment_str[:255]) await self._process(RaceEvent.EventType.ADD_EXTRANEOUS) # Adds a death for the given member at the given level and causes them to forfeit async def set_death_for_member(self, racer_member: discord.Member, level: int, mute=False): if self.before_race or self.final: return racer = self.get_racer(racer_member) if racer is None: return await self._do_forfeit_racer(racer) await self._write(mute=mute, text='{0} has forfeit the race.'.format(racer_member.mention)) if not level == necrolevel.LEVEL_NOS: racer.level = level await self._process(RaceEvent.EventType.RACER_FORFEIT, racer_member=racer_member) # Adds an in-game time for the given member async def set_igt_for_member(self, racer_member: discord.Member, igt: int): if self.before_race or self.final: return racer = self.get_racer(racer_member) if racer is None: return if igt != -1 and racer.is_done_racing: racer.igt = int(igt) await self._process(RaceEvent.EventType.ADD_EXTRANEOUS) # Kicks the specified racers from the race (they can re-enter) async def kick_racers(self, names_to_kick: list, mute=False): for racer in self.racers: if racer.name.lower() in names_to_kick: await self.unenter_member(racer.member, mute=mute) # Cancel the race. async def cancel(self): self._status = RaceStatus.canceled await self._cancel_countdown() await self._cancel_finalization() await self._process(RaceEvent.EventType.RACE_CANCEL) # Reseed the race async def reseed(self, mute=False): if not self.race_info.seeded: await self._write(mute=mute, text='This is not a seeded race. Use `.changerules` to change this.') elif self.race_info.seed_fixed: await self._write( mute=mute, text='The seed for this race was fixed by its rules. Use `.changerules` to change this.') return else: self.race_info.seed = seedgen.get_new_seed() await self._write(mute=mute, text='Changed seed to {0}.'.format(self.race_info.seed)) await self._process(RaceEvent.EventType.CHANGE_RULES) # Private methods # Sort racer list def _sort_racers(self): max_time = 0 for racer in self.racers: if racer.is_finished: max_time = max(racer.time, max_time) max_time += 1 self.racers.sort(key=lambda r: r.time if r.is_finished else max_time) # Process an event async def _process(self, event_type: RaceEvent.EventType, **kwargs): await self.parent.process(RaceEvent(self, event_type, **kwargs)) # Actually enter the racer async def _do_enter_racer(self, racer_member): racer = Racer(racer_member) await racer.initialize() if racer in self.racers: return self.racers.append(racer) # Begins the race. Called by the countdown. async def _begin_race(self, mute=False): for racer in self.racers: if not racer.begin_race(): console.warning("{} isn't ready while calling race._begin_race -- unexpected error.".format( racer.name)) self._status = RaceStatus.racing self._adj_start_time = time.monotonic() self._start_datetime = datetime.datetime.utcnow() await self._write(mute=mute, text='GO!') await self._process(RaceEvent.EventType.RACE_BEGIN) # Checks to see if all racers have either finished or forfeited. If so, ends the race. # Return True if race was ended. async def _check_for_race_end(self): num_still_racing = 0 for racer in self.racers: if not racer.is_done_racing: num_still_racing += 1 if num_still_racing <= self._config.auto_forfeit: await self.forfeit_all_remaining(mute=True) await self._end_race() # Ends the race, and begins a countdown until the results are 'finalized' async def _end_race(self): if self._status == RaceStatus.racing: self._status = RaceStatus.completed self._finalize_future = asyncio.ensure_future(self._finalization_countdown()) await self._process(RaceEvent.EventType.RACE_END) # Countdown coroutine to be wrapped in self._countdown_future. # Warning: Do not call this -- use begin_countdown instead. async def _race_countdown(self, mute=False): # TODO: The warnings = [5] is a hardcoded hack due to mananging current Discord rate limits. await self._do_countdown( length=self._config.countdown_length, incremental_start=self._config.incremental_countdown_start, warnings=[5], mute=mute ) await self._begin_race() async def _do_countdown( self, length: int, warnings: Optional[List[int]] = None, incremental_start: int = None, mute=False ): if warnings is None: warnings = [] fudge = 0.6 countdown_systemtime_begin = time.monotonic() countdown_timer = length if incremental_start is not None: await self._write(mute=mute, text='The race will begin in {0} seconds.'.format(countdown_timer)) while countdown_timer > 0: sleep_time = float(countdown_systemtime_begin + length - countdown_timer + 1 - time.monotonic()) if countdown_timer in warnings: await self._write(mute=mute, text='{} seconds...'.format(countdown_timer)) if incremental_start is None or countdown_timer <= incremental_start: await self._write(mute=mute, text='{}'.format(countdown_timer)) if sleep_time < fudge: countdown_systemtime_begin += fudge - sleep_time sleep_time = fudge # print('Countdown cycle: Timer = {0}, Sleep Time = {1}'.format(countdown_timer, sleep_time)) if sleep_time > 0: await asyncio.sleep(sleep_time) # sleep until the next tick countdown_timer -= 1 # Countdown for an unpause async def _unpause_countdown(self, mute=False): await self._do_countdown( length=self._config.unpause_countdown_length, mute=mute ) await self._do_unpause_race() # Actually unpause the race async def _do_unpause_race(self, mute=False): if self._status == RaceStatus.paused: await self._write(mute=mute, text='GO!') self._status = RaceStatus.racing self._adj_start_time += time.monotonic() - self._last_pause_time await self._process(RaceEvent.EventType.RACE_UNPAUSE) return True return False # Countdown coroutine to be wrapped in self._finalize_future. # Warning: Do not call this -- use end_race instead. async def _finalization_countdown(self): self.delay_record = True while self.delay_record: self.delay_record = False await asyncio.sleep(self._config.finalize_time_sec) # Perform the finalization and record the race. At this point, the finalization cannot be canceled. self._status = RaceStatus.finalized await self.forfeit_all_remaining(mute=True) self._sort_racers() await self._process(RaceEvent.EventType.RACE_FINALIZE) # Attempt to cancel the race countdown -- transition race state from 'counting_down' to 'entry_open' # Returns False only if there IS a countdown, AND we failed to cancel it async def _cancel_countdown(self, mute=False): if self._status == RaceStatus.counting_down: if self._countdown_future: if self._countdown_future.cancel(): self._countdown_future = None self._status = RaceStatus.entry_open await self._process(RaceEvent.EventType.RACE_CANCEL_COUNTDOWN) await self._write(mute=mute, text='Countdown canceled.') return True else: return False return True # Attempt to cancel finalization and restart race -- transition race state from 'completed' to 'racing' # Returns False only if race IS completed, AND we failed to restart it async def _cancel_finalization(self, mute=False): if self._status == RaceStatus.completed: if self._finalize_future: if self._finalize_future.cancel(): self._finalize_future = None self._status = RaceStatus.racing await self._process(RaceEvent.EventType.RACE_CANCEL_FINALIZE) await self._write(mute=mute, text='Race end canceled -- unfinished racers may continue!') return True else: return False return True # Causes the racer to forfeit async def _do_forfeit_racer(self, racer: Racer): if racer.forfeit(self.current_time): await self._check_for_race_end() # Write text async def _write(self, text: str, mute=False): if not mute: await self.parent.write(text)
{ "content_hash": "1b4e1caf342422c37dc3c3f1cc9f7e38", "timestamp": "", "source": "github", "line_count": 757, "max_line_length": 120, "avg_line_length": 40.038309114927344, "alnum_prop": 0.6104457421887888, "repo_name": "incnone/necrobot", "id": "c3601bca0809f4c4aace8f911faed05b3caf147f", "size": "30471", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "necrobot/race/race.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "637785" } ], "symlink_target": "" }
from mock import ANY, patch from cell.actors import Actor from cell.agents import dAgent from cell.exceptions import CellError, NoReplyError from cell.results import AsyncResult from cell.tests.utils import Case, Mock, with_in_memory_connection from kombu.utils import uuid __author__ = 'rumi' class A(Actor): pass class Ag(dAgent): def get_default_scatter_limit(self): return 5 class test_AsyncResuls(Case): def get_async_result(self): ticket = uuid() actor = Mock() ares = AsyncResult(ticket, actor) return ares def test_init(self): ticket = uuid() actor = Mock() ares = AsyncResult(ticket, actor) self.assertEquals(ares.ticket, ticket) self.assertEqual(ares.actor, actor) self.assertIsNone(ares._result) self.assertEqual(ares.Error, CellError) self.assertEqual(ares.NoReplyError, NoReplyError) with self.assertRaises(TypeError): AsyncResult(ticket) def test_result_when_result_is_set(self): val = 'the quick brown fox' ares = self.get_async_result() ares.get = Mock() ares._result = val res = ares.result() self.assertEqual(res, val) self.assertEqual(ares.get.call_count, 0) def test_result_when_result_is_not_set(self): val = 'the quick brown fox' ares = self.get_async_result() ares.get = Mock(return_value=val) res = ares.result() self.assertEqual(res, val) self.assertEqual(ares._result, res) ares.get.assert_called_once_with() def test_to_python(self): ok_message = {'ok': 'the quick_brown_fox'} ares = self.get_async_result() # ------------------------------ # reply is a successful message # ------------------------------ # correct format res = ares.to_python(ok_message) self.assertEqual(res, ok_message['ok']) # correct format with multiple keys in the reply dict ok_message = {'ok': 'the quick_brown_fox', 'foo': 'the quick_brown_fox'} res = ares.to_python(ok_message) self.assertEqual(res, ok_message['ok']) # contains both ok and nok ok_message = {'ok': 'the quick_brown_fox', 'nok': 'the quick_brown_fox'} res = ares.to_python(ok_message) self.assertEqual(res, ok_message['ok']) # --------------------------- # reply is an error message # --------------------------- # correct error format with to propagate param set error_message = {'nok': [Exception('jump over')]} with self.assertRaises(ares.Error): ares.to_python(error_message) # correct error format with to propagate set to True with self.assertRaises(ares.Error): ares.to_python(error_message, propagate=True) # correct error format with to propagate set to False error_message = {'nok': ['jump over', None]} res = ares.to_python(error_message, propagate=False) self.assertEquals(res.__dict__, ares.Error(*error_message.get('nok')).__dict__) # neither nok or ok message given error_message = {'foo': ['jump over']} with self.assertRaises(ares.Error): ares.to_python(error_message) # multiple keys in the reply dics given, one of teh eks is nok error_message = {'foo': 'the quick_brown_fox', 'nok': ['jump over']} res = ares.to_python(error_message, propagate=False) self.assertEqual(res.__dict__, ares.Error(*error_message['nok']).__dict__) def test_get(self): id1, id2 = uuid(), uuid() def gather(): yield id1 yield id2 # test that it calls gather with limit = 1 and kwargs ares = self.get_async_result() ares.gather = Mock(return_value=['1']) ares.get() ares.gather.assert_called_once_with(limit=1) ares.gather.reset_mock() kwargs = {'timeout': 100, 'ignore_timeout': False, 'foo': 'bar', 'propaget': True} ares.get(**kwargs) ares.gather.assert_called_once_with(**dict(kwargs, limit=1)) ares.gather.reset_mock() kwargs = {'timeout': 100, 'ignore_timeout': False, 'limit': 10} ares.get(**kwargs) ares.gather.assert_called_once_with(**kwargs) ares.gather.reset_mock() # it returns the first value of whatever gather returns ares.gather = Mock(return_value=gather()) res = ares.get() self.assertEqual(res, id1) # if gather does not return result: # self.NoReplyError('No reply received within time constraint') ares.gather = Mock(return_value=None) with self.assertRaises(ares.NoReplyError): ares.get() ares.gather.reset_mock() ares.gather = Mock(return_value={}) with self.assertRaises(ares.NoReplyError): ares.get() @with_in_memory_connection def test_gather(self, conn): def collect_replies(): yield 1 yield 2 yield 3 ticket = uuid() actor = Actor(conn) actor._collect_replies = Mock(return_value=collect_replies()) ares = AsyncResult(ticket, actor) ares.to_python = Mock() all = ares.gather() list(all) actor._collect_replies.assert_caleld_once_with(conn, ANY, ticket) self.assertEqual(ares.to_python.call_count, len(list(collect_replies()))) # test that the to_python is applied to all results actor._collect_replies.reset_mock() actor._collect_replies = Mock(return_value=collect_replies()) prev_to_python = ares.to_python new_to_python = lambda x, propagate = True: 'called_%s' % x ares.to_python = new_to_python all = ares.gather() vals = list(all) expected_vals = [new_to_python(i) for i in collect_replies()] actor._collect_replies.assert_caleld_once_with(conn, ANY, ticket) self.assertEqual(vals, expected_vals) ares.to_python = prev_to_python # test kwargs @patch('cell.actors.collect_replies') @with_in_memory_connection def test_gather_kwargs(self, conn, collect): actor = Actor(conn) ares = AsyncResult(uuid(), actor) prev_to_python = ares.to_python new_to_python = lambda x, propagate = True: x ares.to_python = new_to_python # Test default kwargs, # nothing is passed, the actor does not have agent assigned self.assert_gather_kwargs( ares, collect, {}, timeout=actor.default_timeout, ignore_timeout=False) # limit - set the default agent limit if NONE is set # Test default kwargs, nothing is passed, # the actor does have default agent assigned actor.agent = dAgent(conn) self.assert_gather_kwargs( ares, collect, {}, timeout=actor.default_timeout, limit=None, ignore_timeout=False) # limit - set the default agent limit if NONE is set # Test default kwargs, nothing is passed, # the actor does have agent with custom scatter limit assigned ag = Ag(conn) actor.agent = ag self.assert_gather_kwargs( ares, collect, {}, timeout=actor.default_timeout, limit=ag.get_default_scatter_limit()) # pass all args actor.agent = Ag(conn) timeout, ignore_timeout, limit = 200.0, False, uuid() self.assert_gather_kwargs( ares, collect, {'timeout': timeout, 'ignore_timeout': ignore_timeout, 'limit': limit}, timeout=timeout, limit=limit, ignore_timeout=ignore_timeout) # ig ignore_tiemout is passed, # the custom logic for limit is not applies actor.agent = None timeout, ignore_timeout = 200.0, True self.assert_gather_kwargs( ares, collect, {'timeout': timeout, 'ignore_timeout': ignore_timeout}, timeout=timeout, ignore_timeout=ignore_timeout) ares.to_python = prev_to_python def assert_gather_kwargs(self, ares, collect, args, **kwargs): def drain(): yield 1 yield 2 collect.return_value = drain() all = ares.gather(**args) self.assertEqual(list(all), list(drain())) collect.assert_called_once_with(ANY, ANY, ANY, **kwargs) collect.reset_mock()
{ "content_hash": "072c8b3b8d8d7942fd441f7ccf0f5cb1", "timestamp": "", "source": "github", "line_count": 265, "max_line_length": 76, "avg_line_length": 32.845283018867924, "alnum_prop": 0.5807674632352942, "repo_name": "celery/cell", "id": "e3e5382492cebd16f8fbdccf8583aa6d0a68baeb", "size": "8704", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cell/tests/actors/test_results.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "1495" }, { "name": "Python", "bytes": "158962" }, { "name": "Shell", "bytes": "2154" } ], "symlink_target": "" }
import unittest from PIL import Image from ric_encoder import ric_encode, ric_decode class TestRicEncoder(unittest.TestCase): def testEncoder(self): img = open("samples/crop.jpg","rb").read() options = [ { "imgwidth": 200, "crop": [210, 120, 510, 420]}, { "imgwidth": 400, "crop": [180, 90, 720, 480] } ] output = ric_encode(img, options) f = open("/tmp/test.ric", "wb") f.write(output) f.close() def testDecoder(self): img = open("/tmp/test.ric","rb").read() output = ric_decode(img) f = open("/tmp/test.webp", "wb") f.write(output) f.close() def main(): unittest.main() if __name__ == '__main__': main()
{ "content_hash": "e3fcf520ae09a31f59ae31c139faa52c", "timestamp": "", "source": "github", "line_count": 25, "max_line_length": 120, "avg_line_length": 28.56, "alnum_prop": 0.5574229691876751, "repo_name": "yoavweiss/Responsive-Image-Container", "id": "869a4852213ec515488eab4eb9c8620da9681726", "size": "733", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test_ric_encoder.py", "mode": "33261", "license": "mit", "language": [ { "name": "Python", "bytes": "15443" } ], "symlink_target": "" }
from setuptools import setup # , find_packages import os import sys def use_package(package): if not package: return False if package.startswith(('#', 'git+')): return False if sys.version_info.major > 2 and 'python_version <' in package: return False if sys.version_info.major == 2 and 'python_version >' in package: return False return True def get_requirements(): reqs = [] for filename in ["requirements-base.txt", "requirements-dashboard.txt"]: with open(filename, "r") as f: reqs += [x.strip().split(";")[0] for x in f.readlines() if use_package(x.strip())] return reqs def get_version(): basedir = os.path.dirname(__file__) with open(os.path.join(basedir, 'mrq/version.py')) as f: locals = {} exec(f.read(), locals) return locals['VERSION'] raise RuntimeError('No version info found.') setup( name="mrq", include_package_data=True, packages=['mrq', 'mrq.basetasks', 'mrq.bin', 'mrq.dashboard'], # find_packages(exclude=['tests', 'tests.tasks']), version=get_version(), description="A simple yet powerful distributed worker task queue in Python", author="Pricing Assistant", license='MIT', author_email="contact@pricingassistant.com", url="http://github.com/pricingassistant/mrq", # download_url="http://chardet.feedparser.org/download/python3-chardet-1.0.1.tgz", keywords=["worker", "task", "distributed", "queue", "asynchronous", "redis", "mongodb", "job", "processing", "gevent"], platforms='any', entry_points={ 'console_scripts': [ 'mrq-worker = mrq.bin.mrq_worker:main', 'mrq-run = mrq.bin.mrq_run:main', 'mrq-agent = mrq.bin.mrq_agent:main', 'mrq-dashboard = mrq.dashboard.app:main' ] }, # dependency_links=[ # "http://github.com/mongodb/mongo-python-driver/archive/cb4adb2193a83413bc5545d89b7bbde4d6087761.zip#egg=pymongo-2.7rc1" # ], zip_safe=False, install_requires=get_requirements(), classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", #'Development Status :: 1 - Planning', #'Development Status :: 2 - Pre-Alpha', #'Development Status :: 3 - Alpha', #'Development Status :: 4 - Beta', 'Development Status :: 5 - Production/Stable', #'Development Status :: 6 - Mature', #'Development Status :: 7 - Inactive', "Environment :: Other Environment", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Utilities" ], long_description=open("README.md").read() )
{ "content_hash": "e6fbfadbb9d7ef69d25eefe2e494df35", "timestamp": "", "source": "github", "line_count": 81, "max_line_length": 129, "avg_line_length": 36.148148148148145, "alnum_prop": 0.6082650273224044, "repo_name": "pricingassistant/mrq", "id": "7f90e2519f7e2e37402b64656b6e56b76de4e2bf", "size": "2928", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "5514" }, { "name": "Dockerfile", "bytes": "2722" }, { "name": "HTML", "bytes": "60608" }, { "name": "JavaScript", "bytes": "78540" }, { "name": "Makefile", "bytes": "2765" }, { "name": "Perl", "bytes": "1374" }, { "name": "Python", "bytes": "931744" } ], "symlink_target": "" }
from __future__ import unicode_literals from django import template from django.test import TestCase from django.test.client import RequestFactory from django.test.utils import override_settings from labJS.base import Labjs from labJS.templatetags.labjs import LabjsNode, Wait class FakeNode(object): def render(self, context): return 'some content' class TestLabjs(TestCase): def test_split_contents_empty_content(self): lab = Labjs('') self.assertFalse(lab.split_contents()) def test_split_contents_non_js_content(self): lab = Labjs('<p class="test">I am not JS</p>') self.assertFalse(lab.split_contents()) def test_split_contents_inline(self): lab = Labjs('<script>document.write("Hello world");</script>') self.assertEqual( lab.split_contents(), [{'data': 'document.write("Hello world");', 'type': 'inline'}] ) def test_split_contents_script(self): lab = Labjs('<script src="/static/script.js"></script>') self.assertEqual( lab.split_contents(), [{'data': '/static/script.js', 'type': 'script'}] ) def test_render_output_inline_contains_script(self): lab = Labjs('<script>document.write("Hello world");</script>') self.assertIn('document.write("Hello world");', lab.render_output()) def test_render_output_script_contains_src(self): lab = Labjs('<script src="/static/script.js"></script>') self.assertIn('/static/script.js', lab.render_output()) class TestLabjsNode(TestCase): @override_settings(LABJS_DEBUG_TOGGLE='labjs') def test_debug_mode_no_request_context(self): node = LabjsNode(None) context = {} self.assertFalse(node.debug_mode(context)) @override_settings(LABJS_DEBUG_TOGGLE='labjs') def test_debug_mode_no_toggle(self): node = LabjsNode(None) context = { 'request': RequestFactory().get('/'), } self.assertFalse(node.debug_mode(context)) @override_settings(LABJS_DEBUG_TOGGLE='labjs') def test_debug_mode_with_toggle(self): node = LabjsNode(None) context = { 'request': RequestFactory().get('/?labjs=1'), } self.assertTrue(node.debug_mode(context)) @override_settings(LABJS_DEBUG_TOGGLE=None) def test_debug_mode_setting_undefined(self): node = LabjsNode(None) context = { 'request': RequestFactory().get('/?labjs='), } self.assertFalse(node.debug_mode(context)) @override_settings(LABJS_ENABLED=False) def test_disabled_leaves_content_as_original(self): node = LabjsNode(FakeNode()) context = { 'request': RequestFactory().get('/?labjs='), } self.assertEqual(node.render(context), 'some content') class TestWaitNode(TestCase): def test_wait_node_renders_as_empty_script(self): self.assertHTMLEqual( Wait().render(template.Context({})), '<script type="text/javascript"></script>' ) class TestTemplateTags(TestCase): def test_runlabjs_output_includes_runQueue(self): t = template.Template('{% load labjs %}{% runlabjs %}') self.assertIn('runQueue', t.render(template.Context({})))
{ "content_hash": "cb60e7e12d33cba0da09cdafd2bbd03d", "timestamp": "", "source": "github", "line_count": 105, "max_line_length": 76, "avg_line_length": 31.64761904761905, "alnum_prop": 0.626241348179356, "repo_name": "ashwoods/django-labjs", "id": "b837f9a44e043facc5a89b356b712f558634ae87", "size": "3347", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "labJS/tests.py", "mode": "33188", "license": "mit", "language": [ { "name": "JavaScript", "bytes": "19398" }, { "name": "Python", "bytes": "12909" } ], "symlink_target": "" }
from enum import Enum from azure.core import CaseInsensitiveEnumMeta class AccessPolicyUpdateKind(str, Enum, metaclass=CaseInsensitiveEnumMeta): ADD = "add" REPLACE = "replace" REMOVE = "remove" class CertificatePermissions(str, Enum, metaclass=CaseInsensitiveEnumMeta): GET = "get" LIST = "list" DELETE = "delete" CREATE = "create" IMPORT_ENUM = "import" UPDATE = "update" MANAGECONTACTS = "managecontacts" GETISSUERS = "getissuers" LISTISSUERS = "listissuers" SETISSUERS = "setissuers" DELETEISSUERS = "deleteissuers" MANAGEISSUERS = "manageissuers" RECOVER = "recover" PURGE = "purge" BACKUP = "backup" RESTORE = "restore" class CreateMode(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The vault's create mode to indicate whether the vault need to be recovered or not. """ RECOVER = "recover" DEFAULT = "default" class KeyPermissions(str, Enum, metaclass=CaseInsensitiveEnumMeta): ENCRYPT = "encrypt" DECRYPT = "decrypt" WRAP_KEY = "wrapKey" UNWRAP_KEY = "unwrapKey" SIGN = "sign" VERIFY = "verify" GET = "get" LIST = "list" CREATE = "create" UPDATE = "update" IMPORT_ENUM = "import" DELETE = "delete" BACKUP = "backup" RESTORE = "restore" RECOVER = "recover" PURGE = "purge" class NetworkRuleAction(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The default action when no rule from ipRules and from virtualNetworkRules match. This is only used after the bypass property has been evaluated. """ ALLOW = "Allow" DENY = "Deny" class NetworkRuleBypassOptions(str, Enum, metaclass=CaseInsensitiveEnumMeta): """Tells what traffic can bypass network rules. This can be 'AzureServices' or 'None'. If not specified the default is 'AzureServices'. """ AZURE_SERVICES = "AzureServices" NONE = "None" class PrivateEndpointConnectionProvisioningState(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The current provisioning state. """ SUCCEEDED = "Succeeded" CREATING = "Creating" UPDATING = "Updating" DELETING = "Deleting" FAILED = "Failed" DISCONNECTED = "Disconnected" class PrivateEndpointServiceConnectionStatus(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The private endpoint connection status. """ PENDING = "Pending" APPROVED = "Approved" REJECTED = "Rejected" DISCONNECTED = "Disconnected" class Reason(str, Enum, metaclass=CaseInsensitiveEnumMeta): """The reason that a vault name could not be used. The Reason element is only returned if NameAvailable is false. """ ACCOUNT_NAME_INVALID = "AccountNameInvalid" ALREADY_EXISTS = "AlreadyExists" class SecretPermissions(str, Enum, metaclass=CaseInsensitiveEnumMeta): GET = "get" LIST = "list" SET = "set" DELETE = "delete" BACKUP = "backup" RESTORE = "restore" RECOVER = "recover" PURGE = "purge" class SkuFamily(str, Enum, metaclass=CaseInsensitiveEnumMeta): """SKU family name """ A = "A" class SkuName(str, Enum, metaclass=CaseInsensitiveEnumMeta): """SKU name to specify whether the key vault is a standard vault or a premium vault. """ STANDARD = "standard" PREMIUM = "premium" class StoragePermissions(str, Enum, metaclass=CaseInsensitiveEnumMeta): GET = "get" LIST = "list" DELETE = "delete" SET = "set" UPDATE = "update" REGENERATEKEY = "regeneratekey" RECOVER = "recover" PURGE = "purge" BACKUP = "backup" RESTORE = "restore" SETSAS = "setsas" LISTSAS = "listsas" GETSAS = "getsas" DELETESAS = "deletesas"
{ "content_hash": "85c6af05bb8962b1e79fdb051c40934e", "timestamp": "", "source": "github", "line_count": 139, "max_line_length": 100, "avg_line_length": 26.597122302158272, "alnum_prop": 0.67243711117122, "repo_name": "Azure/azure-sdk-for-python", "id": "c32d9677a80bb0f2d7f838c16edb9af927017e1c", "size": "4165", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/keyvault/azure-mgmt-keyvault/azure/mgmt/keyvault/v2018_02_14/models/_key_vault_management_client_enums.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
VERSION = '0.1.0.dev1' def ensure_str(arg): return type(arg) == Str and arg or Str(arg) def return_str(func): """ ensure to return Str """ def method(*args, **kwargs): return ensure_str(func(*args, **kwargs)) return method class Str(str): @classmethod def is_str(cls, s): """ is str or Str ? :rtype: boolean """ return isinstance(s, str) or type(s) == cls @return_str def camelise(self): """ 'foo-bar_is back' => 'FooBarIsBack' :rtype: Str """ if len(self) == 0: return self parts = self.replace('-', '_').replace(' ', '_').split("_") return ''.join([p[0].upper() + p[1:].lower() for p in parts]) @return_str def remove_start(self, start): """ remove_start('foo-bar', 'foo-') => 'bar' :type start: str/Str :rtype: Str """ assert self.__class__.is_str(start) assert len(start) <= len(self) if len(self) == 0 or len(start) == 0: return self return self[len(start):] @return_str def remove_end(self, end): """ remove_end('foo-bar', '-bar') => 'foo' :type end: str/Str :rtype: Str """ assert self.__class__.is_str(end) assert len(end) <= len(self) if len(self) == 0 or len(end) == 0: return self return self[:len(end) * -1] def slug_validate(self, special_chars='_-'): """ check slug validity (only alpha or digits) + special chars :type special_chars: str/Str :rtype: bool """ assert self.__class__.is_str(special_chars) if len(self) == 0: return False import string letters = string.ascii_letters + string.digits + special_chars return all([c in letters for c in self]) # WRAPPERS @staticmethod @return_str def uuid(hex=True): """ get uuid deps: pip install uuid :param hex: True will return uuid without dashes '-' :type hex: bool :rtype: Str """ assert isinstance(hex, bool) import uuid res = uuid.uuid4() res = hex and res.hex or str(res) assert isinstance(res, str) return res def uuid_validate(self, hex=True): """ is uuid valid ? (with dash or not) :param hex: True will not have dashes '-' :type hex: bool :rtype : bool """ assert isinstance(hex, bool) import re pattern = hex and '[0-9a-f]{32}\Z' or '^[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}\Z' return bool(re.compile(pattern, re.I).match(self)) @staticmethod @return_str def json_encode(data): """ convert data to json :param data: data to serialize in json :type data: dict/list :rtype Str """ assert isinstance(data, (dict, list)) import json serialised = json.dumps(data) assert isinstance(serialised, str) return serialised def json_parse(self): """ parse json :rtype dict """ import json data = json.loads(self) assert isinstance(data, (dict, list)) return data @return_str def parse_template(self, context=None): """ parse python string template :type context: dict/None :rtype Str """ import string if context is not None: assert isinstance(context, dict) res = string.Template(self).safe_substitute(context) assert isinstance(res, str) return res @return_str def parse_jinja(self, context=None): """ parse jinja2 template deps: pip install jinja2 :type context: dict/None :rtype Str """ import jinja2 if context is not None: assert isinstance(context, dict) res = jinja2.Template(self).render(context) assert isinstance(res, str) return res @return_str def parse_markdown(self): """ parse markdown deps: pip install markdown :rtype Str """ import markdown res = markdown.markdown(self) assert isinstance(res, str) return res @return_str def linkify(self): """ 'http://example.com' => '<a href="http://example.com" rel="nofollow">http://example.com</a>' deps: pip install bleach :rtype Str """ import bleach res = bleach.linkify(self) assert isinstance(res, str) return res @return_str def html_clean(self): """ '<script>evil()</script>' => '&lt;script&gt;evil()&lt;/script&gt;' deps: pip install bleach :rtype Str """ import bleach res = bleach.clean(self) assert isinstance(res, str) return res def s(s): """Str alias""" return ensure_str(s)
{ "content_hash": "387042bb58d2dcf8d88a2c4aca6ec40e", "timestamp": "", "source": "github", "line_count": 208, "max_line_length": 111, "avg_line_length": 24.60096153846154, "alnum_prop": 0.5194449872972445, "repo_name": "pyseed/overstr", "id": "85edf47bd1e91c89277ce155f2fe3aa73f822b9c", "size": "5164", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "overstr/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "13293" } ], "symlink_target": "" }
import unittest import logging, sys from time import sleep # Need a serial communication component for this test from SerialCommunication import SerialCommunication from CmdResponseDefinitions import * import comm_packet_pb2 # Define a list of way-points for the purpose of testing test_way_point_1 = comm_packet_pb2.CommandPacket() test_way_point_1.WayPointCmd.Heading = 45 test_way_point_1.WayPointCmd.Distance = 0.5 test_way_point_1.WayPointCmd.Name = "WayPoint A" test_way_point_2 = comm_packet_pb2.CommandPacket() test_way_point_2.WayPointCmd.Heading = 90 test_way_point_2.WayPointCmd.Distance = 2.0 test_way_point_2.WayPointCmd.Name = "WayPoint B" test_way_point_3 = comm_packet_pb2.CommandPacket() test_way_point_3.WayPointCmd.Heading = 180 test_way_point_3.WayPointCmd.Distance = 3.0 test_way_point_3.WayPointCmd.Name = "WayPoint C" test_route = [test_way_point_1, test_way_point_2, test_way_point_3] class UtSerialCommunication(unittest.TestCase): def setUp(self): self.testArticle = SerialCommunication("/dev/ttyUSB0") def test_sendCmdBadType(self): logging.info("Sending an invalid type way point command") cmd_packet = None self.assertRaises(TypeError, self.testArticle.commandArduino, cmd_packet) cmd_packet = 3 self.assertRaises(TypeError, self.testArticle.commandArduino, cmd_packet) def test_sendNoNameWayPointCmd(self): logging.info("Sending no name way point command") cmd_packet = comm_packet_pb2.CommandPacket() cmd_packet.WayPointCmd.Heading = 45.0 cmd_packet.WayPointCmd.Distance = 0.5 self.assertRaises(IOError, self.testArticle.commandArduino, cmd_packet) def test_sendNoHeadingWayPointCmd(self): logging.info("Sending no heading way point command") cmd_packet = comm_packet_pb2.CommandPacket() cmd_packet.WayPointCmd.Distance = 0.5 cmd_packet.WayPointCmd.Name = "WayPoint A" self.assertRaises(IOError, self.testArticle.commandArduino, cmd_packet) def test_sendNoDistanceWayPointCmd(self): logging.info("Sending no distance way point command") cmd_packet = comm_packet_pb2.CommandPacket() cmd_packet.WayPointCmd.Heading = 45.0 cmd_packet.WayPointCmd.Name = "WayPoint A" self.assertRaises(IOError, self.testArticle.commandArduino, cmd_packet) def test_sendEmptyWayPointCmd(self): logging.info("Sending empty command") cmd_packet = comm_packet_pb2.CommandPacket() # OK to send an empty command as long as it's of type CommandPacket # Just don't expect a response response = self.testArticle.commandArduino(cmd_packet) print response def test_commandOneWayPoint(self): response = self.helper_SendOneWayPoint(test_route[0]) self.helper_checkResponse(response) def test_commandRoute(self): for test_way_point in test_route: response = self.helper_SendOneCmdPacket(test_way_point) self.helper_checkResponse(response) sleep(7) def test_getActiveWayPoint(self): logging.info("Sending get active waypoint command") cmd_packet = comm_packet_pb2.CommandPacket() control_signal_cmd = cmd_packet.RoverCmds.add() control_signal_cmd.Id = WP_GET_ACTIVE response = self.helper_SendOneCmdPacket(cmd_packet) self.helper_checkResponse(response) #logging.info("The active waypoint is : " + response.ActiveWayPoint) def test_commandTestDrive(self): logging.info("Sending test drive command") cmd_packet = comm_packet_pb2.CommandPacket() control_signal_cmd = cmd_packet.RoverCmds.add() control_signal_cmd.Id = DO_TEST_DRIVE response = self.helper_SendOneCmdPacket(cmd_packet) self.helper_checkResponse(response) def helper_SendOneWayPoint(self, cmd_packet): logging.info("Sending way point command : " + cmd_packet.WayPointCmd.Name) return self.helper_SendOneCmdPacket(cmd_packet) def helper_SendOneCmdPacket(self, cmd_packet): return self.testArticle.commandArduino(cmd_packet) def helper_checkResponse(self, response): if response: logging.info("Success Packet # : " + str(self.testArticle.NumReceivedPackets)) logging.info("Dumping received packet : \n" + str(response)) self.assertIsInstance(response, comm_packet_pb2.TelemetryPacket) else: logging.info("Failed Packet # : " + str(self.testArticle.NumFailedPackets)) self.assertIsNone(response) self.assertTrue(self.testArticle.NumFailedPackets >= 1) if __name__ == '__main__': logging.basicConfig(stream=sys.stderr, level=logging.DEBUG, format='%(levelname)s:%(message)s') # Run the unit-tests suite = unittest.TestLoader().loadTestsFromTestCase(UtSerialCommunication) unittest.TextTestRunner(verbosity=2).run(suite)
{ "content_hash": "e1eb4b59ec6d0f3b0352044a901f729c", "timestamp": "", "source": "github", "line_count": 117, "max_line_length": 99, "avg_line_length": 42.39316239316239, "alnum_prop": 0.7030241935483871, "repo_name": "mike-moore/wheel_bot", "id": "6b333ff072eec57855b5617e71b6cbffef145856", "size": "4979", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "utils/UtSerialCommunication.py", "mode": "33261", "license": "mit", "language": [ { "name": "Arduino", "bytes": "5464" }, { "name": "Batchfile", "bytes": "435" }, { "name": "C", "bytes": "109940" }, { "name": "C++", "bytes": "48037" }, { "name": "CMake", "bytes": "10024" }, { "name": "Makefile", "bytes": "1702" }, { "name": "Protocol Buffer", "bytes": "41161" }, { "name": "Python", "bytes": "76688" }, { "name": "Shell", "bytes": "456" } ], "symlink_target": "" }
import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'RevisionDate.day' db.add_column(u'parsr_revisiondate', 'day', self.gf('django.db.models.fields.IntegerField')(default=1), keep_default=False) # Adding field 'RevisionDate.weekday' db.add_column(u'parsr_revisiondate', 'weekday', self.gf('django.db.models.fields.IntegerField')(default=0), keep_default=False) def backwards(self, orm): # Deleting field 'RevisionDate.day' db.delete_column(u'parsr_revisiondate', 'day') # Deleting field 'RevisionDate.weekday' db.delete_column(u'parsr_revisiondate', 'weekday') models = { u'parsr.author': { 'Meta': {'object_name': 'Author'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'repo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['parsr.Repo']", 'null': 'True', 'blank': 'True'}) }, u'parsr.file': { 'Meta': {'object_name': 'File'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'revision': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['parsr.Revision']"}) }, u'parsr.repo': { 'Meta': {'object_name': 'Repo'}, 'analyzed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'analyzed_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'analyzing': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'anonymous': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'kind': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'user': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}) }, u'parsr.revision': { 'Meta': {'object_name': 'Revision'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['parsr.Author']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'identifier': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'repo': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['parsr.Repo']"}), 'revision_date': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['parsr.RevisionDate']", 'null': 'True', 'blank': 'True'}) }, u'parsr.revisiondate': { 'Meta': {'object_name': 'RevisionDate'}, 'day': ('django.db.models.fields.IntegerField', [], {}), 'day_of_month': ('django.db.models.fields.IntegerField', [], {}), 'day_of_week': ('django.db.models.fields.IntegerField', [], {}), 'hour': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'minute': ('django.db.models.fields.IntegerField', [], {}), 'month': ('django.db.models.fields.IntegerField', [], {}), 'weekday': ('django.db.models.fields.IntegerField', [], {}), 'year': ('django.db.models.fields.IntegerField', [], {}) } } complete_apps = ['parsr']
{ "content_hash": "362489237d1c41af1ac45cc41062b6ed", "timestamp": "", "source": "github", "line_count": 76, "max_line_length": 150, "avg_line_length": 53.3421052631579, "alnum_prop": 0.5421805624074988, "repo_name": "frontendphil/analyzr", "id": "4a98a1c02c1a97fc01d974beb0ee5cde58066fc8", "size": "4078", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "parsr/migrations/0012_auto__add_field_revisiondate_day__add_field_revisiondate_weekday.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "28706" }, { "name": "HTML", "bytes": "21250" }, { "name": "JavaScript", "bytes": "177454" }, { "name": "Python", "bytes": "535628" } ], "symlink_target": "" }
'''Example settings/local.py file. These settings override what's in website/settings/defaults.py NOTE: local.py will not be added to source control. ''' from . import defaults DB_PORT = 27017 DEV_MODE = True DEBUG_MODE = True # Sets app to debug mode, turns off template caching, etc. SEARCH_ENGINE = 'elastic' USE_EMAIL = False USE_CELERY = False USE_GNUPG = False # Email MAIL_SERVER = 'localhost:1025' # For local testing MAIL_USERNAME = 'osf-smtp' MAIL_PASSWORD = 'CHANGEME' # Session COOKIE_NAME = 'osf' SECRET_KEY = "CHANGEME" ##### Celery ##### ## Default RabbitMQ broker BROKER_URL = 'amqp://' # Default RabbitMQ backend CELERY_RESULT_BACKEND = 'amqp://' USE_CDN_FOR_CLIENT_LIBS = False SENTRY_DSN = None
{ "content_hash": "cf3c05c896ff41837854a49762db5f40", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 77, "avg_line_length": 19.64864864864865, "alnum_prop": 0.7097661623108665, "repo_name": "AndrewSallans/osf.io", "id": "a6d1f23710f892cf839bc89d459f2860bbfb4786", "size": "751", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "website/settings/local-travis.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "70439" }, { "name": "JavaScript", "bytes": "2555546" }, { "name": "Python", "bytes": "2159449" } ], "symlink_target": "" }
import os from emuvim.api.openstack.resources.net import Net from emuvim.api.osm.kafka import Kafka from emuvim.api.osm.lcm import LCM from emuvim.api.osm.mongo import Mongo from emuvim.api.osm.mysql import Mysql from emuvim.api.osm.nbi import NBI from emuvim.api.osm.ro import RO from emuvim.api.osm.zookeeper import Zookeeper class OSM: def __init__(self, net, switch, name='osm', vca_host=os.environ.get('VCA_HOST'), vca_secret=os.environ.get('VCA_SECRET'), osm_version='releasefive-daily', ip_start='10.0.0.100'): ip_int = Net.ip_2_int(ip_start) zookeeper_ip = ip_start kafka_ip = Net.int_2_ip(ip_int + 1) mongo_ip = Net.int_2_ip(ip_int + 2) nbi_ip = Net.int_2_ip(ip_int + 3) ro_db_ip = Net.int_2_ip(ip_int + 4) ro_ip = Net.int_2_ip(ip_int + 5) lcm_ip = Net.int_2_ip(ip_int + 6) name_prefix = '%s-' % name self.zookeeper = Zookeeper(net, '%s/16' % zookeeper_ip, name_prefix=name_prefix) self.kafka = Kafka(net, '%s/16' % kafka_ip, zookeeper_ip, name_prefix=name_prefix) self.mongo = Mongo(net, '%s/16' % mongo_ip, name_prefix=name_prefix) self.nbi = NBI(net, '%s/16' % nbi_ip, mongo_ip, kafka_ip, version=osm_version, name_prefix=name_prefix) self.ro_db = Mysql(net, '%s/16' % ro_db_ip, name_prefix=name_prefix) self.ro = RO(net, '%s/16' % ro_ip, ro_db_ip, version=osm_version, name_prefix=name_prefix) self.lcm = LCM(net, '%s/16' % lcm_ip, ro_ip, mongo_ip, kafka_ip, vca_host, vca_secret, version=osm_version, name_prefix=name_prefix) net.addLink(self.zookeeper.instance, switch) net.addLink(self.kafka.instance, switch) net.addLink(self.mongo.instance, switch) net.addLink(self.nbi.instance, switch) net.addLink(self.ro_db.instance, switch) net.addLink(self.ro.instance, switch) net.addLink(self.lcm.instance, switch) def start(self): self.zookeeper.start() self.kafka.start() self.mongo.start() self.nbi.start() self.ro_db.start() self.ro.start() self.lcm.start() # forward api related calls def onboard_vnfd(self, *args, **kwargs): return self.nbi.onboard_vnfd(*args, **kwargs) def onboard_nsd(self, *args, **kwargs): return self.nbi.onboard_nsd(*args, **kwargs) def register_emulated_api(self, *args, **kwargs): return self.nbi.register_emulated_api(*args, **kwargs) def ns_list(self): return self.nbi.ns_list() def ns_create(self, *args, **kwargs): return self.nbi.ns_create(*args, **kwargs) def ns_delete(self, *args, **kwargs): return self.nbi.ns_delete(*args, **kwargs) def ns_get(self, *args, **kwargs): return self.nbi.ns_get(*args, **kwargs) def ns_action(self, *args, **kwargs): return self.nbi.ns_action(*args, **kwargs) def ns_wait_until_all_in_status(self, *args, **kwargs): return self.nbi.ns_wait_until_all_in_status(*args, **kwargs)
{ "content_hash": "c88b81f8e3956264157d91792e98f703", "timestamp": "", "source": "github", "line_count": 83, "max_line_length": 111, "avg_line_length": 38.024096385542165, "alnum_prop": 0.6023447401774398, "repo_name": "mpeuster/son-emu", "id": "f4de8b9121240ada25fa21dcd3a62a1e98f02308", "size": "3784", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/emuvim/api/osm/osm.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "1766" }, { "name": "Dockerfile", "bytes": "2767" }, { "name": "HTML", "bytes": "4641" }, { "name": "JavaScript", "bytes": "9195" }, { "name": "Python", "bytes": "832407" }, { "name": "Shell", "bytes": "6423" } ], "symlink_target": "" }
from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('accounts', '0038_profile_theme'), ] operations = [ migrations.RemoveField( model_name='profile', name='reports_allowed', ), ]
{ "content_hash": "2b12d0902180dd1e82a02e5097f99894", "timestamp": "", "source": "github", "line_count": 15, "max_line_length": 43, "avg_line_length": 19, "alnum_prop": 0.5684210526315789, "repo_name": "healthchecks/healthchecks", "id": "7165c48020fd790050be4824e8c9b2522a90e3e6", "size": "334", "binary": false, "copies": "2", "ref": "refs/heads/master", "path": "hc/accounts/migrations/0039_remove_profile_reports_allowed.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "65959" }, { "name": "Dockerfile", "bytes": "1088" }, { "name": "HTML", "bytes": "716643" }, { "name": "JavaScript", "bytes": "50869" }, { "name": "Less", "bytes": "211300" }, { "name": "Python", "bytes": "1043149" }, { "name": "Shell", "bytes": "1655" } ], "symlink_target": "" }
from __future__ import absolute_import, print_function, division import warnings import numpy as np import astropy.units as u __all__ = ["_get_x_in_wavenumbers", "_test_valid_x_range"] def _get_x_in_wavenumbers(in_x): """ Convert input x to wavenumber given x has units. Otherwise, assume x is in waveneumbers and issue a warning to this effect. Parameters ---------- in_x : astropy.quantity or simple floats x values Returns ------- x : floats input x values in wavenumbers w/o units """ # handles the case where x is a scaler in_x = np.atleast_1d(in_x) # check if in_x is an astropy quantity, if not issue a warning if not isinstance(in_x, u.Quantity): warnings.warn( "x has no units, assuming x units are inverse microns", UserWarning ) # convert to wavenumbers (1/micron) if x input in units # otherwise, assume x in appropriate wavenumber units with u.add_enabled_equivalencies(u.spectral()): x_quant = u.Quantity(in_x, 1.0 / u.micron, dtype=np.float64) # strip the quantity to avoid needing to add units to all the # polynomical coefficients return x_quant.value def _test_valid_x_range(x, x_range, outname): """ Test if any of the x values are outside of the valid range Parameters ---------- x : float array wavenumbers in inverse microns x_range: 2 floats allowed min/max of x outname: str name of curve for error message """ if np.logical_or(np.any(x < x_range[0]), np.any(x > x_range[1])): raise ValueError( "Input x outside of range defined for " + outname + " [" + str(x_range[0]) + " <= x <= " + str(x_range[1]) + ", x has units 1/micron]" )
{ "content_hash": "babfa0cece9cd249ee9a1a7fc165d50d", "timestamp": "", "source": "github", "line_count": 69, "max_line_length": 79, "avg_line_length": 27, "alnum_prop": 0.595276435856146, "repo_name": "karllark/dust_extinction", "id": "d6f51717f6d85bbd094c6a0b9c312827f6d8db70", "size": "1863", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "dust_extinction/helpers.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "162641" } ], "symlink_target": "" }
import pprint import webob.dec @webob.dec.wsgify def echo_app(request): """A WSGI application that echoes the CGI environment to the user.""" return webob.Response(content_type='application/json', body=pprint.pformat(request.environ, indent=4)) def echo_app_factory(global_conf, **local_conf): return echo_app
{ "content_hash": "2992068e82b07b9530f6ece99e4c385a", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 73, "avg_line_length": 27.076923076923077, "alnum_prop": 0.6846590909090909, "repo_name": "jamielennox/keystonemiddleware-echo", "id": "6488ce39db8d647c175f882502671ab10e69b2bb", "size": "898", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "keystonemiddleware_echo/app.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "6423" } ], "symlink_target": "" }
import contextlib import xcffib import xcffib.xproto from . import command from . import hook from . import window from . import utils from .log_utils import logger class _Group(command.CommandObject): """A container for a bunch of windows Analogous to workspaces in other window managers. Each client window managed by the window manager belongs to exactly one group. """ def __init__(self, name, layout=None): self.name = name self.customLayout = layout # will be set on _configure self.windows = set() self.qtile = None self.layouts = [] self.floating_layout = None # self.focusHistory lists the group's windows in the order they # received focus, from the oldest (first item) to the currently # focused window (last item); NB the list does *not* contain any # windows that never received focus; refer to self.windows for the # complete set self.focusHistory = [] self.screen = None self.currentLayout = None def _configure(self, layouts, floating_layout, qtile): self.screen = None self.currentLayout = 0 self.focusHistory = [] self.windows = set() self.qtile = qtile self.layouts = [i.clone(self) for i in layouts] self.floating_layout = floating_layout if self.customLayout is not None: self.layout = self.customLayout self.customLayout = None @property def currentWindow(self): try: return self.focusHistory[-1] except IndexError: # no window has focus return None @currentWindow.setter def currentWindow(self, win): try: self.focusHistory.remove(win) except ValueError: # win has never received focus before pass self.focusHistory.append(win) def _remove_from_focus_history(self, win): try: index = self.focusHistory.index(win) except ValueError: # win has never received focus return False else: del self.focusHistory[index] # return True if win was the last item (i.e. it was currentWindow) return index == len(self.focusHistory) @property def layout(self): return self.layouts[self.currentLayout] @layout.setter def layout(self, layout): """ Parameters ========== layout : a string with matching the name of a Layout object. """ for index, obj in enumerate(self.layouts): if obj.name == layout: self.currentLayout = index hook.fire( "layout_change", self.layouts[self.currentLayout], self ) self.layoutAll() return raise ValueError("No such layout: %s" % layout) def toLayoutIndex(self, index): assert 0 <= index < len(self.layouts), "layout index out of bounds" self.layout.hide() self.currentLayout = index hook.fire("layout_change", self.layouts[self.currentLayout], self) self.layoutAll() screen = self.screen.get_rect() self.layout.show(screen) def nextLayout(self): self.toLayoutIndex((self.currentLayout + 1) % (len(self.layouts))) def prevLayout(self): self.toLayoutIndex((self.currentLayout - 1) % (len(self.layouts))) def layoutAll(self, warp=False): """Layout the floating layer, then the current layout. If we have have a currentWindow give it focus, optionally moving warp to it. """ if self.screen and len(self.windows): with self.disableMask(xcffib.xproto.EventMask.EnterWindow): normal = [x for x in self.windows if not x.floating] floating = [ x for x in self.windows if x.floating and not x.minimized ] screen = self.screen.get_rect() if normal: try: self.layout.layout(normal, screen) except: logger.exception("Exception in layout %s", self.layout.name) if floating: self.floating_layout.layout(floating, screen) if self.currentWindow and \ self.screen == self.qtile.currentScreen: self.currentWindow.focus(warp) def _setScreen(self, screen): """Set this group's screen to new_screen""" if screen == self.screen: return self.screen = screen if self.screen: # move all floating guys offset to new screen self.floating_layout.to_screen(self, self.screen) self.layoutAll() rect = self.screen.get_rect() self.floating_layout.show(rect) self.layout.show(rect) else: self.hide() def hide(self): self.screen = None with self.disableMask(xcffib.xproto.EventMask.EnterWindow | xcffib.xproto.EventMask.FocusChange | xcffib.xproto.EventMask.LeaveWindow): for i in self.windows: i.hide() self.layout.hide() @contextlib.contextmanager def disableMask(self, mask): for i in self.windows: i._disableMask(mask) yield for i in self.windows: i._resetMask() def focus(self, win, warp=True, force=False): """Focus the given window If win is in the group, blur any windows and call ``focus`` on the layout (in case it wants to track anything), fire focus_change hook and invoke layoutAll. Parameters ========== win : Window to focus warp : Warp pointer to win. This should basically always be True, unless the focus event is coming from something like EnterNotify, where the user is actively using the mouse, or on full screen layouts where only one window is "maximized" at a time, and it doesn't make sense for the mouse to automatically move. """ if self.qtile._drag and not force: # don't change focus while dragging windows (unless forced) return if win: if win not in self.windows: return self.currentWindow = win if win.floating: for l in self.layouts: l.blur() self.floating_layout.focus(win) else: self.floating_layout.blur() for l in self.layouts: l.focus(win) hook.fire("focus_change") # !!! note that warp isn't hooked up now self.layoutAll(warp) def info(self): return dict( name=self.name, focus=self.currentWindow.name if self.currentWindow else None, windows=[i.name for i in self.windows], focusHistory=[i.name for i in self.focusHistory], layout=self.layout.name, layouts=[l.name for l in self.layouts], floating_info=self.floating_layout.info(), screen=self.screen.index if self.screen else None ) def add(self, win, focus=True, force=False): hook.fire("group_window_add") self.windows.add(win) win.group = self try: if 'fullscreen' in win.window.get_net_wm_state() and \ self.qtile.config.auto_fullscreen: win._float_state = window.FULLSCREEN elif self.floating_layout.match(win): # !!! tell it to float, can't set floating # because it's too early # so just set the flag underneath win._float_state = window.FLOATING except (xcffib.xproto.WindowError, xcffib.xproto.AccessError): pass # doesn't matter if win.floating: self.floating_layout.add(win) else: for i in self.layouts: i.add(win) if focus: self.focus(win, warp=True, force=force) def remove(self, win, force=False): self.windows.remove(win) hadfocus = self._remove_from_focus_history(win) win.group = None if win.floating: nextfocus = self.floating_layout.remove(win) nextfocus = nextfocus or \ self.currentWindow or \ self.layout.focus_first() or \ self.floating_layout.focus_first(group=self) else: for i in self.layouts: if i is self.layout: nextfocus = i.remove(win) else: i.remove(win) nextfocus = nextfocus or \ self.floating_layout.focus_first(group=self) or \ self.currentWindow or \ self.layout.focus_first() # a notification may not have focus if hadfocus: self.focus(nextfocus, warp=True, force=force) # no next focus window means focus changed to nothing if not nextfocus: hook.fire("focus_change") elif self.screen: self.layoutAll() def mark_floating(self, win, floating): if floating: if win in self.floating_layout.find_clients(self): # already floating pass else: for i in self.layouts: i.remove(win) if win is self.currentWindow: i.blur() self.floating_layout.add(win) if win is self.currentWindow: self.floating_layout.focus(win) else: self.floating_layout.remove(win) self.floating_layout.blur() for i in self.layouts: i.add(win) if win is self.currentWindow: i.focus(win) self.layoutAll() def _items(self, name): if name == "layout": return (True, list(range(len(self.layouts)))) elif name == "window": return (True, [i.window.wid for i in self.windows]) elif name == "screen": return (True, None) def _select(self, name, sel): if name == "layout": if sel is None: return self.layout else: return utils.lget(self.layouts, sel) elif name == "window": if sel is None: return self.currentWindow else: for i in self.windows: if i.window.wid == sel: return i elif name == "screen": return self.screen def cmd_setlayout(self, layout): self.layout = layout def cmd_info(self): """Returns a dictionary of info for this group""" return self.info() def cmd_toscreen(self, screen=None): """Pull a group to a specified screen. Parameters ========== screen : Screen offset. If not specified, we assume the current screen. Examples ======== Pull group to the current screen:: toscreen() Pull group to screen 0:: toscreen(0) """ if screen is None: screen = self.qtile.currentScreen else: screen = self.qtile.screens[screen] screen.setGroup(self) def _dirGroup(self, direction, skip_empty=False, skip_managed=False): """Find a group walking the groups list in the specified direction Parameters ========== skip_empty : skips the empty groups skip_managed : skips the groups that have a screen """ def match(group): if group is self: return True if skip_empty and not group.windows: return False if skip_managed and group.screen: return False return True groups = [group for group in self.qtile.groups if match(group)] index = (groups.index(self) + direction) % len(groups) return groups[index] def prevGroup(self, skip_empty=False, skip_managed=False): return self._dirGroup(-1, skip_empty, skip_managed) def nextGroup(self, skip_empty=False, skip_managed=False): return self._dirGroup(1, skip_empty, skip_managed) def cmd_unminimize_all(self): """Unminimise all windows in this group""" for w in self.windows: w.minimized = False self.layoutAll() def cmd_next_window(self): if not self.windows: return if self.currentWindow.floating: nxt = self.floating_layout.focus_next(self.currentWindow) or \ self.layout.focus_first() or \ self.floating_layout.focus_first(group=self) else: nxt = self.layout.focus_next(self.currentWindow) or \ self.floating_layout.focus_first(group=self) or \ self.layout.focus_first() self.focus(nxt, True) def cmd_prev_window(self): if not self.windows: return if self.currentWindow.floating: nxt = self.floating_layout.focus_previous(self.currentWindow) or \ self.layout.focus_last() or \ self.floating_layout.focus_last(group=self) else: nxt = self.layout.focus_previous(self.currentWindow) or \ self.floating_layout.focus_last(group=self) or \ self.layout.focus_last() self.focus(nxt, True) def cmd_switch_groups(self, name): """Switch position of current group with name""" self.qtile.cmd_switch_groups(self.name, name) def __repr__(self): return "<group.Group (%r)>" % self.name
{ "content_hash": "2863ec58ffce78fa0df46091ee9fac8f", "timestamp": "", "source": "github", "line_count": 420, "max_line_length": 79, "avg_line_length": 33.99761904761905, "alnum_prop": 0.5457665102598221, "repo_name": "de-vri-es/qtile", "id": "116d9377b891c61ca946fe5438ed7428ee69e011", "size": "15631", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "libqtile/group.py", "mode": "33188", "license": "mit", "language": [ { "name": "Groff", "bytes": "3605" }, { "name": "Makefile", "bytes": "1147" }, { "name": "Python", "bytes": "998773" }, { "name": "Shell", "bytes": "4084" } ], "symlink_target": "" }
import collections import gc import re import traceback from operator import itemgetter import diesel address_stripper = re.compile(r' at 0x[0-9a-f]+') def print_greenlet_stacks(): """Prints the stacks of greenlets from running loops. The number of greenlets at the same position in the stack is displayed on the line before the stack dump along with a simplified label for the loop callable. """ stacks = collections.defaultdict(int) loops = {} for obj in gc.get_objects(): if not isinstance(obj, diesel.Loop) or not obj.running: continue if obj.id == diesel.core.current_loop.id: continue fr = obj.coroutine.gr_frame stack = ''.join(traceback.format_stack(fr)) stacks[stack] += 1 loops[stack] = obj for stack, count in sorted(stacks.iteritems(), key=itemgetter(1)): loop = loops[stack] loop_id = address_stripper.sub('', str(loop.loop_callable)) print '[%d] === %s ===' % (count, loop_id) print stack
{ "content_hash": "343564a6b2b2222c7c6e008eec07da52", "timestamp": "", "source": "github", "line_count": 36, "max_line_length": 75, "avg_line_length": 29.166666666666668, "alnum_prop": 0.638095238095238, "repo_name": "dieseldev/diesel", "id": "b4c720ce8e97ef050c5aae03f7826988817ccdb7", "size": "1050", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "diesel/util/debugtools.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "252" }, { "name": "Protocol Buffer", "bytes": "9279" }, { "name": "Python", "bytes": "345729" } ], "symlink_target": "" }
"""Module for numerical treatment of piece-wise continuous reservoir models. An abstract :class:`~.smooth_reservoir_model.SmoothReservoirModel` is filled with life by giving initial values, a parameter set, a time grid, and potentially additional involved functions to it. The model can then be run and as long as the model is linear, based on the state transition operator age and transit time distributions can be computed. Nonlinear models can be linearized along a solution trajectory. Counting of compartment/pool/reservoir numbers start at zero and the total number of pools is :math:`d`. """ from numbers import Number from copy import copy, deepcopy from matplotlib import cm import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np from numpy.linalg import matrix_power import plotly.graph_objs as go import base64 import hashlib import mpmath from frozendict import frozendict from sympy import lambdify, flatten, latex, Function, sympify, sstr, solve, \ ones, Matrix, ImmutableMatrix from sympy.core.function import UndefinedFunction from sympy.abc import _clash from sympy.printing import pprint import scipy.linalg from scipy.linalg import inv from numpy.linalg import pinv from scipy.special import factorial from scipy.integrate import odeint, quad from scipy.interpolate import interp1d, UnivariateSpline from scipy.optimize import newton, brentq, minimize from tqdm import tqdm #from testinfrastructure.helpers import pe from .smooth_reservoir_model import SmoothReservoirModel from .model_run import ModelRun from .helpers_reservoir import ( deprecation_warning ,warning ,make_cut_func_set ,has_pw ,numsol_symbolic_system_old ,numsol_symbolical_system ,arrange_subplots ,melt ,generalized_inverse_CDF ,draw_rv ,stochastic_collocation_transform ,numerical_rhs ,numerical_rhs_old ,MH_sampling ,save_csv ,load_csv ,stride ,f_of_t_maker ,const_of_t_maker ,numerical_function_from_expression ,x_phi_ode ,phi_tmax ,x_tmax ,print_quantile_error_statisctics ,custom_lru_cache_wrapper ,net_Us_from_discrete_Bs_and_xs ,net_Fs_from_discrete_Bs_and_xs ,net_Rs_from_discrete_Bs_and_xs ,check_parameter_dict_complete ) from .BlockIvp import BlockIvp from .myOdeResult import solve_ivp_pwc from .Cache import Cache class Error(Exception): """Generic error occurring in this module.""" pass class SmoothModelRun(ModelRun): """Class for a model run based on a :class:`~.smooth_reservoir_model.SmoothReservoirModel`. Attributes: model (:class:`~.smooth_reservoir_model.SmoothReservoirModel`): The reservoir model on which the model run bases. parameter_dict (dict): ``{x: y}`` with ``x`` being a SymPy symbol and ``y`` being a numerical value. start_values (numpy.array): The vector of start values. times (numpy.array): The time grid used for the simulation. Typically created by ``numpy.linspace``. func_set (dict): ``{f: func}`` with ``f`` being a SymPy symbol and ``func`` being a Python function. Defaults to ``dict()``. Pool counting starts with ``0``. In combined structures for pools and system, the system is at the position of a ``(d+1)`` st pool. """ def __init__(self, model, parameter_dict, start_values, times, func_set=None ): """Return a SmoothModelRun instance. Args: model (:class:`~.smooth_reservoir_model.SmoothReservoirModel`): The reservoir model on which the model run bases. parameter_dict (dict): ``{x: y}`` with ``x`` being a SymPy symbol and ``y`` being a numerical value. start_values (numpy.array): The vector of start values. times (numpy.array): The time grid used for the simulation. Typically created by ``numpy.linspace``. func_set (dict): ``{f: func}`` with ``f`` being a SymPy symbol and ``func`` being a Python function. Defaults to ``dict()``. Raises: Error: If ``start_values`` is not a ``numpy.array``. """ # we cannot use dict() as default because the test suite makes weird # things with it! But that is bad style anyways if parameter_dict is None: parameter_dict = dict() if func_set is None: func_set = dict() # check parameter_dict + func_set for completeness free_symbols = check_parameter_dict_complete( model, parameter_dict, func_set) if free_symbols != set(): raise(Error('Missing parameter values for ' + str(free_symbols))) self.model = model self.parameter_dict = frozendict(parameter_dict) self.times = times # make sure that start_values are an array, # even a one-dimensional one self.start_values = np.array(start_values).reshape(model.nr_pools,) if not(isinstance(start_values, np.ndarray)): raise(Error("start_values should be a numpy array")) # fixme mm: #func_set = {str(key): val for key, val in func_set.items()} # The conversion to string is not desirable here # should rather implement a stricter check (which fails at the moment because some tests use the old syntax #for f in func_set.keys(): # if not isinstance(f,UndefinedFunction): # raise(Error("The keys of the func_set should be of type: sympy.core.function.UndefinedFunction")) self.func_set = frozendict(func_set) def __str__(self): return str( [ 'id(self)'+str(id(self)), 'id(model)'+str(id(self.model))] +["id "+str(key)+" "+str(id(val)) for key,val in self.func_set.items()] +["id "+str(key)+" "+str(id(val)) for key,val in self.parameter_dict.items()] ) @property def dts(self): """ The lengths of the time intervals. """ return np.diff(self.times).astype(np.float64) def B_func(self, vec_sol_func=None): # Design comment: # Note that the vec_sol_func argument is necessary because # we have slight differences in solutions coming from different # numerical solutions. If we intended to apply B_func to # values not belonging to the solution, we would not do so # in an instace method but a separate function. if vec_sol_func == None: vec_sol_func = self.solve_func() # we inject the solution into B to get the linearized version srm = self.model tup = (srm.time_symbol,) + tuple(srm.state_vector) numfun = numerical_function_from_expression( srm.compartmental_matrix, tup, self.parameter_dict, self.func_set ) # we want a function that accepts a vector argument for x def B_func(t): x = vec_sol_func(t) return numfun(t,*x) return B_func def linearize_old(self): """Return a linearized SmoothModelRun instance. Linearization happens along the solution trajectory. Only for linear systems all functionality is guaranteed, this is why nonlinear systems should be linearized first. Returns: :class:`SmoothModelRun`: A linearized version of the original :class:`SmoothModelRun`, with the solutions now being part of ``func_set``. """ sol_funcs = self.sol_funcs_old() srm = self.model xi, T, N, C, u = deepcopy(srm.xi_T_N_u_representation()) svec = srm.state_vector symbolic_sol_funcs = {sv: Function(sv.name + '_sol')(srm.time_symbol) for sv in svec} # need to define a function_factory to create the function we need to # avoid late binding # with late binding pool will always be nr_pools and always the last # function will be used! def func_maker(pool): def func(t): return sol_funcs[pool](t) return(func) sol_dict = {} for pool in range(self.nr_pools): key = sstr(symbolic_sol_funcs[svec[pool]]) sol_dict[key] = func_maker(pool) linearized_B = (xi*T*N).subs(symbolic_sol_funcs) linearized_u = u.subs(symbolic_sol_funcs) func_set=frozendict({key:val for mydict in [self.func_set,sol_dict] for key,val in mydict.items()}) cl=srm.__class__ linearized_srm = cl.from_B_u( srm.state_vector, srm.time_symbol, linearized_B, linearized_u ) linearized_smr = self.__class__( linearized_srm, self.parameter_dict, self.start_values, self.times, func_set=func_set ) return linearized_smr def linearize(self): """Return a linearized SmoothModelRun instance. Linearization happens along the solution trajectory. Only for linear systems all functionality is guaranteed, this is why nonlinear systems should be linearized first. Returns: :class:`SmoothModelRun`: A linearized version of the original :class:`SmoothModelRun`, with the solutions now being part of ``func_set``. """ #sol_funcs = self.sol_funcs() sol_funcs = self.sol_funcs() srm = self.model xi, T, N, C, u = srm.xi_T_N_u_representation() svec = srm.state_vector symbolic_sol_funcs = {sv: Function(sv.name + '_sol')(srm.time_symbol) for sv in svec} # need to define a function_factory to create the function we need to # avoid late binding # with late binding pool will always be nr_pools and always the last # function will be used! def func_maker(pool): def func(t): return sol_funcs[pool](t) return(func) sol_dict = {} for pool in range(self.nr_pools): key = sstr(symbolic_sol_funcs[svec[pool]]) sol_dict[key] = func_maker(pool) linearized_B = (xi*T*N).subs(symbolic_sol_funcs) linearized_u = u.subs(symbolic_sol_funcs) func_set=frozendict({key:val for mydict in [self.func_set,sol_dict] for key,val in mydict.items()}) #func_set = self.func_set #func_set.update(sol_dict) cl = srm.__class__ linearized_srm = cl.from_B_u( srm.state_vector, srm.time_symbol, linearized_B, linearized_u ) linearized_smr = self.__class__( linearized_srm, self.parameter_dict, self.start_values, self.times, func_set=func_set ) return linearized_smr @staticmethod #fixme mm 2018-9-5: # Why is this is mehtod of class SmoothModelRun? # It does not rely on the class definition in any # way. # Is it because the helper module is not exposed in the API? def moments_from_densities(max_order, densities): """Compute the moments up to max_order of the given densities. Args: max_order (int): The highest order up to which moments are to be computed. densities (numpy.array): Each entry is a Python function of one variable (age) that represents a probability density function. Returns: numpy.ndarray: moments x pools, containing the moments of the given densities. """ n = densities(0).shape[0] def kth_moment(k): def kth_moment_pool(k, pool): norm = quad(lambda a: densities(a)[pool], 0, np.infty)[0] if norm == 0: return np.nan return (quad(lambda a: a**k*densities(a)[pool], 0, np.infty)[0] / norm) return np.array([kth_moment_pool(k,pool) for pool in range(n)]) return np.array([kth_moment(k) for k in range(1, max_order+1)]) ########## public methods and properties ########## @property def nr_pools(self): """int: Return the number of pools involved in the model.""" return self.model.nr_pools def solve_single_value_old(self, alternative_start_values=None): """Solve the model and return a function of time. Args: alternative_start_values (numpy.array, optional): If not given, the original ``start_values`` are used. Returns: Python function ``f``: ``f(t)`` is a numpy.array that containts the pool contents at time ``t``. """ return self._solve_age_moment_system_single_value_old(0, None, alternative_start_values) def solve_func(self, alternative_start_values=None): """Solve the model and return a function of time. Args: alternative_start_values (numpy.array, optional): If not given, the original ``start_values`` are used. Returns: Python function ``f``: ``f(t)`` is a numpy.array that containts the pool contents at time ``t``. """ return self._solve_age_moment_system_func( 0, None, alternative_start_values ) def solve_old(self, alternative_times = None, alternative_start_values=None): """Solve the model and return a solution grid. Args: alternative_times (numpy.array): If not given, the original time grid is used. alternative_start_values (numpy.array): If not given, the original start_values are used. Returns: numpy.ndarray: len(times) x nr_pools, contains the pool contents at the times given in the time grid. """ return self._solve_age_moment_system_old(0, None, alternative_times, alternative_start_values) def solve(self, alternative_start_values=None): """Solve the model and return a solution grid. If the solution has been computed previously (even by other methods) the cached result will be returned. Args: alternative_start_values (numpy.array): If not given, the original start_values are used. Returns: numpy.ndarray: len(times) x nr_pools, contains the pool contents at the times given in the time grid. """ soln, sol_func = self._solve_age_moment_system( 0, None, alternative_start_values ) return soln ##### fluxes as functions ##### def sol_funcs_old(self): """Return linearly interpolated solution functions. Returns: Python function ``f``: ``f(t)`` returns a numpy.array containing the pool contents at time ``t``. """ times = self.times sol = self.solve_old(times) sol_funcs = [] for i in range(self.nr_pools): sol_inter = interp1d(times, sol[:,i]) sol_funcs.append(sol_inter) return sol_funcs #fixme: test def sol_funcs(self):#->List[Callable[float,float]]: """Returns list of linearly interpolated solution functions per pool. Returns: List of Python functions ``[f[i]]``, where ``f[i](t)`` returns pool i's content at time ``t``. """ vec_sol_func = self.solve_func() # the factory is necessary to avoid unstrict evaluation def func_maker(pool): def func(t): return vec_sol_func(t)[pool] return(func) return [func_maker(i) for i in range(self.nr_pools)] def sol_funcs_dict_by_symbol(self): """ Return linearly interpolated solution functions as a dictionary indexed by the symbols of the state variables """ #sol_funcs=self.sol_funcs() sol_funcs=self.sol_funcs() state_vector=self.model.state_vector n=len(state_vector) sol_dict_by_smybol={state_vector[i]:sol_funcs[i] for i in range(n)} return sol_dict_by_smybol def sol_funcs_dict_by_name(self): """Return linearly interpolated solution functions. as a dictionary indexed by the name (string) of the state variables""" sol_dict_by_name={k.name:v for k,v in self.sol_funcs_dict_by_symbol().items()} return sol_dict_by_name def external_input_flux_funcs(self): """Return a dictionary of the external input fluxes. The resulting functions base on sol_funcs and are linear interpolations. Returns: dict: ``{key: func}`` with ``key`` representing the pool which receives the input and ``func`` a function of time that returns a ``float``. """ return self._flux_funcs(self.model.input_fluxes) def internal_flux_funcs(self): """Return a dictionary of the internal fluxes. Returns: dict: ``{key: func}`` with ``key=(pool_from, pool_to)`` representing the pools involved and ``func`` a function of time that returns a ``float``. """ return self._flux_funcs(self.model.internal_fluxes) def external_output_flux_funcs(self): """Return a dictionary of the external output fluxes. Returns: dict: ``{key: func}`` with ``key`` representing the pool from which the output comes and ``func`` a function of time that returns a ``float``. """ return self._flux_funcs(self.model.output_fluxes) def acc_gross_external_output_vector(self, data_times=None): """Return the vectors of accumulated external outputs. Returns: numpy.ndarray: len(times)-1 x nr_pools """ times = self.times if data_times is None else data_times nt = len(times)-1 res = np.zeros((nt,self.nr_pools)) for k in range(nt): for pool_nr, func in self.external_output_flux_funcs().items(): res[k,pool_nr] = quad(func,times[k],times[k+1])[0] return res #fixme: here _func indicated that this here is already a function of t # on other occasions _func indicated that a function is returned def output_vector_func(self, t): """Return a vector of the external output fluxes at time ``t``. Returns: numpy.array: The ``i`` th entry is the output from pool ``i`` at time ``t``. """ res = np.zeros((self.nr_pools,)) for key, value in self.external_output_flux_funcs().items(): res[key] = value(t) return res ##### fluxes as vector-valued functions ##### # Note: This function could be rewritten using a vector valued input function def external_input_vector_func(self, cut_off = True): """Return a vector valued function for the external inputs. Returns: Python function ``u``: ``u(t)`` is a ``numpy.array`` containing the external inputs at time ``t``. Note: If the required (future) values for the input exceed the maximum of times they are assumed to be zero if ``cut_off`` is ``True``. If ``cut_off`` is ``False`` then the input function is assumed to be valid everywhere which might be dangerous if they are extrapolated from data. """ if not hasattr(self, '_external_input_vector_func'): t0 = self.times[0] # cut off inputs until t0 (exclusive) if cut_off: t_valid = lambda t: True if ((t0<=t) and (t<=self.times[-1])) else False else: t_valid = lambda t: True input_fluxes = [] for i in range(self.nr_pools): if i in self.external_input_flux_funcs().keys(): input_fluxes.append(self.external_input_flux_funcs()[i]) else: input_fluxes.append(lambda t: 0) u = lambda t: (np.array([f(t) for f in input_fluxes], dtype=np.float) if t_valid(t) else np.zeros((self.nr_pools,))) self._external_input_vector_func = u return self._external_input_vector_func def output_rate_vector_at_t(self, t): """Return a vector of output rates at time ``t``. Args: t (float): The time at which the output rates are computed. Returns: numpy.array: The ith entry contains the output rate of pool ``i`` at time ``t``. """ n = self.nr_pools #sol_funcs = self.sol_funcs() vec_sol_func = self.solve_func() output_vec_at_t = self.output_vector_func(t) # rate_vec = np.zeros((n,)) x = vec_sol_func(t) # for pool in range(n): # #x = sol_funcs[pool](t) # if x != 0: # rate_vec[pool] = output_vec_at_t[pool] / x return np.nan_to_num(output_vec_at_t / x) ##### fluxes as vector over self.times ##### def acc_gross_external_input_vector(self, data_times=None): """Return the grid of accumulated external input vectors. Returns: numpy.ndarray: len(times) x nr_pools """ times = self.times if data_times is None else data_times nt = len(times)-1 res = np.zeros((nt, self.nr_pools)) for k in range(nt): for pool_nr, func in self.external_input_flux_funcs().items(): res[k,pool_nr] = quad(func,times[k],times[k+1])[0] return res @property #this function should be rewritten using the vector values solution def external_input_vector(self): """Return the grid of external input vectors. Returns: numpy.ndarray: len(times) x nr_pools """ res = self._flux_vector(self.model.external_inputs) # no inputs at t0 (only >t0) #res[0,:] = np.zeros((self.nr_pools,)) return res @property #this function should be rewritten using the vector valued solution def external_output_vector(self): """Return the grid of external output vectors. Returns: numpy.ndarray: len(times) x nr_pools """ return(self._flux_vector(self.model.external_outputs)) @property def output_rate_vector(self): """Return the grid of output rate vectors. Returns: numpy.ndarray: len(times) x nr_pools, ``solution/output_vector`` """ soln = self.solve() output_vec = self.external_output_vector # take care of possible division by zero output_vec[soln==0] = 0 soln[soln==0] = 0 return output_vec/soln #fixme hm: test def acc_gross_internal_flux_matrix(self, data_times=None): """Return the grid of flux matrices. Returns: numpy.ndarray: len(times) x nr_pools x nr_pools """ times = self.times if data_times is None else data_times nt = len(times)-1 res = np.zeros((nt, self.nr_pools, self.nr_pools)) for k in range(nt): for key, func in self.internal_flux_funcs().items(): j, i = key res[k,i,j] = quad(func,times[k],times[k+1])[0] return res ##### age density methods ##### def pool_age_densities_single_value(self, start_age_densities=None): """Return a function for the pool age densities. Args: start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0`. Defaults to None, meaning that all initial mass is considered to have zero age. Returns: Python function ``p_sv``: ``p_sv(a, t)`` returns ``a numpy.array`` containing the pool contents with age ``a`` at time ``t``. """ p1_sv = self._age_densities_1_single_value(start_age_densities) p2_sv = self._age_densities_2_single_value() p_sv = lambda a, t: p1_sv(a,t) + p2_sv(a,t) return p_sv # returns a function p that takes an age array "ages" as argument # and gives back a three-dimensional ndarray (ages x times x pools) # start_age_densities is a array-valued function of age def pool_age_densities_func(self, start_age_densities=None): """Return a function that takes an array of ages and returns the pool age densities. Args: start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0` for every pool. Defaults to None, meaning that all initial mass is considered to have zero age. Returns: Python function ``p``: ``p(ages)`` returns a ``numpy.ndarray`` len(ages) x len(times) x nr_pools containing the pool contents with the respective ages at the respective times, where ``ages`` is a ``numpy.array``. """ p1 = self._age_densities_1(start_age_densities) p2 = self._age_densities_2() def p(ages): if hasattr(self, '_computed_age_density_fields'): if ((start_age_densities, tuple(ages)) in self._computed_age_density_fields.keys()): #print('using cached result') return self._computed_age_density_fields[ (start_age_densities, tuple(ages))] else: self._computed_age_density_fields = {} field_list = [] for a in tqdm(ages): field_list.append(p1(np.array([a])) + p2(np.array([a]))) field = np.array(field_list)[:,0,:,:] self._computed_age_density_fields[ (start_age_densities, tuple(ages))] = field return field return p def system_age_density_single_value(self, start_age_densities=None): """Return a function for the system age density. Args: start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0`. Defaults to None, meaning that all initial mass is considered to have zero age. Returns: Python function ``sys_p_sv``: ``sys_p_sv(a, t)`` returns the system content with age ``a`` at time ``t``. """ p_sv = self.pool_age_densities_single_value(start_age_densities) sys_p_sv = lambda a, t: sum(p_sv(a,t)) return sys_p_sv # return array ages x times with ages based on pool_age_densities def system_age_density(self, pool_age_densities): """Return the system age density based on the given pool age densities. Args: pool_age_densites (numpy.ndarray len(ages) x len(times) x nr_pools): The pool age density values. Returns: numpy.ndarray: (len(ages) x len(times)) The sum of the pool age contents over all pools. """ return pool_age_densities.sum(2) # combine pool and system age densities to one numpy array def age_densities(self, pool_age_densities, system_age_density): """Combine pool and system age densities to one numpy.array. Args: pool_age_densites (numpy.ndarray len(ages) x len(times) x nr_pools): The pool age density values. system_age_density (numpy.ndarray len(ages) x len(times)): The system age density values. Returns: numpy.ndarray: (len(ages) x len(times) x (nr_pools+1)). The system age density values are appended to the end of the pool density values (system = pool ``d+1`` with ``d = nr_pools``). """ n = self.nr_pools nr_ages = pool_age_densities.shape[0] nr_times = pool_age_densities.shape[1] _age_densities = np.zeros((nr_ages, nr_times, n+1)) _age_densities[:,:,:n] = pool_age_densities _age_densities[:,:,n] = system_age_density return _age_densities ##### age moment methods ##### def age_moment_vector_from_densities(self, order, start_age_densities): """Compute the ``order`` th moment of the pool ages by integration. This function is extremely slow, since for each pool the integral over the density is computed based on the singe-valued functions. It is implemented only for the sake of completeness and to test the results obtained by faster methods. Args: order (int): The order of the moment to be computed. start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0`. Returns: numpy.ndarray: len(times) x nr_pools. Contains the ``order`` th moment of the pool ages over the time grid. """ p_sv = self.pool_age_densities_single_value(start_age_densities) times = self.times #x = self.solve_old() x = self.solve() n = self.nr_pools k = order def am_at_time_index_for_pool(ti, pool): def integrand(a): return (a**k) * p_sv(a, times[ti])[pool] return x[ti, pool]**(-1) * quad(integrand, 0, np.inf)[0] def age_moment_at_time_index(ti): return np.array([am_at_time_index_for_pool(ti, pool) for pool in range(n)]) am_arr = np.array([age_moment_at_time_index(ti) for ti in range(len(times))]) am = np.ndarray((len(times), n), np.float, am_arr) return am def age_moment_vector_semi_explicit(self, order, start_age_moments=None, times=None): """Compute the ``order`` th moment of the pool ages by a semi-explicit formula. This function bases on a semi-explicit formula such that no improper integrals need to be computed. Args: order (int): The order of the age moment to be computed. start_age_moments (numpy.ndarray order x nr_pools, optional): Given initial age moments up to the order of interest. Can possibly be computed by :func:`moments_from_densities`. Defaults to ``None`` assuming zero initial ages. times (numpy.array, optional): Time grid. Defaults to ``None`` and the original time grid is used. Returns: numpy.ndarray: len(times) x nr_pools. The ``order`` th pool age moments over the time grid. """ if times is None: times = self.times t0 = times[0] n = self.nr_pools k = order if start_age_moments is None: start_age_moments = np.zeros((order, n)) start_age_moments[np.isnan(start_age_moments)] = 0 p2_sv = self._age_densities_2_single_value() def binomial(n, k): return 1 if k==0 else (0 if n==0 else binomial(n-1, k) + binomial(n-1, k-1)) Phi = lambda t, t0, x: self._state_transition_operator(t, t0, x) def x0_a0_bar(j): if j == 0: return self.start_values return np.array(self.start_values) * start_age_moments[j-1,:] def both_parts_at_time(t): def part2_time(t): def part2_time_index_pool(ti, pool): return quad(lambda a: a**k * p2_sv(a, t)[pool], 0, t-t0)[0] return np.array([part2_time_index_pool(t, pool) for pool in range(n)]) def part1_time(t): def summand(j): return binomial(k, j)*(t-t0)**(k-j)*Phi(t, t0, x0_a0_bar(j)) return sum([summand(j) for j in range(k+1)]) return part1_time(t) + part2_time(t) #soln = self.solve_old() soln = self.solve() def both_parts_normalized_at_time_index(ti): t = times[ti] bp = both_parts_at_time(t) diag_values = np.array([x if x>0 else np.nan for x in soln[ti,:]]) X_inv = np.diag(diag_values**(-1)) #return (np.mat(X_inv) * np.mat(bp).transpose()).A1 return (np.matmul(X_inv, bp).transpose()).flatten() return np.array([both_parts_normalized_at_time_index(ti) for ti in range(len(times))]) def age_moment_vector(self, order, start_age_moments = None): """Compute the ``order`` th pool age moment vector over the time grid by an ODE system. This function solves an ODE system to obtain the pool age moments very fast. If the system has empty pools at the beginning, the semi-explicit formula is used until all pools are non-empty. Then the ODE system starts. Args: order (int): The order of the pool age moments to be computed. start_age_moments (numpy.ndarray order x nr_pools, optional): Given initial age moments up to the order of interest. Can possibly be computed by :func:`moments_from_densities`. Defaults to None assuming zero initial ages. Returns: numpy.ndarray: len(times) x nr_pools. The ``order`` th pool age moments over the time grid. """ n = self.nr_pools times = self.times if start_age_moments is None: start_age_moments = np.zeros((order, n)) max_order=start_age_moments.shape[0] if order>max_order: raise Error(""" To solve the moment system with order{0} start_age_moments up to (at least) the same order have to be provided. But the start_age_moments.shape was {1}""".format(order,start_age_moments.shape) ) if order<max_order: warning(""" Start_age_moments contained higher order values than needed. start_age_moments order was {0} while the requested order was {1}. This is no problem but possibly unintended. The higer order moments will be clipped """.format(max_order,order) ) # make sure that the start age moments are clipped to the order # (We do not need start values for higher moments and the clipping # avoids problems with recasting if higher order moments are given # by the user) start_age_moments=start_age_moments[0:order,:] if not (0 in self.start_values): #ams = self._solve_age_moment_system_old(order, start_age_moments) ams,_ = self._solve_age_moment_system(order, start_age_moments) return ams[:,n*order:] else: # try to start adapted mean_age_system once no pool # has np.nan as mean_age (empty pool) # find last time index that contains an empty pool --> ti #soln = self.solve_old() soln = self.solve() ti = len(times)-1 content = soln[ti,:] while not (0 in content) and (ti>0): ti = ti-1 content = soln[ti,:] # not forever an empty pool there? if ti+1 < len(times): # compute moment with semi-explicit formula # as long as there is an empty pool amv1_list = [] amv1 = np.zeros((ti+2, order*n)) for k in range(1, order+1): amv1_k = self.age_moment_vector_semi_explicit( k, start_age_moments, times[:ti+2]) amv1[:,(k-1)*n:k*n] = amv1_k # use last values as start values for moment system # with nonzero start values new_start_age_moments = amv1[-1,:].reshape((n, order)) start_values = soln[ti+1] #ams = self._solve_age_moment_system_old( # order, new_start_age_moments, times[ti+1:], start_values) ams,_ = self._solve_age_moment_system( order, new_start_age_moments, start_values, times[ti+1:]) amv2 = ams[:,n*order:] # put the two parts together part1 = amv1[:,(order-1)*n:order*n][:-1] amv = np.ndarray((len(times), n)) amv[:part1.shape[0], :part1.shape[1]] = part1 amv[part1.shape[0]:, :amv2.shape[1]] = amv2 return amv else: # always an empty pool there return self.age_moment_vector_semi_explicit( order, start_age_moments) # requires start moments <= order def system_age_moment(self, order, start_age_moments=None): """Compute the ``order`` th system age moment vector over the time grid by an ODE system. The pool age moments are computed by :func:`age_moment_vector` and then weighted corresponding to the pool contents. Args: order (int): The order of the pool age moments to be computed. start_age_moments (numpy.ndarray order x nr_pools, optional): Given initial age moments up to the order of interest. Can possibly be computed by :func:`moments_from_densities`. Defaults to None assuming zero initial ages. Returns: numpy.array: The ``order`` th system age moment over the time grid. """ n = self.nr_pools age_moment_vector = self.age_moment_vector(order, start_age_moments) age_moment_vector[np.isnan(age_moment_vector)] = 0 #soln = self.solve_old() soln = self.solve() total_mass = soln.sum(1) # row sum total_mass[total_mass==0] = np.nan system_age_moment = (age_moment_vector*soln).sum(1)/total_mass return system_age_moment ##### transit time density methods ##### def backward_transit_time_density_single_value_func( self, start_age_densities ): """Return a function that returns a single value for the backward transit time density. Args: start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0`. Returns: Python function ``p_sv``: ``p_sv(a, t)`` returns the mass that leaves the system at time ``t`` with age ``a``. """ n = self.nr_pools p_age_sv = self.pool_age_densities_single_value(start_age_densities) def p_sv(a, t): p = p_age_sv(a, t) r = self.output_rate_vector_at_t(t) return (r*p).sum() return p_sv # return an array ages x times with ages based on pool_age_densities def backward_transit_time_density(self, pool_age_densities): """Compute the backward transit time based on given pool age densities. The result is obtained by computing a weighted sum of the pool age densities according to output rates. Args: pool_age_densites (numpy.ndarray len(ages) x len(times) x nr_pools): The pool age density values. Returns: numpy.ndarray: len(ages) x len(times). Mass leaving the system with the respective age at the respective time. """ r = self.output_rate_vector return (pool_age_densities*r).sum(2) def forward_transit_time_density_single_value_func(self, cut_off=True, my_B_func=None): """Return a function that returns a single value for the forward transit time density. Args: cut_off (bool, optional): If ``True``, no density values are going to be computed after the end of the time grid, instead ``numpy.nan`` will be returned. Defaults to ``True`` and ``False`` might lead to unexpected behavior. Returns: Python function ``p_sv``: ``p_sv(a, t)`` returns how much mass will leave the system with age ``a`` when it came in at time ``t``. """ if my_B_func is None: my_B_func = self.B_func(self.x_solve_func_skew()) n = self.nr_pools times = self.times Phi = self._state_transition_operator input_func = self.external_input_vector_func() t0 = times[0] t_max = times[-1] def p_ftt_sv(a, t): # nothing leaves before t0 if (t+a < t0): return 0.0 #fixme: for Metropolis-Hastings we might need the density #very far away... # we cannot compute the density if t+a is out of bounds if cut_off and (t+a > t_max): return np.nan u = input_func(t) if sum(u) == 0: return np.nan if (a < 0): return 0.0 return -np.matmul(my_B_func(t+a),Phi(t+a, t, u)).sum() return p_ftt_sv #fixme: return value not consistent with backward_transit_time_density # not that easy to resolve, since here we do not use age_densities, # instead ages is really needed to be able to make the shift or call # the state_transition_operator def forward_transit_time_density_func(self, cut_off=True, times=None): """Return a function based on an age array for the forward transit time density. Args: cut_off (bool, optional): If True, no density values are going to be computed after the end of the time grid, instead ``numpy.nan`` will be returned. Defaults to True and False might lead to unexpected behavior. times (numpy.array, optional): Time grid. Defaults to ``None`` and the original time grid is used. Returns: Python function ``p``: ``p(ages)`` is a ``numpy.ndarray`` len(ages) x len(times) that gives the mass that will leave the system with the respective age when it came in at time ``t``, where ``ages`` is a ``numpy.array``. """ wrapper = custom_lru_cache_wrapper(maxsize=len(self.times)) cached_B_func = wrapper(self.B_func(self.x_solve_func_skew())) if times is None: times = self.times p_sv = self.forward_transit_time_density_single_value_func( cut_off, my_B_func=cached_B_func ) pp = lambda a: np.array([p_sv(a,t) for t in times], np.float) #p = lambda ages: np.array([pp(a) for a in ages], np.float) def p(ages): field_list = [] for a in tqdm(ages): field_list.append(pp(a)) field = np.array(field_list) return field return p ##### transit time moment methods ##### def backward_transit_time_moment_from_density(self, order, start_age_densities): """Compute the ``order`` th backward transit time moment based on an improper integral over the density. This function is extremely slow and implemented only for the sake of completeness and for testing results from faster approaches. Args: order (int): The order of the backward transit time moment that is to be computed. start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0`. Returns: numpy.array: The ``order`` th backward transit time moment over the time grid. """ p_sv = self.backward_transit_time_density_single_value_func( start_age_densities) times = self.times k = order ext_outp_vec = self.external_output_vector ext_outp = ext_outp_vec.sum(1) def btt_moment_at_time_index(ti): def integrand(a): return (a**k) * p_sv(a, times[ti]) return ext_outp[ti]**(-1) * quad(integrand, 0, np.inf)[0] bttm = np.array([btt_moment_at_time_index(ti) for ti in range(len(times))]) return bttm def backward_transit_time_moment(self, order, start_age_moments=None): """Compute the ``order`` th backward transit time moment based on the :func:`age_moment_vector`. Args: order (int): The order of the backward transit time moment that is to be computed. start_age_moments (numpy.ndarray order x nr_pools, optional): Given initial age moments up to the order of interest. Can possibly be computed by :func:`moments_from_densities`. Defaults to None assuming zero initial ages. Returns: numpy.array: The ``order`` th backward transit time moment over the time grid. """ age_moment_vector = self.age_moment_vector(order, start_age_moments) r = self.external_output_vector pool_axis=1 return ( (r*age_moment_vector).sum(axis=pool_axis)/ r.sum(axis=pool_axis) ) # def forward_transit_time_moment(self, order, epsrel=1e-2): # """Compute the ``order`` th forward transit time moment. # # Attention! This function integrates over the state transition operator # until infinite time. # The results are going to be weird, since at the end of the time grid # some cut- off will happen which biases the result. # Be also aware that additionally - to avoid convergence issues in quad - # the relative tolerance is set to 1e-2 by default. # # Args: # order (int): The order of the forward transit time moment to be # computed. # # Returns: # numpy.array: The ``order`` th forward transit time moment over the # time grid. # """ # k = order # times = self.times # Phi = self._state_transition_operator # input_vector = self.external_input_vector # # #import warnings # #from scipy.integrate import IntegrationWarning # #warnings.simplefilter("error", IntegrationWarning) # def moment_at_ti(ti): # u = input_vector[ti] # # # if we have no inputs, there cannot be a transit(time) # if u.sum() == 0: # return np.nan # # def integrand(a): # res = (k*a**(k-1)*Phi(times[ti]+a, times[ti], u).sum())/u.sum() # #print(a, Phi(times[ti]+a, times[ti], u), res) # return res # # return quad(integrand, 0, np.infty,epsrel=epsrel)[0] # # # Remark: # # We want to compute an inproper integral # # instead of calling res=quad(integrand, 0, np.infty)[0] # # we could apply a variable transformation z=a/(c+a) # with an arbitrary c (possibly c=1 but we can optimize the choice for better performance) # # so we have \int_0^\infty f(a) dx= \int_0^z(a=\infty) f(a(z))*da/dz *dz =\int_0^1 f(a(z)) c/(1-z**2) dz # # to do: # # To have the best accuracy we try to find c so that the peak of the integrand is projected to the middle of the new integration interval [0,1] # # 1.) find the maximum of the integrand # # 2.) find the c that projects this x to z=1/2 # #c =1000 # #def a(z): # # return c*z/(1-z) # #def transformed_integrand(z): # # res = integrand(a(z))*c/(1-z**2) # # return res # # # #return quad(transformed_integrand, 0, 1)[0] # # #res = np.array([moment_at_ti(ti) for ti in range(len(times))]) # res = [] # for ti in tqdm(range(len(times))): # res.append(moment_at_ti(ti)) # res = np.array(res) # # return res #fixme: split into two functions for SCCS and MH # do not use dict as default value def apply_to_forward_transit_time_simulation(self, f_dict={'mean': np.mean}, N=10000, M=2, k=5, MH=False): """This is just a tentative approach. To be honest, the problem of an unkown infinite future cannot be solved this way, since the densities used to simulate forward transit time random variables are biased by the cut-off at the end of the time grid. """ # f is a Python function, for the mean, take f = np.mean # N is the number of simulations per each time step # M is the number of collocation points for # stochastic collocation sampling # allowed values for M are 2, 3, 4, ..., 11 # other values lead to inverse transform sampling (slow) # k is the order of the smoothing and interpolating spline # 'smoothing_spline' is best used for inverse transform sampling, # because of additional smoothing for low # number of random variates # for SCMCS (M in [2,...,11]), 'interpolation' is better, # because the higher number of random variates # (because of faster sampling) makes their mean already quite precise # (in the framework of what is possible with SCMCS) times = self.times Phi = self._state_transition_operator input_func = self.external_input_vector_func() if not MH: self.n = 0 def F_FTT(a, t): u = input_func(t) if u.sum() == 0: return np.nan if (a <= 0): return 0.0 self.n += 1 return 1 - Phi(t+a, t, u).sum()/u.sum() def simulate(n, CDF): # compute lagrange polynomial p if M is in [2, ..., 11] g = stochastic_collocation_transform(M, CDF) if g is None: # inverse transform sampling print('inverse transform sampling') rvs = np.array([draw_rv(CDF) for _ in range(n)]) else: norms = np.random.normal(size = n) rvs = g(norms) return rvs else: self.m = 0 p_sv = self.forward_transit_time_density_single_value_func( cut_off=False ) def f_FTT(a, t): self.m += 1 return p_sv(a, t) res = {f_name: {'values': [], 'smoothing_spline': None, 'interpolation': None} for f_name in f_dict.keys()} for t in times: print('time', t) # no iput means no forward transit time u = input_func(t) if u.sum() == 0: rvs = np.nan else: if not MH: rvs = simulate(N, lambda a: F_FTT(a, t)) print(self.n, 'calls of state transition operator') else: rvs = MH_sampling(N, lambda a: f_FTT(a, t)) print(self.m, 'calls of forward transit time density') for f_name, f in f_dict.items(): value = f(rvs) res[f_name]['values'].append(value) print(f_name, value) for f_name in res.keys(): y = np.array(res[f_name]['values']) z = y.copy() res[f_name]['values'] = y.copy() # give weight zero to nan values fo compting the spline w = np.isnan(y) y[w] = 0. res[f_name]['smoothing_spline'] = UnivariateSpline( times, y, w=~w, k=k, check_finite=True) res[f_name]['interpolation'] = interp1d(times[~w], z[~w], kind=k) return res # use inverse transform sampling def apply_to_forward_transit_time_simulation_its(self, f_dict, times, N=1000, k=5): """This is just a tentative approach. To be honest, the problem of an unkown infinite future cannot be solved this way, since the densities used to simulate forward transit time random variables are biased by the cut-off at the end of the time grid. """ # f is a Python function, for the mean, take f = np.mean # N is the number of simulations per each time step # times is an np.array of interpolation points # k is the order of the smoothing and interpolating spline # 'smoothing_spline' is best used for inverse transform sampling, # because of additional smoothing for low # number of random variates Phi = self._state_transition_operator input_func = self.external_input_vector_func() def F_FTT(a, t): u = input_func(t) if u.sum() == 0: return np.nan if (a <= 0): return 0.0 return 1 - Phi(t+a, t, u).sum()/u.sum() res = {f_name: {'values': [], 'smoothing_spline': None, 'interpolation': None} for f_name in f_dict.keys()} for t in times: print('time', t) # no iput means no forward transit time u = input_func(t) if u.sum() == 0: rvs = np.nan else: CDF = lambda a: F_FTT(a, t) rvs = np.array([draw_rv(CDF) for _ in range(N)]) for f_name, f in f_dict.items(): value = f(rvs) res[f_name]['values'].append(value) print(f_name, value) def compute_splines(res, times): for f_name in res.keys(): y = np.array(res[f_name]['values']) z = y.copy() res[f_name]['values'] = y.copy() # give weight zero to nan values fo compting the spline w = np.isnan(y) y[w] = 0. res[f_name]['smoothing_spline'] = UnivariateSpline( times, y, w=~w, k=k, check_finite=True) res[f_name]['interpolation'] = interp1d(times[~w],z[~w],kind=k) return res return compute_splines(res, times) ##### comma separated values output methods ##### def save_pools_and_system_density_csv(self, filename, pool_age_densities, system_age_density, ages): """Save the pool and system age densities to a csv file. The system value will be coded into pool number -1. Args: filename (str): The name of the csv file to be written. pool_age_densites (numpy.ndarray len(ages) x len(times) x nr_pools): The pool age density values. system_age_density (numpy.ndarray len(ages) x len(times)): The system age density values. ages (numpy.array): The ages that correspond to the indices in the zeroth dimension of the density arrays. Returns: None """ n = self.nr_pools times = self.times ndarr = np.zeros((system_age_density.shape[0], len(times), n+1)) ndarr[:,:,:n] = pool_age_densities ndarr[:,:,n] = system_age_density pool_entries = [i for i in range(n)] + [-1] melted = melt(ndarr, [ages, times, pool_entries]) header = '"age", "time", "pool", "value"' save_csv(filename, melted, header) def save_pools_and_system_value_csv(self, filename, pools_ndarr, system_arr): """Save pool and system values to a csv file. Values could be the mean age, for example. One dimension less than a density. The system value will be coded into pool number -1. Args: filename (str): The name of the csv file to be written. pools_ndarr (numpy.ndarray len(times) x nr_pools): The values to be saved over the time-pool grid. system_arr (numpy.array): The values over the time grid corresponding to the system. Returns: None: """ n = self.nr_pools times = self.times ndarr = np.concatenate( (pools_ndarr, system_arr.reshape((len(times), 1))), axis=1) pool_entries = [i for i in range(n)] + [-1] melted = melt(ndarr, [times, pool_entries]) header = '"time", "pool", "value"' save_csv(filename, melted, header) ## helping methods ## def density_values_for_pools(self, pool_densities_sv, pool_age_values): """Compute the pool age densities over the time grid at ages given in pool_age_values. This function can be used to obtain the density values at mean or median values to draw a curve on top of the density surface. But actually this is now implemented in a much faster way based on the surface itself. Args: pool_age_densites_sv (Python function): A function that takes ``a``, ``t`` as arguments and returns a vector of pool contents with mass a at time t. Potentially coming from :func:`pool_age_densities_single_value`. pool_age_values (numpy.ndarray len(times) x nr_pools): The ages over the time-pool grid at which the density values are to be computed. Returns: numpy.ndarray: (len(times) x nr_pools) The pool density values over the time-pool grid based on the given age values. """ n = self.nr_pools times = self.times # for each pool we have a different age value z = [] for pool in range(n): val = pool_age_values[:,pool] #z.append(np.array([pool_densities_sv(val[i], times[i])[pool] # for i in range(len(times))])) new_z_list = [] for i in tqdm(range(len(times))): new_z_list.append(pool_densities_sv(val[i], times[i])[pool]) z.append(np.array(new_z_list)) z = np.array(z).T return z # return density values for mean, median, etc. #fixme: test def density_values(self, density_sv, values): """Compute the density value over the time grid at ages given in values. This function can be used to obtain the density values at mean or median values to draw a curve on top of the density surface. But actually this is now implemented in a much faster way based on the surface itself. Args: density_sv (Python function): A function that takes ``a``, ``t`` as arguments and returns density value with age a at time ``t``. Potentially coming from :func:`system_age_density_single_value`. values (numpy.array): The ages over the time grid at which the density values are to be computed. Returns: numpy.array: The density values over the time grid based on the given age values. """ times = self.times def f(i): if np.isnan(values[i]): return np.nan return density_sv(values[i], times[i]) #dv_list = [f(i) for i in range(len(times))] dv_list = [] for i in tqdm(range(len(times))): dv_list.append(f(i)) return np.array(dv_list) def save_value_csv(self, filename, arr, times=None): """Save values over the time grid to a csv file. Args: filename (str): The name of the csv file to be written. arr (numpy.array): The values to be saved over the time grid. times (np.array, optional): The time grid to be used. Defaults to ``None`` in which case the orginal time grid is used. Returns: """ if times is None: times = self.times melted = melt(arr, [times]) header = '"time", "value"' save_csv(filename, melted, header) def save_density_csv(self, filename, density, ages, times=None): """Save density values over age-time grid to csv file. Args: filename (str): The name of the csv file to be written. density (numpy.ndarray len(ages) x len(times)): The density values to be saved over the age-time grid. ages (numpy.array): The ages corresponding to the indices in the zeroth dimension of the density ndarray. times (numpy.array, optional): An alternative time grid to be used. Defaults to ``None`` which means that the original time grid is going to be used. Returns: """ if times is None: times = self.times melted = melt(density, [ages, times]) header = '"age", "time", "value"' save_csv(filename, melted, header) ##### comma separated values input methods ##### def load_value_csv(self, filename): melted = load_csv(filename) return (melted[:,1]).copy() ## combining pool and system structures ## def combine_pools_and_system_values(self, pools_values, system_values): """Append the system values to the pool values as if they belonged to another pool. Args: pools_values (numpy.ndarray len(times) x nr_pools): The values to be saved over the time-pool grid. system_values (numpy.array): The system values to be saved over the time grid. Returns: numpy.ndarray: len(times) x (nr_pools+1) The pool and system values over the time-pool grid with the system added at the end as another pool. """ n = self.nr_pools times = self.times values = np.zeros((len(times), n+1)) values[:,:n] = pools_values values[:, n] = system_values return values ## age ## def load_pools_and_system_densities_csv(self, filename, ages): """Load pool and system age densities from a csv file. Attention: It is assumed that the data were saved before with the very same ages, times, and pools. Furthermore, it is assumed that the system value always follows the pool values. Args: filename (str): The csv file from which the data are to be read. ages (numpy.array): The ages corresponding to the age indices. What is needed here is in fact only the length of the age grid. Returns: numpy.ndarray: len(ages) x len(times) x (nr_pools+1) The density values for the pools and the system over the ages-times-(pools+system) grid. """ melted = load_csv(filename) n = self.nr_pools return np.ndarray((len(ages), len(self.times), n+1), buffer=(melted[:,3]).copy()) def load_density_csv(self, filename, ages, times=None): """Load density values from a csv file. Attention: It is assumed that the data were saved before with the very same ages, times, and pools. Args: filename (str): The csv file from which the data are to be read. ages (numpy.array): The ages corresponding to the age indices. What is needed here is in fact only the length of the age grid. times (numpy.array, optional): The ages corresponding to the time indices. What is needed here is in fact only the length of the time grid. Defaults to ``None`` and the original times are being used. Returns: numpy.ndarray: len(ages) x len(times) The density values over the ages-times grid. """ if times is None: times = self.times melted = load_csv(filename) return np.ndarray((len(ages), len(times)), buffer=(melted[:,2]).copy()) def load_pools_and_system_value_csv(self, filename): """Load pool and system values from a csv file. Values could be the mean/median age, for example. One dimension less than a density. Attention: It is assumed that the data were saved before with the very same ages, times, and pools. Furthermore, it is assumed that the system value always follows the pool values. Args: filename (str): The csv file from which the data are to be read. Returns: numpy.ndarray: len(times) x (nr_pools+1) The values for the pools and the system over the times-(pools+system) grid. """ melted = load_csv(filename) n = self.nr_pools values_lst = [] for pool in range(n): indices = melted[:,1] == pool values_lst.append(melted[np.ix_(indices),2][0]) pool_values = np.array(values_lst).transpose() indices = melted[:,1] == -1 system_values = melted[np.ix_(indices),2][0] return (pool_values, system_values) ##### plotting methods ##### ## solutions ## def plot_solutions(self, fig, fontsize = 10): """Plot the solution trajectories. For each trajectory (nr_pools+1) a new subplot is created. Args: fig (Matplotlib figure): The fig to which the subplots are added. fontsize (float, optional): Defaults to 10. Returns: None. Instead ``fig`` is changed in place. """ #fixme: # since time units and units are related to those # of the other fluxes it would be more consistent # to make them a property of SmoothModelRun and use # them in the other plots as well times = self.times n = self.nr_pools #soln = self.solve_old() soln = self.solve() def make_ax_nice(ax, title): ax.set_title(title, fontsize = fontsize) ax.set_xlabel(self._add_time_unit(latex(self.model.time_symbol)), fontsize=fontsize) ax.set_ylabel(self._add_content_unit('content'), fontsize=fontsize) ax.set_xlim(times[0], times[-1]) ax.set_ylim(ax.get_ylim()[0]*0.9, ax.get_ylim()[1]*1.1) ax = fig.add_subplot(n+1, 1, 1) ax.plot(times, soln.sum(1)) make_ax_nice(ax, 'System') for pool in range(n): ax = fig.add_subplot(n+1, 1, 2+pool) ax.plot(times, soln[:,pool]) make_ax_nice( ax, "\$" + latex(self.model.state_variables[pool]) + "\$") # fig.tight_layout() def plot_phase_plane(self, ax, i, j, fontsize = 10): """Plot one single phase plane. Args: ax (Matplotlib axis): The axis onto which the phase plane is plotted. i, j (int): The numbers of the pools for which the phase plane is plotted. fontsize (float, optional): Defaults to 10. Returns: None. Instead ``ax`` is changed in place. """ times = self.times #soln = self.solve_old() soln = self.solve() ax.plot(soln[:, i], soln[:, j]) x0 = soln[0, i] y0 = soln[0, j] ax.scatter([x0],[y0], s=60) x1 = soln[[len(times)//2-1], i][0] y1 = soln[[len(times)//2-1], j][0] x2 = soln[[len(times)//2+1], i][0] y2 = soln[[len(times)//2+1], j][0] ax.add_patch(mpatches.FancyArrowPatch((x1,y1), (x2,y2), arrowstyle='simple', mutation_scale=20, alpha=1)) ax.set_xlabel(self._add_content_unit( "$"+latex(sympify(self.model.state_variables[i]))+"$"), fontsize=fontsize) ax.set_ylabel(self._add_content_unit( "$"+latex(sympify(self.model.state_variables[j]))+"$"), fontsize=fontsize) def plot_phase_planes(self, fig, fontsize = 10): """Plot all phase planes. For each (i,j)-phase plane a new subplot is added. Args: fig (Matplotlib figure): The fig to which the subplots are added. fontsize (float, optional): Defaults to 10. Returns: None. Instead ``fig`` is changed in place. """ n = self.nr_pools if n>=2: # planes = [(i,j) for i in range(n) for j in range(i)] # rows, cols = arrange_subplots(len(planes)) k = 0 for i in range(n): for j in range(n): k += 1 if i > j: ax = fig.add_subplot(n, n, k) self.plot_phase_plane(ax, i, j, fontsize) ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) # fig.tight_layout() ## fluxes ## def plot_internal_fluxes(self, fig, fontsize = 10): """Plot all internal fluxes. For each internal flux a new subplot is added. Args: fig (Matplotlib figure): The fig to which the subplots are added. fontsize (float, optional): Defaults to 10. Returns: None. Instead ``fig`` is changed in place. """ internal_flux_funcs = self.internal_flux_funcs() n = len(internal_flux_funcs.keys()) times = self.times #n=self.nr_pools i = 1 for key, value in internal_flux_funcs.items(): ax = fig.add_subplot(n,1,i) ax.plot(times, [internal_flux_funcs[key](t) for t in times]) ax.set_title( 'Flux from \$' + latex(self.model.state_variables[key[0]]) + '\$ to \$' + latex(self.model.state_variables[key[1]]) + '\$', fontsize=fontsize) ax.set_xlabel(self._add_time_unit( '\$' + latex(self.model.time_symbol) + '\$'), fontsize=fontsize) ax.set_ylabel(self._add_flux_unit('flux'), fontsize=fontsize) i += 1 # fig.tight_layout() def plot_external_output_fluxes(self, fig, fontsize = 10): """Plot all external output fluxes. For each external output flux a new subplot is added. Args: fig (Matplotlib figure): The fig to which the subplots are added. fontsize (float, optional): Defaults to 10. Returns: None. Instead ``fig`` is changed in place. """ times = self.times output_flux_funcs = self.external_output_flux_funcs() n = len(output_flux_funcs.keys()) i = 1 for key, value in output_flux_funcs.items(): ax = fig.add_subplot(n,1,i) ax.plot(times, [output_flux_funcs[key](t) for t in times]) ax.set_title( 'External outflux from \$' + latex(self.model.state_variables[key]) + '\$', fontsize=fontsize) ax.set_xlabel( self._add_time_unit('\$' + latex(self.model.time_symbol) + '\$'), fontsize=fontsize) ax.set_ylabel(self._add_flux_unit('flux'), fontsize=fontsize) i += 1 # fig.tight_layout() def plot_external_input_fluxes(self, fig, fontsize = 10): """Plot all external inpput fluxes. For each external input flux a new subplot is added. Args: fig (Matplotlib figure): The fig to which the subplots are added. fontsize (float, optional): Defaults to 10. Returns: None. Instead ``fig`` is changed in place. """ times = self.times input_flux_funcs = self.external_input_flux_funcs() n = len(input_flux_funcs.keys()) i = 1 for key, value in input_flux_funcs.items(): ax = fig.add_subplot(n,1,i) ax.plot(times, [input_flux_funcs[key](t) for t in times]) ax.set_title( 'External influx to \$' + latex(self.model.state_variables[key]) + '\$', fontsize=fontsize) ax.set_xlabel( self._add_time_unit('\$' + latex(self.model.time_symbol) + '\$'), fontsize=fontsize) ax.set_ylabel(self._add_flux_unit('flux'), fontsize=fontsize) i += 1 # fig.tight_layout() # means # def plot_mean_ages(self, fig, start_mean_ages): """Plot the time evolution of the mean ages for all pools and the system. For each pool and the system a separate subplot is created. Args: fig (Matplotlib figure): The fig to which the subplots are added. start_mean_ages (numpy.array): Contains the start mean ages of the pools at time :math:`t_0`. Returns: None. Instead ``fig`` is changed in place. """ times = self.times n = self.nr_pools start_age_moments = np.ndarray( (1,n), np.float, np.array(start_mean_ages)) time_symbol = self.model.time_symbol states = self.model.state_variables ma_vector = self.age_moment_vector(1, start_age_moments) sma = self.system_age_moment(1, start_age_moments) def make_ax_nice(ax, title): ax.set_title(title) ax.set_xlabel(self._add_time_unit("\$" + latex(time_symbol) + "\$")) ax.set_ylabel(self._add_time_unit("mean age")) ax.set_xlim([times[0], times[-1]]) ax = fig.add_subplot(n+1, 1, 1) ax.plot(times, sma) make_ax_nice(ax, "System") for i in range(n): ax = fig.add_subplot(n+1, 1, 2+i) ax.plot(times, ma_vector[:,i]) make_ax_nice(ax, "\$" + latex(states[i]) + "\$") # fig.tight_layout() def plot_mean_backward_transit_time(self, ax, start_mean_ages): """Plot the time evolution of the mean backward transit time. For each pool and the system a separate subplot is created. Args: ax (Matplotlib axis): The ax onto which the plot is done. start_mean_ages (numpy.array): Contains the start mean ages of the pools at time :math:`t_0`. Returns: None. Instead ``ax`` is changed in place. """ times = self.times n = self.nr_pools start_age_moments = np.ndarray( (1,n), np.float, np.array(start_mean_ages)) time_symbol = self.model.time_symbol tr_val = self.backward_transit_time_moment(1, start_age_moments) ax.plot(times, tr_val) ax.set_title("Mean backward transit time") ax.set_xlabel(self._add_time_unit("$" + latex(time_symbol) + "$")) ax.set_ylabel(self._add_time_unit("mean BTT")) ax.set_xlim([times[0], times[-1]]) ## densities ## # age # # fixme mm 10-31-2022 # this method needs a test (does not throw an interpretable error if data is more than one-dimensional) def add_line_to_density_plot_plotly(self, fig, data, color, name, time_stride=1, width=5, on_surface=True, bottom=True, legend_on_surface=False, legend_bottom=False): """Add a line to an existing Plotly density plot. Args: fig (Plotly figure): Contains already a density plot to which the new line is added. data (numpy.array len(times)): The age data of the new line. color (#RRGGBB): The color of the new line. name (str): The name of the new line for the legend. time_stride (int, optional): Coarsity of the plot in the time direction to save memory. Defaults to 1 meaning that all times are plotted and no memory is saved. width (int, optional): Width of the new line. Defaults to 5. on_surface (bool, optional): If True, a new line with the given age data is plotted on top of the given density. Defaults to True. bottom (bool optional): If True, a new line with the given age data is plotted in the xy-plane. Defaults to True. legend_on_surface (bool, optional): If True, the line on the surface is mentioned in the legend. Has no effect if on_surface is False. Defaults to False. legend_bottom (bool, optional): If True, the line in the xy-plane is mentioned in the legend. Has no effect if bottom is False. Defaults to False. Returns: None. Instead ``fig`` is changed in place. """ times = self.times strided_data = stride(data, time_stride) strided_times = stride(times, time_stride) if bottom: #trace_bottom = go.Scatter3d( fig.add_scatter3d( name=name, x=-strided_times, y=strided_data, z=0*strided_times, mode = 'lines', line=dict( color=color, width=width ), showlegend = legend_bottom ) #fig['data'] += [trace_bottom] if on_surface: # compute the density values on the surface #strided_times = -fig['data'][0]['x'] strided_ages = fig['data'][0]['y'] density_data = fig['data'][0]['z'] strided_z = [] for ti in range(len(strided_times)): time = strided_times[ti] age = strided_data[ti] if ((np.isnan(age)) or (age < strided_ages[0]) or (age > strided_ages[-1])): strided_z.append(np.nan) else: ti_lower = strided_times.searchsorted(time)-1 ti_upper = (ti_lower+1 if ti_lower+1<len(strided_times) else ti_lower) time_lower = strided_times[ti_lower] time_upper = strided_times[ti_upper] ai_lower = strided_ages.searchsorted(age)-1 ai_upper = (ai_lower+1 if ai_lower+1<len(strided_ages) else ai_lower) age_lower = strided_ages[ai_lower] age_upper = strided_ages[ai_upper] bl_density_value = density_data[ai_lower, ti_lower] br_density_value = density_data[ai_lower, ti_upper] bottom_density_value = (bl_density_value + (time-time_lower) /(time_upper-time_lower)* (br_density_value-bl_density_value)) tl_density_value = density_data[ai_upper, ti_lower] tr_density_value = density_data[ai_upper, ti_upper] top_density_value = (tl_density_value + (time-time_lower)/ (time_upper-time_lower)* (tr_density_value-tl_density_value)) density_value = (bottom_density_value + (age-age_lower)/(age_upper-age_lower)* (top_density_value-bottom_density_value)) strided_z.append(density_value) #trace_on_surface = go.Scatter3d( # name=name, # x=-strided_times, y=strided_data, z=strided_z, # mode = 'lines', # line=dict( # color=color, # width=width # ), # showlegend = legend_on_surface #) #fig['data'] += [trace_on_surface] fig.add_scatter3d( name=name, x=-strided_times, y=strided_data, z=strided_z, mode = 'lines', line=dict( color=color, width=width ), showlegend = legend_on_surface ) def plot_3d_density_plotly(self, title, density_data, ages, age_stride=1, time_stride=1, y_label="Age", z_label="Mass"): """Create a 3-dimendional density plot with Plotly. The colors are created such that they are constant along the age-time diagonal. Thus, equal colors mark equal entry time into the system. Args: title (str): The title of the new figure. density_data (numpy.ndarray len(ages) x len(times)): The density data to be plotted. ages (numpy.ndarray): ages (or transit times) age_stride (int, optional): Coarsity of the plot in the age direction to save memory. Defaults to 1 meaning that all times are plotted and no memory is saved. time_stride (int, optional): Coarsity of the plot in the time direction to save memory. Defaults to 1 meaning that all times are plotted and no memory is saved. Returns: Plotly figure. """ data, layout = self._density_plot_plotly( density_data, ages, age_stride, time_stride, y_label, z_label) layout['title'] = title fig = go.Figure(data=data, layout=layout) return fig # def add_equilibrium_surface_plotly(self, fig, opacity=0.7, index=0): # """ # The function has been renamed since # 1. It is not certain that the system has an equilibrium at all. # 2. The age distribution at the beginning of a model run does not have to # represent an equilibrium age distribution # (even if the system was in equilibrium at t0 in the sense that the pool contents do not change any more the age distribution still could.) # # please call add_constant_age_distribution_surface_plotly instead! # """ # txt=self.add_equilibrium_surface_plotly.__doc__ # deprecation_warning(txt) # self.add_constant_age_distribution_surface_plotly(fig, opacity, index) def add_constant_age_distribution_surface_plotly(self, fig, opacity=0.7, index=0): """Add a grey and transparent density surface to an existing Plotly density plot. If index is not specified it is assumed to be 0 and the values correspond to the first time in the times porperty of the model run (the age distribution at the beginning) and repeated for all times. The plotted surface represents an age distribution that is constant in time. It is intended to increase the visibility of changes in the age distribution with time. Note that this constant age distribution does NOT necessarily correspond to a possible (constant) development of the system. This would only be true if the system was in equilibrium and the age distribution was the equilibrium age distribution. While this special case is a very interesting application this function does not assertain that such an equlibrium situation is even possible. Args: fig (Plotly figure): The existing density plot to which the surface is added. opacity (between 0 and 1, optional): The opacity of the new surface. Defaults to 0.9. Unfortunately, the opacity option does not seem to work properly. index (int, optional): The time index from which the age distribution data is taken. Defaults to 0 such that the constant distribution is computed at time :math:`t_0`. Returns: None. Instead ``fig`` is changed in place. """ data = fig['data'][0] x = data['x'] y = data['y'] z = data['z'].copy() for ti in range(z.shape[1]): z[:,ti] = z[:,index] #eq_surface_data = go.Surface( fig.add_surface( x=x, y=y, z=z, showscale=False, opacity = opacity, surfacecolor=np.zeros_like(z)) #fig['data'].append(eq_surface_data) ##### cumulative distribution methods ##### def cumulative_pool_age_distributions_single_value(self, start_age_densities=None, F0=None): """Return a function for the cumulative pool age distributions. Args: start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0`. Defaults to None. F0 (Python function): A function of age that returns a numpy.array containing the masses with age less than or equal to the age at time :math:`t_0`. Defaults to None. Raises: Error: If both ``start_age_densities`` and ``F0`` are ``None``. One must be given. It is fastest to provide ``F0``, otherwise ``F0`` will be computed by numerical integration of ``start_age_densities``. Returns: Python function ``F_sv``: ``F_sv(a,t)`` is the vector of pool masses (``numpy.array``) with age less than or equal to ``a`` at time ``t``. """ n = self.nr_pools #soln = self.solve_old() soln = self.solve() if soln[0,:].sum() == 0: start_age_densities = lambda a: np.zeros((n,)) if F0 is None and start_age_densities is None: raise(Error('Either F0 or start_age_densities must be given.')) times = self.times t0 = times[0] #sol_funcs = self.sol_funcs() #sol_funcs_array = lambda t: np.array([sol_funcs[pool](t) # for pool in range(n)]) #sol_funcs_array = self.solve_single_value_old() sol_funcs_array = self.solve_func() if F0 is None: p0 = start_age_densities F0 = lambda a: np.array([quad(lambda s: p0(s)[pool], 0, a)[0] for pool in range(n)]) Phi = self._state_transition_operator def G_sv(a, t): if a < t-t0: return np.zeros((n,)) #print(t, t0, a-(t-t0)) res = Phi(t, t0, F0(a-(t-t0))) c = hasattr(self, '_state_transition_operator_cache') #print(c, 'G', res, t, t0, a, a-(t-t0)) return res def H_sv(a, t): # count everything from beginning? if a >= t-t0: a = t-t0 # mass at time t #x_t_old = np.array([sol_funcs[pool](t) for pool in range(n)]) x_t = sol_funcs_array(t) # mass at time t-a #x_tma_old = [np.float(sol_funcs[pool](t-a)) for pool in range(n)] x_tma = sol_funcs_array(t-a) # what remains from x_tma at time t m = Phi(t, t-a, x_tma) c = hasattr(self, '_state_transition_operator_cache') #print(c, 'H', m, t, a, x_t, x_tma) # difference is not older than t-a res = x_t-m # cut off accidental negative values return np.maximum(res, np.zeros(res.shape)) def F(a, t): res = G_sv(a,t) + H_sv(a,t) #print(a, t, res) #print('G', G_sv(a,t), 'H', H_sv(a,t)) return res return F def cumulative_system_age_distribution_single_value(self, start_age_densities=None, F0=None): """Return a function for the cumulative system age distribution. Args: start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0`. Defaults to None. F0 (Python function): A function of age that returns a numpy.array containing the masses with age less than or equal to the age at time :math:`t_0`. Defaults to None. Raises: Error: If both ``start_age_densities`` and ``F0`` are None. One must be given. It is fastest to provide ``F0``, otherwise ``F0`` will be computed by numerical integration of ``start_age_densities``. Returns: Python function ``F_sv``: ``F_sv(a, t)`` is the mass in the system with age less than or equal to ``a`` at time ``t``. """ n = self.nr_pools #soln = self.solve_old() soln = self.solve() if soln[0,:].sum() == 0: start_age_densities = lambda a: np.zeros((n,)) if F0 is None and start_age_densities is None: raise(Error('Either F0 or start_age_densities must be given.')) F_sv = self.cumulative_pool_age_distributions_single_value( start_age_densities=start_age_densities, F0=F0) return lambda a, t: F_sv(a,t).sum() def cumulative_backward_transit_time_distribution_single_value_func(self, start_age_densities=None, F0=None): """Return a function for the cumulative backward transit time distribution. Args: start_age_densities (Python function, optional): A function of age that returns a numpy.array containing the masses with the given age at time :math:`t_0`. Defaults to None. F0 (Python function): A function of age that returns a numpy.array containing the masses with age less than or equal to the age at time :math:`t_0`. Defaults to None. Raises: Error: If both ``start_age_densities`` and ``F0`` are ``None``. One must be given. It is fastest to provide ``F0``, otherwise ``F0`` will be computed by numerical integration of ``start_age_densities``. Returns: Python function ``F_sv``: ``F_sv(a, t)`` is the mass leaving the system at time ``t`` with age less than or equal to ``a``. """ if F0 is None and start_age_densities is None: raise(Error('Either F0 or start_age_densities must be given.')) F_sv = self.cumulative_pool_age_distributions_single_value( start_age_densities=start_age_densities, F0=F0) rho = self.output_rate_vector_at_t def F_btt_sv(a, t): res = (rho(t)*F_sv(a, t)).sum() #print(a, t, res) return res return F_btt_sv def cumulative_forward_transit_time_distribution_single_value_func( self, cut_off=True): """Return a function for the cumulative forward transit time distribution. Args: cut_off (bool, optional): If ``True``, no density values are going to be computed after the end of the time grid, instead ``numpy.nan`` will be returned. Defaults to ``True``. ``False`` might lead to unexpected behavior. Returns: Python function ``F_sv``: ``F_sv(a, t)`` is the mass leaving the system at time ``t+a`` with age less than or equal to ``a``. """ times = self.times t_max = times[-1] Phi = self._state_transition_operator u_func = self.external_input_vector_func() def F_ftt_sv(a, t): #print(a, t, a+t>t_max) if cut_off and a+t>t_max: return np.nan u = u_func(t) res = u.sum() - Phi(t+a, t, u).sum() #print(a, t, u, res) return res return F_ftt_sv ##### quantiles ##### def pool_age_distributions_quantiles( self, quantile, start_values = None, start_age_densities = None, F0 = None, method = 'brentq', tol = 1e-8 ): """Return pool age distribution quantiles over the time grid. The compuation is done by computing the generalized inverse of the respective cumulative distribution using a nonlinear root search algorithm. Depending on how slowly the cumulative distribution can be computed, this can take quite some time. Args: quantile (between 0 and 1): The relative share of mass that is considered to be left of the computed value. A value of ``0.5`` leads to the computation of the median of the distribution. start_values (numpy.ndarray, len(times) x nr_pools, optional): For each pool an array over the time grid of start values for the nonlinear search. Good values are slighty greater than the solution values. Defaults to an array of zeros for each pool start_age_densities (Python function, optional): A function of age that returns a ``numpy.array`` containing the masses with the given age at time :math:`t_0`. Defaults to ``None``. F0 (Python function): A function of age that returns a ``numpy.array`` containing the masses with age less than or equal to the age at time :math:`t_0`. Defaults to ``None``. method (str): The method that is used for finding the roots of a nonlinear function. Either 'brentq' or 'newton'. Defaults to 'brentq'. tol (float): The tolerance used in the numerical root search algorithm. A low tolerance decreases the computation speed tremendously, so a value of ``1e-01`` might already be fine. Defaults to ``1e-08``. Raises: Error: If both ``start_age_densities`` and ``F0`` are ``None``. One must be given. It is fastest to provide ``F0``, otherwise ``F0`` will be computed by numerical integration of ``start_age_densities``. Returns: numpy.ndarray: (len(times) x nr_pools) The computed quantile values over the time-pool grid. """ n = self.nr_pools soln = self.solve() if soln[0,:].sum() == 0: start_age_densities = lambda a: np.zeros((n,)) if F0 is None and start_age_densities is None: raise(Error('Either F0 or start_age_densities must be given.')) times = self.times if start_values is None: start_values = np.ones((len(times), n)) F_sv = self.cumulative_pool_age_distributions_single_value( start_age_densities = start_age_densities, F0 = F0 ) res = [] for pool in range(n): print('Pool:', pool) F_sv_pool = lambda a, t: F_sv(a,t)[pool] res.append( self.distribution_quantiles( self, quantile, F_sv_pool, norm_consts = soln[:,pool], start_values = start_values[:,pool], method = method, tol = tol ) ) return np.array(res).transpose() def system_age_distribution_quantiles( self, quantile, start_values = None, start_age_densities = None, F0 = None, method = 'brentq', tol = 1e-8 ): """Return system age distribution quantiles over the time grid. The compuation is done by computing the generalized inverse of the respective cumulative distribution using a nonlinear root search algorithm. Depending on how slowly the cumulative distribution can be computed, this can take quite some time. Args: quantile (between 0 and 1): The relative share of mass that is considered to be left of the computed value. A value of ``0.5`` leads to the computation of the median of the distribution. start_values (numpy.array, optional): An array over the time grid of start values for the nonlinear search. Good values are slighty greater than the solution values. Must have the same length as ``times``. Defaults to an array of zeros. start_age_densities (Python function, optional): A function of age that returns a ``numpy.array`` containing the masses with the given age at time :math:`t_0`. Defaults to ``None``. F0 (Python function): A function of age that returns a ``numpy.array`` containing the masses with age less than or equal to the age at time :math:`t_0`. Defaults to ``None``. method (str): The method that is used for finding the roots of a nonlinear function. Either 'brentq' or 'newton'. Defaults to 'brentq'. tol (float): The tolerance used in the numerical root search algorithm. A low tolerance decreases the computation speed tremendously, so a value of ``1e-01`` might already be fide. Defaults to ``1e-08``. Raises: Error: If both ``start_age_densities`` and ``F0`` are ``None``. One must be given. It is fastest to provide ``F0``, otherwise ``F0`` will be computed by numerical integration of ``start_age_densities``. Returns: numpy.array: The computed quantile values over the time grid. """ n = self.nr_pools soln = self.solve() if soln[0,:].sum() == 0: start_age_densities = lambda a: np.zeros((n,)) if F0 is None and start_age_densities is None: raise(Error('Either F0 or start_age_densities must be given.')) F_sv = self.cumulative_system_age_distribution_single_value( start_age_densities = start_age_densities, F0 = F0 ) #soln = self.solve_old() if start_age_densities is not None: start_age_moments = self.moments_from_densities(1, start_age_densities) else: start_age_moments = None if start_values is None: start_values = self.system_age_moment(1, start_age_moments) a_star = self.distribution_quantiles( self, quantile, F_sv, norm_consts = soln.sum(1), start_values = start_values, method = method, tol = tol ) return a_star @staticmethod def distribution_quantiles(mr, quantile, F_sv, norm_consts=None, start_values=None, times=None, method='brentq', tol=1e-8): """Return distribution quantiles over the time grid of a given distribution. The compuation is done by computing the generalized inverse of the respective cumulative distribution using a nonlinear root search algorithm. Depending on how slowly the cumulative distribution can be computed, this can take quite some time. Args: mr: The model run itself. This is necessary because for obscure parallelization reasons the method needs to be static. quantile (between 0 and 1): The relative share of mass that is considered to be left of the computed value. A value of ``0.5`` leads to the computation of the median of the distribution. F_sv (Python function): A function of age ``a`` and time ``t`` that returns the mass that is of age less than or equal to ``a`` at time ``t``. norm_consts (numpy.array, optional): An array over the time grid of total masses over all ages. Defaults to an array of ones assuming given probability distributions. start_values (numpy.array, optional): An array over the time grid of start values for the nonlinear search. Good values are slighty greater than the solution values. Must have the same length as ``times``. Defaults to an array of zeros. times (numpy.array, optional): Time grid on which to compute the quantiles. Defaults to ``None`` in which case the orignal time grid is used. method (str): The method that is used for finding the roots of a nonlinear function. Either 'brentq' or 'newton'. Defaults to 'brentq'. tol (float): The tolerance used in the numerical root search algorithm. A low tolerance decreases the computation speed tremendously, so a value of ``1e-01`` might already be fine. Defaults to ``1e-08``. Returns: numpy.array: The computed quantile values over the time grid. """ if times is None: times = mr.times if start_values is None: start_values = np.zeros((len(times),)) if norm_consts is None: norm_consts = np.ones((len(times),)) q_lst = [] for ti in tqdm(range(len(times))): q_lst.append( mr.distribution_quantile( quantile, lambda a: F_sv(a, times[ti]), norm_const=norm_consts[ti], start_value=start_values[ti], method=method, tol=tol ) ) return np.array(q_lst) @staticmethod def distribution_quantile(quantile, F, norm_const=None, start_value=None, method='brentq', tol=1e-8): """Return distribution quantile (one single value) of a given distribution. The compuation is done by computing the generalized inverse of the respective cumulative distribution using a nonlinear root search algorithm. Args: quantile (between 0 and 1): The relative share of mass that is considered to be left of the computed value. A value of ``0.5`` leads to the computation of the median of the distribution. F (Python function): A function of age ``a`` that returns the mass that is of age less than or equal to ``a``. norm_const (numpy.array, optional): The amount of total mass of the distribution. Defaults to one assuming a given probability distribution. start_value (float, optional): A start value for the nonlinear search. A good values is slighty greater than the solution value. Defaults to zero. method (str): The method that is used for finding the roots of a nonlinear function. Either 'brentq' or 'newton'. Defaults to 'brentq'. tol (float): The tolerance used in the numerical root search algorithm. A low tolerance decreases the computation speed tremendously, so a value of ``1e-01`` might already be fine. Defaults to ``1e-08``. Returns: float: The computed quantile value of the distribution. """ if start_value is None: start_value = 0 if norm_const is None: norm_const = 1 def quantile_f(): if norm_const == 0: return np.nan def g(a): if np.isnan(a): return np.nan res = quantile*norm_const - F(a) #print('a:', a,'t', times[ti], 'g(a):', res, 'nc', # norm_consts[ti], 'F', F(a, times[ti])) return res if method == 'newton': a_star = newton(g, start_value, maxiter=500, tol=tol) if method == 'brentq': a_star = generalized_inverse_CDF( lambda a: F(a), quantile*norm_const, # start_dist=start_value, x1=start_value, tol=tol ) return a_star q = quantile_f() return q ## by ode ## def pool_age_distributions_quantiles_by_ode(self, quantile, start_age_densities, F0=None, check_time_indices=None, **kwargs): """Return pool age distribution quantiles over the time grid. The compuation is done by solving an ODE for each pool as soon as the pool is nonempty. The initial value is obtained by computing the generalized inverse of the pool age distribution by a numerical root search algorithm. Args: quantile (between 0 and 1): The relative share of mass that is considered to be left of the computed value. A value of ``0.5`` leads to the computation of the median of the distribution. start_age_densities (Python function): A function of age that returns a ``numpy.array`` containing the masses with the given age at time :math:`t_0`. F0 (Python function, optional): A function of age that returns a ``numpy.array`` containing the masses with age less than or equal to the age at time :math:`t_0`. Defaults to ``None``. It is fastest to provide ``F0``, otherwise ``F0`` will be computed by numerical integration of ``start_age_densities``. check_time_indices (numpy.array, optional): Indices of the tiime grid on which the ODE result are checked against an explicit solution computed by the pseudo-inverse of the cumulative distribution function. Defaults to ``None`` in which case no check is performed. kwargs: Passed to the ``solve_ivp``, e.g., ``method`` or ``max_step``. Returns: numpy.ndarray: (len(times) x nr_pools) The computed quantile values over the time-pool grid. """ res = [] for pool in range(self.nr_pools): print('Pool:', pool) res.append( self.pool_age_distribution_quantiles_pool_by_ode( quantile, pool, start_age_densities, F0=F0, check_time_indices=check_time_indices, **kwargs ) ) return np.array(res).transpose() def x_solve_func_skew(self): block_ode,x_block_name,phi_block_name=self._x_phi_block_ode() return x_tmax( self.times[0], self.times[-1], block_ode, tuple(self.start_values), x_block_name, phi_block_name ) def pool_age_distribution_quantiles_pool_by_ode(self, quantile, pool, start_age_densities, F0=None, check_time_indices=None, **kwargs): """Return pool age distribution quantile over the time grid for one single pool. The compuation is done by solving an ODE as soon as the pool is nonempty. The initial value is obtained by computing the generalized inverse of the pool age distribution by a numerical root search algorithm. Args: quantile (between 0 and 1): The relative share of mass that is considered to be left of the computed value. A value of ``0.5`` leads to the computation of the median of the distribution. pool (int): The number of the pool for which the age quantile is to be computed. start_age_densities (Python function): A function of age that returns a ``numpy.array`` containing the masses with the given age at time :math:`t_0`. F0 (Python function, optional): A function of age that returns a ``numpy.array`` containing the masses with age less than or equal to the age at time :math:`t_0`. It is fastest to provide ``F0``, otherwise ``F0`` will be computed by numerical integration of ``start_age_densities``. Defaults to ``None``. check_time_indices (numpy.array, optional): Indices of the tiime grid on which the ODE result are checked against an explicit solution computed by the pseudo-inverse of the cumulative distribution function. Defaults to ``None`` in which case no check is performed. kwargs: Passed to the ``solve_ivp``, e.g., ``method`` or ``max_step``. Raises: Error: If ``start_age_densities`` is ``None``. Returns: numpy.ndarray: (len(times)) The computed quantile values over the time grid. """ #soln = self.solve_old() vec_sol_func = self.x_solve_func_skew() soln = vec_sol_func(self.times) empty = soln[0, pool] == 0 if not empty and start_age_densities is None: raise(Error('start_age_densities must be given')) times = self.times n = self.nr_pools if not empty and F0 is None: p0 = start_age_densities F0 = lambda a: np.array([quad(lambda s: p0(s)[i], 0, a)[0] for i in range(n)]) p = self.pool_age_densities_single_value(start_age_densities) u = self.external_input_vector_func() F = self.cumulative_pool_age_distributions_single_value( start_age_densities=start_age_densities, F0=F0) #sol_funcs = self.solve_single_value_old() #vec_sol_func = self.solve_func() # find last time index such that the pool is empty --> ti ti = len(times)-1 content = soln[ti, pool] while (content > 0) and (ti > 0): ti = ti-1 content = soln[ti, pool] if content == 0: ti += 1 if (ti == len(times)): return np.nan*np.ones((len(times),)) if ti == 0: sv = generalized_inverse_CDF(lambda a: F0(a)[pool], quantile*self.start_values[pool]) else: #if start_age_densities is None: # raise(Error('Cannot start delayed quantile computation,' # 'since start_age_densities are missing.')) CDFs = self.cumulative_pool_age_distributions_single_value( start_age_densities) CDF = lambda a: CDFs(a, times[ti]) sv = generalized_inverse_CDF(lambda a: CDF(a)[pool], quantile*soln[ti, pool]) times = times[ti:] t_max = times[-1] t_min = times[0] pb = tqdm(total = t_max-t_min) global last_t, last_res last_t = -1 last_res = -1.0 def rhs(y, t_val): y = np.float(y) global last_t, last_res t_val = min(t_val, t_max) # rhs will be called twice with the same value apparently, # we can use this to speed it up if t_val == last_t: return last_res #print('y', y, 't', t_val) if (t_val <= t_max) and (t_val-t_min-pb.n > 0): #pb.n = t_val-t_min #pb.update(0) pb.update(t_val-t_min-pb.n) # print('Quantile, line 2866') # print('y', y, 't', t_val) p_val = p(y, t_val)[pool] u_val = u(t_val)[pool] F_vec = F(y, t_val).reshape((n,1)) x_vec = vec_sol_func(t_val)#.reshape((n,1)) B = self.B_func(vec_sol_func)(t_val) # print('B', B) # print('x', x_vec) # print('B*x', B.dot(x_vec)) # print('p', p_val) # print('u', u_val) # print('F', F_vec) # print('B*F', B.dot(F_vec)) # print(B.dot(F_vec)[pool]) # print(B.dot(F_vec)[1]) #if p_val == 0: #raise(Error('Division by zero during quantile computation.')) #else: res = 1 + 1/p_val*(u_val*(quantile-1.0) +quantile*(np.matmul(B,x_vec)[pool])-(np.matmul(B,F_vec)[pool])) #print('res', res) #print('---') last_t = t_val last_res = res return np.array(res).reshape(1,) #short_res = odeint(rhs, sv, times, atol=tol, mxstep=10000) rhs2 = lambda t_val, y: rhs(y, t_val) short_res = solve_ivp_pwc( rhss = (rhs2,), y0 = np.array([sv]).reshape(1,), t_span = (times[0], times[-1]), t_eval = times, **kwargs ).y short_res = np.rollaxis(short_res, -1, 0) pb.close() res = np.ndarray((len(self.times),)) res[:ti] = np.nan res[ti:] = short_res.reshape((len(times),)) if check_time_indices is not None: qs_ode = res[check_time_indices] qs_pi = np.zeros_like(qs_ode) for nr, ct_index in enumerate(check_time_indices): qs_pi[nr] = self.__class__.distribution_quantile( quantile, lambda a: F(a, self.times[ct_index])[pool], norm_const=soln[ct_index, pool], start_value=qs_ode[nr] ) #, method='brentq', tol=1e-8): print_quantile_error_statisctics(qs_ode, qs_pi) #print(res) return res def system_age_distribution_quantiles_by_ode(self, quantile, start_age_densities, F0=None, check_time_indices=None, **kwargs): """Return system age distribution quantile over the time grid. The compuation is done by solving an ODE as soon as the system is nonempty. The initial value is obtained by computing the generalized inverse of the system age distribution by a numerical root search algorithm. Args: quantile (between 0 and 1): The relative share of mass that is considered to be left of the computed value. A value of ``0.5`` leads to the computation of the median of the distribution. pool (int): The number of the pool for which the age quantile is to be computed. start_age_densities (Python function): A function of age that returns a ``numpy.array`` containing the masses with the given age at time :math:`t_0`. F0 (Python function, optional): A function of age that returns a ``numpy.array`` containing the masses with age less than or equal to the age at time :math:`t_0`. It is fastest to provide ``F0``, otherwise ``F0`` will be computed by numerical integration of ``start_age_densities``. Defaults to ``None``. check_time_indices (numpy.array, optional): Indices of the tiime grid on which the ODE result are checked against an explicit solution computed by the pseudo-inverse of the cumulative distribution function. Defaults to ``None`` in which case no check is performed. kwargs: Passed to the ``solve_ivp``, e.g., ``method`` or ``max_step``. Raises: Error: If ``start_age_densities`` is ``None``. Returns: numpy.ndarray: The computed quantile values over the time grid. """ #soln = self.solve_old() #soln = self.solve() vec_sol_func = self.x_solve_func_skew() soln = vec_sol_func(self.times) # check if system is empty at the beginning, # if so, then we use 0 as start value, otherwise # we need to compute it from F0 (preferably) or start_age_density empty = soln[0,:].sum() == 0 if not empty and start_age_densities is None: raise(Error('start_age_densities must be given')) times = self.times original_times = copy(times) n = self.nr_pools if not empty and F0 is None: p0 = start_age_densities F0 = lambda a: np.array([quad(lambda s: p0(s)[pool], 0, a)[0] for pool in range(n)]) p = self.system_age_density_single_value(start_age_densities) u = self.external_input_vector_func() F = self.cumulative_pool_age_distributions_single_value( start_age_densities=start_age_densities, F0=F0) #sol_funcs = self.solve_single_value_old() #vec_sol_func = self.solve_func() # find last time index such that the system is empty --> ti ti = len(times)-1 content = soln[ti,:] while (content.sum() > 0) and (ti > 0): ti = ti-1 content = soln[ti,:] if content.sum() == 0: ti += 1 if (ti == len(times)): return np.nan*np.ones((len(times),)) if ti == 0: sv = generalized_inverse_CDF(lambda a: F0(a).sum(), quantile*self.start_values.sum()) else: #if start_age_densities is None: # raise(Error('Cannot start delayed quantile computation,' # 'since start_age_Densities are missing.')) CDFs = self.cumulative_system_age_distribution_single_value( start_age_densities) CDF = lambda a: CDFs(a, times[ti]) sv = generalized_inverse_CDF(CDF, quantile*soln[ti,:].sum()) times = times[ti:] t_max = times[-1] t_min = times[0] pb = tqdm(total = t_max-t_min) global last_t, last_res last_t = -1 last_res = -1.0 def rhs(y, t_val): y = np.float(y) global last_t, last_res t_val = min(t_val, t_max) # rhs will be called twice with the same value apparently, # we can use this to speed it up if t_val == last_t: return last_res if (t_val <= t_max) and (t_val-t_min-pb.n > 0): #pb.n = t_val-t_min #pb.update(0) pb.update(t_val-t_min-pb.n) #pb.update(t_val-t_min, n=0) #print() #print('y', y, 't', t_val) p_val = p(y, t_val) u_vec = u(t_val) F_vec = F(y, t_val).reshape((n,1)) x_vec = vec_sol_func(t_val)#.reshape((n,1)) B=self.B_func(vec_sol_func)(t_val) #print('B', B) #print('x', x_vec) #print('B*x', B.dot(x_vec)) #print('y', y) #print('t', t_val) #print('p', p_val) #print('u', u_vec) #print('F', F_vec) #print('B*F', B.dot(F_vec)) #print(F_val/x_val.sum()*((B*x_val).sum()-(B*F_val).sum())) #if p_val == 0: # raise(Error('Division by zero during quantile computation.')) #else: res = 1 + 1/p_val*(u_vec.sum()*(quantile-1.0)+ quantile*(np.matmul(B,x_vec)).sum()-(np.matmul(B,F_vec)).sum()) #print('res', res) last_t = t_val last_res = res return np.array(res).reshape(1,) #short_res = odeint(rhs, sv, times, atol=tol, mxstep=10000) rhs2 = lambda t_val, y: rhs(y, t_val) short_res = solve_ivp_pwc( rhss = (rhs2,), y0 = np.array([sv]).reshape(1,), t_span = (times[0], times[-1]), t_eval = times, **kwargs ).y short_res = np.rollaxis(short_res, -1, 0) pb.close() res = np.ndarray((len(original_times),)) res[:ti] = np.nan res[ti:] = short_res.reshape((len(times),)) if check_time_indices is not None: qs_ode = res[check_time_indices] qs_pi = np.zeros_like(qs_ode) for nr, ct_index in enumerate(check_time_indices): qs_pi[nr] = self.__class__.distribution_quantile( quantile, lambda a: F(a, self.times[ct_index]).sum(), norm_const=soln[ct_index,:].sum(), start_value=qs_ode[nr] ) #, method='brentq', tol=1e-8): print_quantile_error_statisctics(qs_ode, qs_pi) #print(res) return res ########## 14C methods ######### def to_14C_explicit(self, start_values_14C, Fa_func, decay_rate=0.0001209681): """Construct and return a :class:`SmoothModelRun` instance that models the 14C component additional to the original model run. Args: start_values_14C (numpy.nd_array, nr_pools): 14C start values. Fa_func (func(t)): returns atmospheric fraction to be multiplied with the input vector decay rate (float, optional): The decay rate to be used, defaults to ``0.0001209681`` (daily). Returns: :class:`SmoothModelRun` """ srm_14C = self.model.to_14C_explicit('lamda_14C', 'Fa_14C') # create SmoothModelRun for 14C par_set_14C = {k:v for k, v in self.parameter_dict.items()} par_set_14C['lamda_14C'] = decay_rate nr_pools = self.nr_pools start_values_14C_cb = np.ones(nr_pools*2) start_values_14C_cb[:nr_pools] = self.start_values start_values_14C_cb[nr_pools:] = start_values_14C times_14C = self.times #Fa_atm = copy(atm_delta_14C) #Fa_atm[:,1] = Fa_atm[:,1]/1000 + 1 #Fa_func = interp1d(Fa_atm[:,0], Fa_atm[:,1]) func_set_14C = {k:v for k,v in self.func_set.items()} function_string = 'Fa_14C(' + srm_14C.time_symbol.name + ')' func_set_14C[function_string] = Fa_func smr_14C = SmoothModelRun( srm_14C, par_set_14C, start_values_14C_cb, times_14C, func_set_14C, ) return smr_14C ########## private methods ######### def _solve_age_moment_system_single_value_old(self, max_order, start_age_moments=None, start_values=None): t0 = self.times[0] t_max = self.times[-1] def func(t): if t < t0: # times x pools res = np.zeros((1, self.nr_pools)) res[res==0] = np.nan return res # fixme: do we really want to cut off here? # This could be dangerous if t > t_max: t = t_max new_times = [t0, t] soln = self._solve_age_moment_system_old(max_order, start_age_moments, times=new_times, start_values=start_values) return soln[-1] return func def _solve_age_moment_system_func( self, max_order, start_age_moments=None, start_values=None ): t0 = self.times[0] t_max = self.times[-1] soln, func = self._solve_age_moment_system( max_order, start_age_moments, #times=new_times, start_values=start_values ) def save_func(times): if isinstance(times,np.ndarray): if times[0]<t0 or times[-1]>t_max: raise Exception(""" times[0]<t0 or times[-1]>t_max: solve_ivp returns an interpolated function, which does not check if the functions is called with arguments outside the computed range, but we do. """ ) else: return np.rollaxis(func(times),-1,0) else: if (times < t0) or (times > t_max): raise Exception(""" t<t0 or t>t_max: solve_ivp returns an interpolated function, which does not check if the functions is called with arguments outside the computed range, but we do. """ ) else: return func(times) return save_func def _solve_age_moment_system(self, max_order, start_age_moments=None, start_values=None, times=None, store=True): # this function caches the interpolation function instead of the values #if max_order < 1: # raise(ValueError("For numerical consistency we use the age moment system only for order >=1 (mean). Use solve instead!")) if not ((times is None) and (start_values is None)): store = False if times is None: times = self.times if start_values is None: start_values = self.start_values if not(isinstance(start_values, np.ndarray)): #print(start_values) raise(Error("start_values should be a numpy array")) n = self.nr_pools if start_age_moments is None: start_age_moments = np.zeros((max_order, n)) start_age_moments_list = flatten([a.tolist() for a in [start_age_moments[i,:] for i in range(start_age_moments.shape[0])]]) storage_key = tuple(start_age_moments_list) + ((max_order,),) # return cached result if possible if store: if hasattr(self, "_previously_computed_age_moment_sol"): if storage_key in self._previously_computed_age_moment_sol: #print('using cached age moment system:', storage_key) #print( # self._previously_computed_age_moment_sol[storage_key]) return self._previously_computed_age_moment_sol[storage_key] else: self._previously_computed_age_moment_sol = {} srm = self.model state_vector, rhs = srm.age_moment_system(max_order) # print('---') # print(state_vector) # print(rhs) # input() # compute solution new_start_values = np.zeros((n*(max_order+1),)) new_start_values[:n] = np.array(start_values)#.reshape(n,) new_start_values[n:] = np.array(start_age_moments_list) soln, sol_func = numsol_symbolical_system( state_vector, srm.time_symbol, rhs, [self.parameter_dict], [self.func_set], new_start_values, times, #dense_output=True, #disc_times=self.disc_times ) def restrictionMaker(order): #pe('soln[:,:]',locals()) restrictedSolutionArr=soln[:,:(order+1)*n] def restrictedSolutionFunc(t): return sol_func(t)[:(order+1)*n] return (restrictedSolutionArr,restrictedSolutionFunc) # save all solutions for order <= max_order if store: # as it seems, if max_order is > 0, the solution (solved with # max_order=0) is sligthly different from the part of first part # of the higher order system that corresponds als to the solution. # The difference is very small ( ~1e-5 ), but big # enough to cause numerical problems in functions depending on # the consistency of the solution and the state transition # operator. #consequently we do not save the solution # for orders less than max_order separately for order in [max_order]: shorter_start_age_moments_list = ( start_age_moments_list[:order*n]) #print(start_age_moments_list) #print(shorter_start_age_moments_list) storage_key = (tuple(shorter_start_age_moments_list) + ((order,),)) #print('saving', storage_key) self._previously_computed_age_moment_sol[storage_key] = restrictionMaker(order) #print(self._previously_computed_age_moment_sol[storage_key]) return (soln, sol_func) def _solve_age_moment_system_old(self, max_order, start_age_moments=None, times=None, start_values=None, store=True): #store = True if not ((times is None) and (start_values is None)): store = False if times is None: times = self.times if start_values is None: start_values = self.start_values if not(isinstance(start_values, np.ndarray)): #print(start_values) raise(Error("start_values should be a numpy array")) n = self.nr_pools if start_age_moments is None: start_age_moments = np.zeros((max_order, n)) start_age_moments_list = flatten([a.tolist() for a in [start_age_moments[i,:] for i in range(start_age_moments.shape[0])]]) storage_key = tuple(start_age_moments_list) + ((max_order,),) # return cached result if possible if store: if hasattr(self, "_previously_computed_age_moment_sol_old"): if storage_key in self._previously_computed_age_moment_sol_old: #print('using cached age moment system:', storage_key) #print( # self._previously_computed_age_moment_sol_old[storage_key]) return self._previously_computed_age_moment_sol_old[storage_key] else: self._previously_computed_age_moment_sol_old = {} srm = self.model state_vector, rhs = srm.age_moment_system(max_order) # compute solution new_start_values = np.zeros((n*(max_order+1),)) new_start_values[:n] = np.array((start_values)).reshape((n,)) new_start_values[n:] = np.array((start_age_moments_list)) soln= numsol_symbolic_system_old( state_vector, srm.time_symbol, rhs, self.parameter_dict, self.func_set, new_start_values, times ) # save all solutions for order <= max_order if store: for order in range(max_order+1): shorter_start_age_moments_list = ( start_age_moments_list[:order*n]) #print(start_age_moments_list) #print(shorter_start_age_moments_list) storage_key = (tuple(shorter_start_age_moments_list) + ((order,),)) #print('saving', storage_key) self._previously_computed_age_moment_sol_old[storage_key] = ( soln[:,:(order+1)*n]) #print(self._previously_computed_age_moment_sol_old[storage_key]) return soln @property def no_input_model(self): m=self.model return m.no_input_model #SmoothReservoirModel( # m.state_vector, # m.time_symbol, # {}, # m.output_fluxes, # m.internal_fluxes #) @property def _no_input_sol(self): # note that the solution of the no input system # only coincides with the (application of) # the statetransition operator if the system is linear # so this function can only compute the state transition operatro # for a linear(ized) system if not hasattr(self, '_saved_no_input_sol'): m = self.model m_no_inputs=self.no_input_model no_inputs_num_rhs = numerical_rhs_old( m_no_inputs.state_vector, m_no_inputs.time_symbol, m_no_inputs.F, self.parameter_dict, self.func_set, self.times) def no_input_sol(times, start_vector): ('nos', times, start_vector) # Start and end time too close together? Do not integrate! if abs(times[0]-times[-1]) < 1e-14: return np.array(start_vector) sv = np.array(start_vector).reshape((self.nr_pools,)) return odeint(no_inputs_num_rhs, sv, times, mxstep = 10000)[-1] self._saved_no_input_sol = no_input_sol return self._saved_no_input_sol def initialize_state_transition_operator_cache(self, lru_maxsize, lru_stats=False, size=1): custom_lru_cache = custom_lru_cache_wrapper( maxsize=lru_maxsize, # variable maxsize now for lru cache typed=False, stats=lru_stats # use custom statistics feature ) nr_pools = self.nr_pools times = self.times t_min = times[0] t_max = times[-1] cache_times = np.linspace(t_min, t_max, size+1) ca = np.zeros((size, nr_pools, nr_pools)) cache = Cache(cache_times, ca, self.myhash()) cache._cached_phi_tmax = custom_lru_cache(phi_tmax) self._state_transition_operator_cache = cache #fixme: # this method is not yet aware of the Cache class def save_state_transition_operator_cache(self, filename): self._state_transition_operator_cache.save(filename) def load_state_transition_operator_cache(self, filename): tmpCache = Cache.from_file(filename) if self.myhash()==tmpCache.myhash: self._state_transition_operator_cache=tmpCache else: raise Exception('State transition operator cache hash is different from the hash of the present model run and cannot be used. Please REMOVE THE CACHE FILE:'+filename) def myhash(self): """ Compute a hash considering SOME but NOT ALL properties of a model run. The function's main use is to detect saved state transition operator cashes that are no longer compatible with the model run object that wants to use them. This check is useful but NOT COMPREHENSIVE. """ times=self.times def make_hash_sha256(o): hasher = hashlib.sha256() #hasher.update(repr(make_hashable(o)).encode()) hasher.update(repr(o).encode()) return base64.b64encode(hasher.digest()).decode() return make_hash_sha256( ( frozendict(self.model.input_fluxes), frozendict(self.model.internal_fluxes), frozendict(self.model.output_fluxes), ImmutableMatrix(self.model.state_vector), # to compute a hash of an arbitrary function object is difficult # in particular if the function depends on data. frozendict(self.parameter_dict), self.start_values, (times[0],times[-1]) ) ) def _x_phi_block_ode(self): x_block_name = 'x' phi_block_name = 'phi' if not(hasattr(self, '_x_phi_block_ode_cache')): nr_pools = self.nr_pools block_ode = x_phi_ode( self.model, (self.parameter_dict,), (self.func_set,), x_block_name, phi_block_name ) self._x_phi_block_ode_cache = block_ode return self._x_phi_block_ode_cache, x_block_name, phi_block_name def _state_transition_operator(self, t, t0, x): return np.matmul(self.Phi(t, t0), x).reshape((self.nr_pools,)) def _state_transition_operator_for_linear_systems(self, t, t0, x): # this function could be used in a "linear smooth model run class" # At the moment it is only used by the tests to show # why a replacement was necessary for the general case srm = self.model if not srm.is_linear: raise Exception("This method can only be applied to linear systems. Maybe you have to linearize along a solution first? ( Consider using the linearize method )" ) if t0 > t: raise(Error("Evaluation before t0 is not possible")) if t0 == t: return x.flatten() n = self.nr_pools no_input_sol = self._no_input_sol soln = (no_input_sol([t0, t], x)).reshape((n,)) # avoid small negative values return np.maximum(soln, np.zeros_like(soln)) #if self._state_transition_operator_cache is None: # # do not use the cache, it has not yet been created # #self.build_state_transition_operator_cache() # soln = (no_input_sol([t0, t], x)).reshape((n,)) #else: # # use the already created cache # times = self.times # t_min = times[0] # t_max = times[-1] # nc = self._cache_size # cached_times = np.linspace(t_min, t_max, nc) # ca = self._state_transition_operator_cache # # find tm1 # tm1_ind = cached_times.searchsorted(t0) # tm1 = cached_times[tm1_ind] # # check if next cached time is already behind t # if t <= tm1: return no_input_sol([t0, t], x) # # first integrate x to tm1: y = Phi(tm1, t_0)x # y = (no_input_sol([t0, tm1], x)).reshape((n,1)) # step_size = (t_max-tm1)/(nc-1) # if step_size > 0: # tm2_ind = np.int(np.min([np.floor((t-tm1)/step_size), nc-1])) # tm2 = tm1 + tm2_ind*step_size # #print(t, t0, t==t0, tm1_ind, tm1, tm2_ind, tm2, step_size) # B = ca[tm1_ind,tm2_ind,:,:] # #print(t, t0, tm1, tm2, step_size, B) # # z = np.dot(B, y) # else: # tm2 = tm1 # z = y # #z = (no_input_sol([tm1, tm2], y)[-1]).reshape((n,)) # # integrate z to t: sol=Phi(t,tm2)*z # soln = (no_input_sol([tm2, t],z)).reshape((n,)) # #return np.maximum(soln, np.zeros_like(soln)) #this function should be rewritten using the vector valued solution def _flux_vector(self, flux_vec_symbolic): #sol = self.solve_old() sol = self.solve() srm = self.model n = self.nr_pools times = self.times tup = tuple(srm.state_vector) + (srm.time_symbol,) res = np.zeros((len(times), n)) flux_vec_symbolic = sympify(flux_vec_symbolic, locals = _clash) flux_vec_symbolic = flux_vec_symbolic.subs(self.parameter_dict) #cut_func_set = {key[:key.index('(')]: val # for key, val in self.func_set.items()} cut_func_set=make_cut_func_set(self.func_set) flux_vec_fun = lambdify(tup, flux_vec_symbolic, modules=[cut_func_set, 'numpy']) res = np.zeros((len(times), n)) for ti in range(len(times)): args = [sol[ti, pool] for pool in range(n)] + [times[ti]] val = flux_vec_fun(*args) res[ti,:] = val.reshape((n,)) return res ##### age density methods ##### def _age_densities_1_single_value(self, start_age_densities = None): # for part that comes from initial value if start_age_densities is None: # all mass is assumed to have age 0 at the beginning def start_age_densities(a): if a != 0: return np.array((0,)*self.nr_pools) return np.array(self.start_values) # cut off negative ages in start_age_densities def p0(a): if a >= 0: return start_age_densities(a) else: return np.zeros((self.nr_pools,)) Phi = self._state_transition_operator#_for_linear_systems t0 = self.times[0] #ppp = lambda a, t: self._state_transition_operator(t,t0,p0(a-(t-t0))) def ppp(a, t): #print('iv: ', a, t) #fixme: cut off accidental negative values #print('Y', a-(t-t0), p0(a-t-t0)) #print('smr 3821 ppp', t, t0, a, a-(t-t0)) res = np.maximum(Phi(t, t0, p0(a-(t-t0))), 0) #print('ppp:', res) return res return ppp # return a function p1 that takes an age np.array # and gives back an nd array (age, time, pool) def _age_densities_1(self, start_age_densities = None): # for part that comes from initial value ppp = self._age_densities_1_single_value(start_age_densities) pp = lambda a: np.array([ppp(a,t) for t in self.times], np.float) p1 = lambda ages: np.array([pp(a) for a in ages], np.float) return p1 def _age_densities_2_single_value(self): # for part that comes from the input function u t0 = self.times[0] u = self.external_input_vector_func() #u = lambda x: np.array([1,2]) def ppp(a, t): #print('input', a, t) if (a < 0) or (t-t0 <= a): val = np.zeros((1, self.nr_pools))[-1] else: u_val = u(t-a) #print('u_val', u_val) val = self._state_transition_operator(t, t-a, u_val) #fixme: cut off accidental negative values res = np.maximum(val, 0) #print('ppp:', res) return res return ppp # returns a function p2 that takes an age array "ages" as argument # and gives back a three-dimensional ndarray (ages x times x pools) def _age_densities_2(self): # for part that comes from the input function u ppp = self._age_densities_2_single_value() pp = lambda a: np.array([ppp(a,t) for t in self.times], np.float) p2 = lambda ages: np.array([pp(a) for a in ages], np.float) return p2 ##### plotting methods ##### def _density_plot_plotly(self, field, ages, age_stride=1, time_stride=1, y_label="Age", z_label="Mass"): times = self.times strided_field = stride(field, (age_stride, time_stride)) strided_ages = stride(ages, age_stride) strided_times = stride(times, time_stride) surfacecolor = strided_field.copy() for ai in range(strided_field.shape[0]): for ti in range(strided_field.shape[1]): surfacecolor[ai,ti] = - (ai - ti) data = [go.Surface(x = -strided_times, y = strided_ages, z = strided_field, showscale = False, surfacecolor = surfacecolor, colorscale = 'Rainbow')] tickvals = np.linspace(strided_times[0], strided_times[-1], 5) ticktext = [str(v) for v in tickvals] tickvals = -tickvals layout = go.Layout( width = 800, height = 800, scene = dict( xaxis = dict( title = 'Time', tickmode = 'array', tickvals = tickvals, ticktext = ticktext #range = [-times[0], -times[-1]] ), yaxis = dict( title = y_label, range = [ages[0], ages[-1]] ), zaxis = dict( title = z_label, range = [0, np.amax(strided_field)] ) ) ) return data, layout ## plot helper methods ## # fixme: unit treatment disabled # fixme mm 7-28-2021 units do not have a place in SmothModelRun since # we do not have them for all the instances. If units are required they should life in a different class def _add_time_unit(self, label): #if self.model.time_unit: # label += r"$\quad(\mathrm{" + latex(self.model.time_unit) + "})$" return label def _add_content_unit(self, label): #if self.model.content_unit: # label +=r"$\quad(\mathrm{" + latex(self.model.content_unit) + "})$" return label def _add_flux_unit(self, label): #if self.model.content_unit and self.model.time_unit: # label += r"$\quad(\mathrm{" + latex(self.model.content_unit) # label += "/" + latex(self.model.time_unit) + "})$" return label ## flux helper functions ## #fixme: test and move def _flux_funcs(self, expr_dict): m = self.model #sol_funcs = self.sol_funcs() sol_funcs = self.sol_funcs() flux_funcs = {} tup = tuple(m.state_variables) + (m.time_symbol,) for key, expression in expr_dict.items(): if isinstance(expression, Number): # in this case (constant flux) lambdify for some reason # does not return a vectorized function but one that # allways returns a number even when it is called with # an array argument. We therfore create such a function # ourselves flux_funcs[key] = const_of_t_maker(expression) else: # fixme mm 11-5-2018 # the sympify in the next line should be unnecesary since # the expressions are already expressions and not strings # and now also not Numbers #o_par = sympify(expression, locals=_clash).subs(self.parameter_dict) o_par = expression.subs(self.parameter_dict) cut_func_set = make_cut_func_set(self.func_set) ol = lambdify(tup, o_par, modules = [cut_func_set, 'numpy']) #ol = numerical_function_from_expression(expression,tup,self.parameter_dict,self.func_set) flux_funcs[key] = f_of_t_maker(sol_funcs, ol) return flux_funcs ## temporary ## def _FTTT_lambda_bar(self, end, s, u): u_norm = u.sum() if u_norm == 0: return 0 Phi = self._state_transition_operator t1 = end result = -np.log(Phi(t1, s, u).sum()/u_norm)/(t1-s) return result def _FTTT_lambda_bar_R(self, start, end): if (start < self.times[0]) or (end > self.times[-1]): raise(Error('Interval boundaries out of bounds')) if start > end: raise(Error('Starting time must not be later then ending time')) t0 = start t1 = end u_func = self.external_input_vector_func() #soln_func = self.solve_single_value_old() vec_soln_func = self.solve_func() x0 = vec_soln_func(t0) x0_norm = x0.sum() A = x0_norm*(t1-t0)*self._FTTT_lambda_bar(t1, t0, x0) #print('A', A) def B_integrand(s): u = u_func(s) u_norm = u.sum() return u_norm*(t1-s)*self._FTTT_lambda_bar(t1, s, u) B = quad(B_integrand, t0, t1)[0] #print('B', B) C = x0_norm*(t1-t0) #print('C', C) def D_integrand(s): u_norm = u_func(s).sum() return u_norm*(t1-s) D = quad(D_integrand, t0, t1)[0] #print('D', D) return (A+B)/(C+D) def _FTTT_T_bar_R(self, start, end): if (start < self.times[0]) or (end > self.times[-1]): raise(Error('Interval boundaries out of bounds')) if start > end: raise(Error('Starting time must not be later then ending time')) t0 = start t1 = end u_func = self.external_input_vector_func() Phi = self._state_transition_operator #soln_func = self.solve_single_value_old() vec_soln_func = self.solve_func() x0 = vec_soln_func(t0) x0_norm = x0.sum() if x0_norm > 0: A = x0_norm*(t1-t0)*1/self._FTTT_lambda_bar(t1, t0, x0) else: A = 0 #print('A', A) def B_integrand(s): u = u_func(s) u_norm = u.sum() if u_norm > 0: return u_norm*(t1-s)*1/self._FTTT_lambda_bar(t1, s, u) else: return 0 B = quad(B_integrand, t0, t1)[0] #print('B', B) C = x0_norm*(t1-t0) #print('C', C) def D_integrand(s): u_norm = u_func(s).sum() return u_norm*(t1-s) D = quad(D_integrand, t0, t1)[0] #print('D', D) return (A+B)/(C+D) def _FTTT_lambda_bar_S(self, start, end): # for Martin Rasmussens surrogate system if (start < self.times[0]) or (end > self.times[-1]): raise(Error('Interval boundaries out of bounds')) if start > end: raise(Error('Starting time must not be later than ending time')) if start == end: return np.nan t0, t1 = start, end #soln_func = self.solve_single_value_old() vec_soln_func = self.solve_func() x0 = vec_soln_func(t0) x1 = vec_soln_func(t1) z0 = x0.sum() z1 = x1.sum() u_func = self.external_input_vector_func() # function to minimize during Newton to find lambda_bar_S # g seems to have huge numerical issues def g(lamda): def f(z, t): # RHS in the surrogate system return -lamda*z+sum(u_func(t)) # solve the system with current lambda sol = odeint(f, z0, [t0, t1]) # return the distance of the current final time value # from the desired z1 res = sol[-1]-z1 return res # g2 seems to work much better def g2(lamda): if lamda <= 0: return 137 def f(s): res = np.exp(-lamda*(t1-s))*sum(u_func(s)) #print(lamda, res, u_func(s), t1, s) return res int_res = quad(f, t0, t1)[0] z0_remaining = np.exp(-lamda*(t1-t0))*z0 if (z0_remaining<1e-08) or np.isnan(z0_remaining): z0_remaining = 0 res = z0_remaining-z1+int_res #print(lamda, z0_remaining, z1, int_res, res) return res # return lambda_bar_S after optimization try: #res = newton(g, 0.5, maxiter=5000) #res = newton(g2, 1.5, maxiter=500) res = brentq(g2, 0, 5, maxiter=500) except RuntimeError: print('optimization aborted') return np.nan if res <= 0: return np.nan if not isinstance(res, float): res = res[0] return res def _calculate_steady_states(self): #fixme: should be possible only for autonomous, possibly nonlinear, # models #fixme: test? ss = solve(self.model.F.subs(self.parameter_dict), self.model.state_vector, dict=True) return_ss = [] for ss_i in ss: add = True for key, val in ss_i.items(): if self.model.time_symbol in val.free_symbols: add = False if add: return_ss.append(ss_i) return return_ss def _FTTT_lambda_bar_R_left_limit(self, t0): #B0 = self.B(t0) vec_sol_funcs = self.solve_func() B0 = self.B_func()(t0) iv = Matrix(self.start_values) # column vector z = (-ones(1, len(iv))*B0).T return (z.T*iv/mpmath.norm(iv, 1))[0] ## new FTTT approach ## def _alpha_s_i(self, s, i, t1): Phi = self._state_transition_operator e_i = np.zeros(self.nr_pools) e_i[i] = 1 return 1 - Phi(t1,s,e_i).sum() def _alpha_s(self, s, t1, vec): Phi = self._state_transition_operator vec_norm = vec.sum() return 1 - Phi(t1,s,vec).sum()/vec_norm def _EFFTT_s_i(self, s, i, t1, alpha_s_i = None): Phi = self._state_transition_operator if alpha_s_i is None: alpha_s_i = self._alpha_s_i(s, i, t1) e_i = np.zeros(self.nr_pools) e_i[i] = 1 def F_FTT_i(a): return 1 - Phi(s+a,s,e_i).sum() def integrand(a): return 1 - F_FTT_i(a)/alpha_s_i result = quad(integrand, 0, t1-s, epsabs=1.5e-03, epsrel=1.5e-03)[0] return result def _TR(self, s, t1, v): # v is the remaining vector, not normalized Phi = self._state_transition_operator n = self.nr_pools Phi_matrix = np.zeros((n,n)) for i in range(n): e_i = np.zeros(n) e_i[i] = 1 Phi_matrix[:,i] = Phi(t1,s,e_i) A = scipy.linalg.logm(Phi_matrix)/(t1-s) A_inv = scipy.linalg.inv(A) o = np.ones(n) v_normed = v/v.sum() return (t1-s) + (-o @ A_inv @ v_normed) def _FTTT_finite_plus_remaining(self, s, t1, t0): if s == t0: #soln_func = self.solve_single_value_old() vec_soln_func = self.solve_func() vec = vec_soln_func(s) else: u_func = self.external_input_vector_func() vec = u_func(s) vec_norm = vec.sum() if vec_norm > 0 : Phi = self._state_transition_operator # the finite time part finite = 0 for i in range(self.nr_pools): alpha_s_i = self._alpha_s_i(s, i, t1) EFFTT_s_i = self._EFFTT_s_i(s, i, t1, alpha_s_i) finite += vec[i] * alpha_s_i * EFFTT_s_i # the part for the remaining mass if s < t1: v = Phi(t1,s,vec) # remaining mass at time t1 alpha_s = self._alpha_s(s, t1, vec) remaining = (1-alpha_s) * vec_norm * self._TR(s, t1, v) else: remaining = 0 return finite + remaining else: return 0 def _FTTT_conditional(self, t1, t0): if (t0 < self.times[0]) or (t1 > self.times[-1]): raise(Error('Interval boundaries out of bounds')) if t0 >= t1: raise(Error('Starting time must be earlier then ending time')) A = (t1-t0) * self._FTTT_finite_plus_remaining(t0, t1, t0) def B_integrand(s): return (t1-s) * self._FTTT_finite_plus_remaining(s, t1, t0) B = quad(B_integrand, t0, t1, epsabs=1.5e-03, epsrel=1.5e-03)[0] #soln_func = self.solve_single_value_old() vec_soln_func = self.solve_func() x0 = vec_soln_func(t0) x0_norm = x0.sum() C = x0_norm*(t1-t0) u_func = self.external_input_vector_func() def D_integrand(s): u_norm = u_func(s).sum() return u_norm*(t1-s) D = quad(D_integrand, t0, t1)[0] return (A+B)/(C+D) #### Important again #### def Phi_func(self): # note that the functions used to produce the matrix # self.Phi are cached (if the cache is initialized) # so that the repeated calls by the following lambda # are actually cheap return lambda T, S: self.Phi(T, S) def Phi(self, T, S): nr_pools = self.nr_pools start_Phi_2d = np.identity(nr_pools) if S > T: raise(Error("Evaluation before S is not possible")) if S == T: return start_Phi_2d solve_func = self.solve_func() block_ode, x_block_name, phi_block_name = self._x_phi_block_ode() if hasattr(self,'_state_transition_operator_cache'): cache = self._state_transition_operator_cache cache_times = cache.keys S_phi_ind = cache.phi_ind(S) T_phi_ind = cache.phi_ind(T) my_phi_tmax = cache._cached_phi_tmax def phi(t, s, t_max): x_s = tuple(solve_func(s)) return my_phi_tmax( s, t_max, block_ode, x_s, x_block_name, phi_block_name )(t) S_phi_ind = cache.phi_ind(S) T_phi_ind = cache.phi_ind(T) # t_max = self.times[-1] t_max = cache.end_time_from_phi_ind(T_phi_ind) # catch the corner cases where the cache is useless. if (T_phi_ind-S_phi_ind) < 1: return phi(T, S, t_max=cache.end_time_from_phi_ind(T_phi_ind)) tm1 = cache.end_time_from_phi_ind(S_phi_ind) ## first integrate to tm1: if tm1 != S: phi_tm1_S = phi(tm1, S, tm1) else: phi_tm1_S = start_Phi_2d phi_T_tm1 = phi(T, tm1, self.times[-1]) return np.matmul(phi_T_tm1, phi_tm1_S) else: def phi(t, s): x_s = solve_func(s) start_Phi_2d = np.identity(nr_pools) start_blocks = [ (x_block_name, x_s), (phi_block_name, start_Phi_2d) ] blivp = block_ode.blockIvp(start_blocks) return blivp.block_solve(t_span=(s, t))[phi_block_name][-1, ...] return phi(T, S) def fake_discretized_Bs(self, data_times=None): if data_times is None: data_times = self.times nr_pools = self.nr_pools n = len(data_times) Bs = np.zeros((n-1, nr_pools, nr_pools)) for k in range(n-1): Bs[k,:,:] = self.Phi(data_times[k+1], data_times[k]) return Bs def acc_net_internal_flux_matrix(self, data_times=None): if data_times is None: data_times = self.times x_func = self.solve_func() xs = x_func(data_times) Bs = self.fake_discretized_Bs(data_times) return net_Fs_from_discrete_Bs_and_xs(Bs, xs) def acc_net_external_output_vector(self, data_times=None): if data_times is None: data_times = self.times x_func = self.solve_func() xs = x_func(data_times) Bs = self.fake_discretized_Bs(data_times) return net_Rs_from_discrete_Bs_and_xs(Bs, xs) def acc_net_external_input_vector(self, data_times=None): if data_times is None: data_times = self.times x_func = self.solve_func() xs = x_func(data_times) Bs = self.fake_discretized_Bs(data_times) return net_Us_from_discrete_Bs_and_xs(Bs, xs) def fake_net_discretized_output(self, data_times): x_func = self.solve_func() xs = x_func(data_times) net_Fs = self.acc_net_internal_flux_matrix(data_times) net_Rs = self.acc_net_external_output_vector(data_times) net_Us = self.acc_net_external_input_vector(data_times) return xs, net_Us, net_Fs, net_Rs def fake_gross_discretized_output(self, data_times): ## prepare some fake output data #x = self.solve_single_value_old() x_func = self.solve_func() xs = x_func(data_times) gross_Fs = self.acc_gross_internal_flux_matrix(data_times) gross_Rs = self.acc_gross_external_output_vector(data_times) gross_Us = self.acc_gross_external_input_vector(data_times) return xs, gross_Us, gross_Fs, gross_Rs
{ "content_hash": "ff7b50a67b737bb3ed1c66e8ea7dd164", "timestamp": "", "source": "github", "line_count": 4422, "max_line_length": 179, "avg_line_length": 37.12618724559023, "alnum_prop": 0.5366262212801208, "repo_name": "MPIBGC-TEE/CompartmentalSystems", "id": "70910d3b0a96ee67770aaa3f4ec2e251a593418e", "size": "164172", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/CompartmentalSystems/smooth_model_run.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "895" }, { "name": "HTML", "bytes": "35548556" }, { "name": "Jupyter Notebook", "bytes": "131659124" }, { "name": "Makefile", "bytes": "8783" }, { "name": "Python", "bytes": "1119047" }, { "name": "Shell", "bytes": "2348" } ], "symlink_target": "" }
import os import sys import random import time import json import copy import errno import traceback import operator import math from functools import partial from collections import defaultdict from numbers import Number from decimal import Decimal from typing import TYPE_CHECKING, List, Optional, Tuple, Union, NamedTuple, Sequence, Dict, Any, Set from abc import ABC, abstractmethod import itertools import threading import enum from aiorpcx import timeout_after, TaskTimeout, ignore_after from .i18n import _ from .bip32 import BIP32Node, convert_bip32_intpath_to_strpath, convert_bip32_path_to_list_of_uint32 from .crypto import sha256 from . import util from .util import (NotEnoughFunds, UserCancelled, profiler, OldTaskGroup, format_satoshis, format_fee_satoshis, NoDynamicFeeEstimates, WalletFileException, BitcoinException, InvalidPassword, format_time, timestamp_to_datetime, Satoshis, Fiat, bfh, bh2u, TxMinedInfo, quantize_feerate, create_bip21_uri, OrderedDictWithIndex, parse_max_spend) from .simple_config import SimpleConfig, FEE_RATIO_HIGH_WARNING, FEERATE_WARNING_HIGH_FEE from .bitcoin import COIN, TYPE_ADDRESS from .bitcoin import is_address, address_to_script, is_minikey, relayfee, dust_threshold from .crypto import sha256d from . import keystore from .keystore import (load_keystore, Hardware_KeyStore, KeyStore, KeyStoreWithMPK, AddressIndexGeneric, CannotDerivePubkey) from .util import multisig_type from .storage import StorageEncryptionVersion, WalletStorage from .wallet_db import WalletDB from . import transaction, bitcoin, coinchooser, paymentrequest, ecc, bip32 from .transaction import (Transaction, TxInput, UnknownTxinType, TxOutput, PartialTransaction, PartialTxInput, PartialTxOutput, TxOutpoint) from .plugin import run_hook from .address_synchronizer import (AddressSynchronizer, TX_HEIGHT_LOCAL, TX_HEIGHT_UNCONF_PARENT, TX_HEIGHT_UNCONFIRMED, TX_HEIGHT_FUTURE) from .invoices import Invoice, OnchainInvoice, LNInvoice from .invoices import PR_PAID, PR_UNPAID, PR_UNKNOWN, PR_EXPIRED, PR_UNCONFIRMED, PR_TYPE_ONCHAIN, PR_TYPE_LN from .contacts import Contacts from .interface import NetworkException from .mnemonic import Mnemonic from .logging import get_logger from .lnworker import LNWallet from .paymentrequest import PaymentRequest from .util import read_json_file, write_json_file, UserFacingException if TYPE_CHECKING: from .network import Network from .exchange_rate import FxThread _logger = get_logger(__name__) TX_STATUS = [ _('Unconfirmed'), _('Unconfirmed parent'), _('Not Verified'), _('Local'), ] class BumpFeeStrategy(enum.Enum): COINCHOOSER = enum.auto() DECREASE_CHANGE = enum.auto() DECREASE_PAYMENT = enum.auto() async def _append_utxos_to_inputs(*, inputs: List[PartialTxInput], network: 'Network', pubkey: str, txin_type: str, imax: int) -> None: if txin_type in ('p2pkh', 'p2wpkh', 'p2wpkh-p2sh'): address = bitcoin.pubkey_to_address(txin_type, pubkey) scripthash = bitcoin.address_to_scripthash(address) elif txin_type == 'p2pk': script = bitcoin.public_key_to_p2pk_script(pubkey) scripthash = bitcoin.script_to_scripthash(script) else: raise Exception(f'unexpected txin_type to sweep: {txin_type}') async def append_single_utxo(item): prev_tx_raw = await network.get_transaction(item['tx_hash']) prev_tx = Transaction(prev_tx_raw) prev_txout = prev_tx.outputs()[item['tx_pos']] if scripthash != bitcoin.script_to_scripthash(prev_txout.scriptpubkey.hex()): raise Exception('scripthash mismatch when sweeping') prevout_str = item['tx_hash'] + ':%d' % item['tx_pos'] prevout = TxOutpoint.from_str(prevout_str) txin = PartialTxInput(prevout=prevout) txin.utxo = prev_tx txin.block_height = int(item['height']) txin.script_type = txin_type txin.pubkeys = [bfh(pubkey)] txin.num_sig = 1 if txin_type == 'p2wpkh-p2sh': txin.redeem_script = bfh(bitcoin.p2wpkh_nested_script(pubkey)) inputs.append(txin) u = await network.listunspent_for_scripthash(scripthash) async with OldTaskGroup() as group: for item in u: if len(inputs) >= imax: break await group.spawn(append_single_utxo(item)) async def sweep_preparations(privkeys, network: 'Network', imax=100): async def find_utxos_for_privkey(txin_type, privkey, compressed): pubkey = ecc.ECPrivkey(privkey).get_public_key_hex(compressed=compressed) await _append_utxos_to_inputs( inputs=inputs, network=network, pubkey=pubkey, txin_type=txin_type, imax=imax) keypairs[pubkey] = privkey, compressed inputs = [] # type: List[PartialTxInput] keypairs = {} async with OldTaskGroup() as group: for sec in privkeys: txin_type, privkey, compressed = bitcoin.deserialize_privkey(sec) await group.spawn(find_utxos_for_privkey(txin_type, privkey, compressed)) # do other lookups to increase support coverage if is_minikey(sec): # minikeys don't have a compressed byte # we lookup both compressed and uncompressed pubkeys await group.spawn(find_utxos_for_privkey(txin_type, privkey, not compressed)) elif txin_type == 'p2pkh': # WIF serialization does not distinguish p2pkh and p2pk # we also search for pay-to-pubkey outputs await group.spawn(find_utxos_for_privkey('p2pk', privkey, compressed)) if not inputs: raise UserFacingException(_('No inputs found.')) return inputs, keypairs async def sweep( privkeys, *, network: 'Network', config: 'SimpleConfig', to_address: str, fee: int = None, imax=100, locktime=None, tx_version=None) -> PartialTransaction: inputs, keypairs = await sweep_preparations(privkeys, network, imax) total = sum(txin.value_sats() for txin in inputs) if fee is None: outputs = [PartialTxOutput(scriptpubkey=bfh(bitcoin.address_to_script(to_address)), value=total)] tx = PartialTransaction.from_io(inputs, outputs) fee = config.estimate_fee(tx.estimated_size()) if total - fee < 0: raise Exception(_('Not enough funds on address.') + '\nTotal: %d satoshis\nFee: %d'%(total, fee)) if total - fee < dust_threshold(network): raise Exception(_('Not enough funds on address.') + '\nTotal: %d satoshis\nFee: %d\nDust Threshold: %d'%(total, fee, dust_threshold(network))) outputs = [PartialTxOutput(scriptpubkey=bfh(bitcoin.address_to_script(to_address)), value=total - fee)] if locktime is None: locktime = get_locktime_for_new_transaction(network) tx = PartialTransaction.from_io(inputs, outputs, locktime=locktime, version=tx_version) #rbf = bool(config.get('use_rbf', True)) #tx.set_rbf(rbf) tx.sign(keypairs) return tx def get_locktime_for_new_transaction(network: 'Network') -> int: # if no network or not up to date, just set locktime to zero if not network: return 0 chain = network.blockchain() if chain.is_tip_stale(): return 0 # discourage "fee sniping" locktime = chain.height() # sometimes pick locktime a bit further back, to help privacy # of setups that need more time (offline/multisig/coinjoin/...) if random.randint(0, 9) == 0: locktime = max(0, locktime - random.randint(0, 99)) return locktime class CannotBumpFee(Exception): def __str__(self): return _('Cannot bump fee') + ':\n\n' + Exception.__str__(self) class CannotDoubleSpendTx(Exception): def __str__(self): return _('Cannot cancel transaction') + ':\n\n' + Exception.__str__(self) class CannotCPFP(Exception): def __str__(self): return _('Cannot create child transaction') + ':\n\n' + Exception.__str__(self) class InternalAddressCorruption(Exception): def __str__(self): return _("Wallet file corruption detected. " "Please restore your wallet from seed, and compare the addresses in both files") class TxWalletDetails(NamedTuple): txid: Optional[str] status: str label: str can_broadcast: bool can_bump: bool can_cpfp: bool can_dscancel: bool # whether user can double-spend to self can_save_as_local: bool amount: Optional[int] fee: Optional[int] tx_mined_status: TxMinedInfo mempool_depth_bytes: Optional[int] can_remove: bool # whether user should be allowed to delete tx is_lightning_funding_tx: bool class Abstract_Wallet(AddressSynchronizer, ABC): """ Wallet classes are created to handle various address generation methods. Completion states (watching-only, single account, no seed, etc) are handled inside classes. """ LOGGING_SHORTCUT = 'w' max_change_outputs = 3 gap_limit_for_change = 10 txin_type: str wallet_type: str lnworker: Optional['LNWallet'] def __init__(self, db: WalletDB, storage: Optional[WalletStorage], *, config: SimpleConfig): if not db.is_ready_to_be_used_by_wallet(): raise Exception("storage not ready to be used by Abstract_Wallet") self.config = config assert self.config is not None, "config must not be None" self.db = db self.storage = storage # load addresses needs to be called before constructor for sanity checks db.load_addresses(self.wallet_type) self.keystore = None # type: Optional[KeyStore] # will be set by load_keystore AddressSynchronizer.__init__(self, db) # saved fields self.use_change = db.get('use_change', True) self.multiple_change = db.get('multiple_change', False) self._labels = db.get_dict('labels') self._frozen_addresses = set(db.get('frozen_addresses', [])) self._frozen_coins = db.get_dict('frozen_coins') # type: Dict[str, bool] self.fiat_value = db.get_dict('fiat_value') self.receive_requests = db.get_dict('payment_requests') # type: Dict[str, Invoice] self.invoices = db.get_dict('invoices') # type: Dict[str, Invoice] self._reserved_addresses = set(db.get('reserved_addresses', [])) self._freeze_lock = threading.Lock() # for mutating/iterating frozen_{addresses,coins} self._prepare_onchain_invoice_paid_detection() self.calc_unused_change_addresses() # save wallet type the first time if self.db.get('wallet_type') is None: self.db.put('wallet_type', self.wallet_type) self.contacts = Contacts(self.db) self._coin_price_cache = {} self.lnworker = None def save_db(self): if self.storage: self.db.write(self.storage) def save_backup(self, backup_dir): new_db = WalletDB(self.db.dump(), manual_upgrades=False) if self.lnworker: channel_backups = new_db.get_dict('imported_channel_backups') for chan_id, chan in self.lnworker.channels.items(): channel_backups[chan_id.hex()] = self.lnworker.create_channel_backup(chan_id) new_db.put('channels', None) new_db.put('lightning_privkey2', None) new_path = os.path.join(backup_dir, self.basename() + '.backup') new_storage = WalletStorage(new_path) new_storage._encryption_version = self.storage._encryption_version new_storage.pubkey = self.storage.pubkey new_db.set_modified(True) new_db.write(new_storage) return new_path def has_lightning(self) -> bool: return bool(self.lnworker) def can_have_lightning(self) -> bool: # we want static_remotekey to be a wallet address return self.txin_type == 'p2wpkh' def can_have_deterministic_lightning(self) -> bool: if not self.can_have_lightning(): return False if not self.keystore: return False return self.keystore.can_have_deterministic_lightning_xprv() def init_lightning(self, *, password) -> None: assert self.can_have_lightning() assert self.db.get('lightning_xprv') is None assert self.db.get('lightning_privkey2') is None if self.can_have_deterministic_lightning(): assert isinstance(self.keystore, keystore.BIP32_KeyStore) ln_xprv = self.keystore.get_lightning_xprv(password) self.db.put('lightning_xprv', ln_xprv) else: seed = os.urandom(32) node = BIP32Node.from_rootseed(seed, xtype='standard') ln_xprv = node.to_xprv() self.db.put('lightning_privkey2', ln_xprv) if self.network: self.network.run_from_another_thread(self.stop()) self.lnworker = LNWallet(self, ln_xprv) if self.network: self.start_network(self.network) async def stop(self): """Stop all networking and save DB to disk.""" try: async with ignore_after(5): await super().stop() if self.network: if self.lnworker: await self.lnworker.stop() self.lnworker = None finally: # even if we get cancelled if any([ks.is_requesting_to_be_rewritten_to_wallet_file for ks in self.get_keystores()]): self.save_keystore() self.save_db() def set_up_to_date(self, b): super().set_up_to_date(b) if b: self.save_db() def clear_history(self): super().clear_history() self.save_db() def start_network(self, network): AddressSynchronizer.start_network(self, network) if network: if self.lnworker: self.lnworker.start_network(network) # only start gossiping when we already have channels if self.db.get('channels'): self.network.start_gossip() def load_and_cleanup(self): self.load_keystore() self.test_addresses_sanity() super().load_and_cleanup() @abstractmethod def load_keystore(self) -> None: pass def diagnostic_name(self): return self.basename() def __str__(self): return self.basename() def get_master_public_key(self): return None def get_master_public_keys(self): return [] def basename(self) -> str: return self.storage.basename() if self.storage else 'no name' def test_addresses_sanity(self) -> None: addrs = self.get_receiving_addresses() if len(addrs) > 0: addr = str(addrs[0]) if not bitcoin.is_address(addr): neutered_addr = addr[:5] + '..' + addr[-2:] raise WalletFileException(f'The addresses in this wallet are not bitcoin addresses.\n' f'e.g. {neutered_addr} (length: {len(addr)})') def check_returned_address_for_corruption(func): def wrapper(self, *args, **kwargs): addr = func(self, *args, **kwargs) self.check_address_for_corruption(addr) return addr return wrapper def calc_unused_change_addresses(self) -> Sequence[str]: """Returns a list of change addresses to choose from, for usage in e.g. new transactions. The caller should give priority to earlier ones in the list. """ with self.lock: # We want a list of unused change addresses. # As a performance optimisation, to avoid checking all addresses every time, # we maintain a list of "not old" addresses ("old" addresses have deeply confirmed history), # and only check those. if not hasattr(self, '_not_old_change_addresses'): self._not_old_change_addresses = self.get_change_addresses() self._not_old_change_addresses = [addr for addr in self._not_old_change_addresses if not self.address_is_old(addr)] unused_addrs = [addr for addr in self._not_old_change_addresses if not self.is_used(addr) and not self.is_address_reserved(addr)] return unused_addrs def is_deterministic(self) -> bool: return self.keystore.is_deterministic() def _set_label(self, key: str, value: Optional[str]) -> None: with self.lock: if value is None: self._labels.pop(key, None) else: self._labels[key] = value def set_label(self, name: str, text: str = None) -> bool: if not name: return False changed = False with self.lock: old_text = self._labels.get(name) if text: text = text.replace("\n", " ") if old_text != text: self._labels[name] = text changed = True else: if old_text is not None: self._labels.pop(name) changed = True if changed: run_hook('set_label', self, name, text) return changed def import_labels(self, path): data = read_json_file(path) for key, value in data.items(): self.set_label(key, value) def export_labels(self, path): write_json_file(path, self.get_all_labels()) def set_fiat_value(self, txid, ccy, text, fx, value_sat): if not self.db.get_transaction(txid): return # since fx is inserting the thousands separator, # and not util, also have fx remove it text = fx.remove_thousands_separator(text) def_fiat = self.default_fiat_value(txid, fx, value_sat) formatted = fx.ccy_amount_str(def_fiat, commas=False) def_fiat_rounded = Decimal(formatted) reset = not text if not reset: try: text_dec = Decimal(text) text_dec_rounded = Decimal(fx.ccy_amount_str(text_dec, commas=False)) reset = text_dec_rounded == def_fiat_rounded except: # garbage. not resetting, but not saving either return False if reset: d = self.fiat_value.get(ccy, {}) if d and txid in d: d.pop(txid) else: # avoid saving empty dict return True else: if ccy not in self.fiat_value: self.fiat_value[ccy] = {} self.fiat_value[ccy][txid] = text return reset def get_fiat_value(self, txid, ccy): fiat_value = self.fiat_value.get(ccy, {}).get(txid) try: return Decimal(fiat_value) except: return def is_mine(self, address) -> bool: if not address: return False return bool(self.get_address_index(address)) def is_change(self, address) -> bool: if not self.is_mine(address): return False return self.get_address_index(address)[0] == 1 @abstractmethod def get_address_index(self, address: str) -> Optional[AddressIndexGeneric]: pass @abstractmethod def get_address_path_str(self, address: str) -> Optional[str]: """Returns derivation path str such as "m/0/5" to address, or None if not applicable. """ pass @abstractmethod def get_redeem_script(self, address: str) -> Optional[str]: pass @abstractmethod def get_witness_script(self, address: str) -> Optional[str]: pass @abstractmethod def get_txin_type(self, address: str) -> str: """Return script type of wallet address.""" pass def export_private_key(self, address: str, password: Optional[str]) -> str: if self.is_watching_only(): raise Exception(_("This is a watching-only wallet")) if not is_address(address): raise Exception(f"Invalid bitcoin address: {address}") if not self.is_mine(address): raise Exception(_('Address not in wallet.') + f' {address}') index = self.get_address_index(address) pk, compressed = self.keystore.get_private_key(index, password) txin_type = self.get_txin_type(address) serialized_privkey = bitcoin.serialize_privkey(pk, compressed, txin_type) return serialized_privkey def export_private_key_for_path(self, path: Union[Sequence[int], str], password: Optional[str]) -> str: raise Exception("this wallet is not deterministic") @abstractmethod def get_public_keys(self, address: str) -> Sequence[str]: pass def get_public_keys_with_deriv_info(self, address: str) -> Dict[bytes, Tuple[KeyStoreWithMPK, Sequence[int]]]: """Returns a map: pubkey -> (keystore, derivation_suffix)""" return {} def is_lightning_funding_tx(self, txid: Optional[str]) -> bool: if not self.lnworker or txid is None: return False return any([chan.funding_outpoint.txid == txid for chan in self.lnworker.channels.values()]) def get_tx_info(self, tx: Transaction) -> TxWalletDetails: tx_wallet_delta = self.get_wallet_delta(tx) is_relevant = tx_wallet_delta.is_relevant is_any_input_ismine = tx_wallet_delta.is_any_input_ismine fee = tx_wallet_delta.fee exp_n = None can_broadcast = False can_bump = False can_cpfp = False tx_hash = tx.txid() # note: txid can be None! e.g. when called from GUI tx dialog is_lightning_funding_tx = self.is_lightning_funding_tx(tx_hash) tx_we_already_have_in_db = self.db.get_transaction(tx_hash) can_save_as_local = (is_relevant and tx.txid() is not None and (tx_we_already_have_in_db is None or not tx_we_already_have_in_db.is_complete())) label = '' tx_mined_status = self.get_tx_height(tx_hash) can_remove = ((tx_mined_status.height in [TX_HEIGHT_FUTURE, TX_HEIGHT_LOCAL]) # otherwise 'height' is unreliable (typically LOCAL): and is_relevant # don't offer during common signing flow, e.g. when watch-only wallet starts creating a tx: and bool(tx_we_already_have_in_db)) can_dscancel = False if tx.is_complete(): if tx_we_already_have_in_db: label = self.get_label_for_txid(tx_hash) if tx_mined_status.height > 0: if tx_mined_status.conf: status = _("{} confirmations").format(tx_mined_status.conf) else: status = _('Not verified') elif tx_mined_status.height in (TX_HEIGHT_UNCONF_PARENT, TX_HEIGHT_UNCONFIRMED): status = _('Unconfirmed') if fee is None: fee = self.get_tx_fee(tx_hash) if fee and self.network and self.config.has_fee_mempool(): size = tx.estimated_size() fee_per_byte = fee / size exp_n = self.config.fee_to_depth(fee_per_byte) can_bump = is_any_input_ismine and not tx.is_final() can_dscancel = (is_any_input_ismine and not tx.is_final() and not all([self.is_mine(txout.address) for txout in tx.outputs()])) try: self.cpfp(tx, 0) can_cpfp = True except: can_cpfp = False else: status = _('Local') can_broadcast = self.network is not None can_bump = is_any_input_ismine and not tx.is_final() else: status = _("Signed") can_broadcast = self.network is not None else: assert isinstance(tx, PartialTransaction) s, r = tx.signature_count() status = _("Unsigned") if s == 0 else _('Partially signed') + ' (%d/%d)'%(s,r) if is_relevant: if tx_wallet_delta.is_all_input_ismine: assert fee is not None amount = tx_wallet_delta.delta + fee else: amount = tx_wallet_delta.delta else: amount = None if is_lightning_funding_tx: can_bump = False # would change txid return TxWalletDetails( txid=tx_hash, status=status, label=label, can_broadcast=can_broadcast, can_bump=can_bump, can_cpfp=can_cpfp, can_dscancel=can_dscancel, can_save_as_local=can_save_as_local, amount=amount, fee=fee, tx_mined_status=tx_mined_status, mempool_depth_bytes=exp_n, can_remove=can_remove, is_lightning_funding_tx=is_lightning_funding_tx, ) def get_spendable_coins(self, domain, *, nonlocal_only=False) -> Sequence[PartialTxInput]: confirmed_only = self.config.get('confirmed_only', False) with self._freeze_lock: frozen_addresses = self._frozen_addresses.copy() utxos = self.get_utxos(domain, excluded_addresses=frozen_addresses, mature_only=True, confirmed_funding_only=confirmed_only, nonlocal_only=nonlocal_only) utxos = [utxo for utxo in utxos if not self.is_frozen_coin(utxo)] return utxos @abstractmethod def get_receiving_addresses(self, *, slice_start=None, slice_stop=None) -> Sequence[str]: pass @abstractmethod def get_change_addresses(self, *, slice_start=None, slice_stop=None) -> Sequence[str]: pass def dummy_address(self): # first receiving address return self.get_receiving_addresses(slice_start=0, slice_stop=1)[0] def get_frozen_balance(self): with self._freeze_lock: frozen_addresses = self._frozen_addresses.copy() # note: for coins, use is_frozen_coin instead of _frozen_coins, # as latter only contains *manually* frozen ones frozen_coins = {utxo.prevout.to_str() for utxo in self.get_utxos() if self.is_frozen_coin(utxo)} if not frozen_coins: # shortcut return self.get_balance(frozen_addresses) c1, u1, x1 = self.get_balance() c2, u2, x2 = self.get_balance( excluded_addresses=frozen_addresses, excluded_coins=frozen_coins, ) return c1-c2, u1-u2, x1-x2 def balance_at_timestamp(self, domain, target_timestamp): # we assume that get_history returns items ordered by block height # we also assume that block timestamps are monotonic (which is false...!) h = self.get_history(domain=domain) balance = 0 for hist_item in h: balance = hist_item.balance if hist_item.tx_mined_status.timestamp is None or hist_item.tx_mined_status.timestamp > target_timestamp: return balance - hist_item.delta # return last balance return balance def get_onchain_history(self, *, domain=None): monotonic_timestamp = 0 for hist_item in self.get_history(domain=domain): monotonic_timestamp = max(monotonic_timestamp, (hist_item.tx_mined_status.timestamp or 999_999_999_999)) yield { 'txid': hist_item.txid, 'fee_sat': hist_item.fee, 'height': hist_item.tx_mined_status.height, 'confirmations': hist_item.tx_mined_status.conf, 'timestamp': hist_item.tx_mined_status.timestamp, 'monotonic_timestamp': monotonic_timestamp, 'incoming': True if hist_item.delta>0 else False, 'bc_value': Satoshis(hist_item.delta), 'bc_balance': Satoshis(hist_item.balance), 'date': timestamp_to_datetime(hist_item.tx_mined_status.timestamp), 'label': self.get_label_for_txid(hist_item.txid), 'txpos_in_block': hist_item.tx_mined_status.txpos, } def create_invoice(self, *, outputs: List[PartialTxOutput], message, pr, URI) -> Invoice: height=self.get_local_height() if pr: return OnchainInvoice.from_bip70_payreq(pr, height) amount = 0 for x in outputs: if parse_max_spend(x.value): amount = '!' break else: amount += x.value timestamp = None exp = None if URI: timestamp = URI.get('time') exp = URI.get('exp') timestamp = timestamp or int(time.time()) exp = exp or 0 _id = bh2u(sha256d(repr(outputs) + "%d"%timestamp))[0:10] invoice = OnchainInvoice( type=PR_TYPE_ONCHAIN, amount_sat=amount, outputs=outputs, message=message, id=_id, time=timestamp, exp=exp, bip70=None, requestor=None, height=height, ) return invoice def save_invoice(self, invoice: Invoice) -> None: key = self.get_key_for_outgoing_invoice(invoice) if not invoice.is_lightning(): assert isinstance(invoice, OnchainInvoice) if self.is_onchain_invoice_paid(invoice, 0): self.logger.info("saving invoice... but it is already paid!") with self.transaction_lock: for txout in invoice.outputs: self._invoices_from_scriptpubkey_map[txout.scriptpubkey].add(key) self.invoices[key] = invoice self.save_db() def clear_invoices(self): self.invoices.clear() self.save_db() def clear_requests(self): self.receive_requests.clear() self.save_db() def get_invoices(self): out = list(self.invoices.values()) out.sort(key=lambda x:x.time) return out def get_unpaid_invoices(self): invoices = self.get_invoices() return [x for x in invoices if self.get_invoice_status(x) != PR_PAID] def get_invoice(self, key): return self.invoices.get(key) def import_requests(self, path): data = read_json_file(path) for x in data: req = Invoice.from_json(x) self.add_payment_request(req) def export_requests(self, path): write_json_file(path, list(self.receive_requests.values())) def import_invoices(self, path): data = read_json_file(path) for x in data: invoice = Invoice.from_json(x) self.save_invoice(invoice) def export_invoices(self, path): write_json_file(path, list(self.invoices.values())) def _get_relevant_invoice_keys_for_tx(self, tx: Transaction) -> Set[str]: relevant_invoice_keys = set() with self.transaction_lock: for txout in tx.outputs(): for invoice_key in self._invoices_from_scriptpubkey_map.get(txout.scriptpubkey, set()): # note: the invoice might have been deleted since, so check now: if invoice_key in self.invoices: relevant_invoice_keys.add(invoice_key) return relevant_invoice_keys def get_relevant_invoices_for_tx(self, tx: Transaction) -> Sequence[OnchainInvoice]: invoice_keys = self._get_relevant_invoice_keys_for_tx(tx) invoices = [self.get_invoice(key) for key in invoice_keys] invoices = [inv for inv in invoices if inv] # filter out None for inv in invoices: assert isinstance(inv, OnchainInvoice), f"unexpected type {type(inv)}" return invoices def _prepare_onchain_invoice_paid_detection(self): # scriptpubkey -> list(invoice_keys) self._invoices_from_scriptpubkey_map = defaultdict(set) # type: Dict[bytes, Set[str]] for invoice_key, invoice in self.invoices.items(): if invoice.type == PR_TYPE_ONCHAIN: assert isinstance(invoice, OnchainInvoice) for txout in invoice.outputs: self._invoices_from_scriptpubkey_map[txout.scriptpubkey].add(invoice_key) def _is_onchain_invoice_paid(self, invoice: Invoice, conf: int) -> Tuple[bool, Sequence[str]]: """Returns whether on-chain invoice is satisfied, and list of relevant TXIDs.""" assert invoice.type == PR_TYPE_ONCHAIN assert isinstance(invoice, OnchainInvoice) invoice_amounts = defaultdict(int) # type: Dict[bytes, int] # scriptpubkey -> value_sats for txo in invoice.outputs: # type: PartialTxOutput invoice_amounts[txo.scriptpubkey] += 1 if parse_max_spend(txo.value) else txo.value relevant_txs = [] with self.lock, self.transaction_lock: for invoice_scriptpubkey, invoice_amt in invoice_amounts.items(): scripthash = bitcoin.script_to_scripthash(invoice_scriptpubkey.hex()) prevouts_and_values = self.db.get_prevouts_by_scripthash(scripthash) total_received = 0 for prevout, v in prevouts_and_values: tx_height = self.get_tx_height(prevout.txid.hex()) if tx_height.height > 0 and tx_height.height <= invoice.height: continue if tx_height.conf < conf: continue total_received += v relevant_txs.append(prevout.txid.hex()) # check that there is at least one TXO, and that they pay enough. # note: "at least one TXO" check is needed for zero amount invoice (e.g. OP_RETURN) if len(prevouts_and_values) == 0: return False, [] if total_received < invoice_amt: return False, [] return True, relevant_txs def is_onchain_invoice_paid(self, invoice: Invoice, conf: int) -> bool: return self._is_onchain_invoice_paid(invoice, conf)[0] def _maybe_set_tx_label_based_on_invoices(self, tx: Transaction) -> bool: # note: this is not done in 'get_default_label' as that would require deserializing each tx tx_hash = tx.txid() labels = [] for invoice in self.get_relevant_invoices_for_tx(tx): if invoice.message: labels.append(invoice.message) if labels and not self._labels.get(tx_hash, ''): self.set_label(tx_hash, "; ".join(labels)) return bool(labels) def add_transaction(self, tx, *, allow_unrelated=False): is_known = bool(self.db.get_transaction(tx.txid())) tx_was_added = super().add_transaction(tx, allow_unrelated=allow_unrelated) if tx_was_added and not is_known: self._maybe_set_tx_label_based_on_invoices(tx) if self.lnworker: self.lnworker.maybe_add_backup_from_tx(tx) return tx_was_added @profiler def get_full_history(self, fx=None, *, onchain_domain=None, include_lightning=True): transactions_tmp = OrderedDictWithIndex() # add on-chain txns onchain_history = self.get_onchain_history(domain=onchain_domain) for tx_item in onchain_history: txid = tx_item['txid'] transactions_tmp[txid] = tx_item # add lnworker onchain transactions lnworker_history = self.lnworker.get_onchain_history() if self.lnworker and include_lightning else {} for txid, item in lnworker_history.items(): if txid in transactions_tmp: tx_item = transactions_tmp[txid] tx_item['group_id'] = item.get('group_id') # for swaps tx_item['label'] = item['label'] tx_item['type'] = item['type'] ln_value = Decimal(item['amount_msat']) / 1000 # for channel open/close tx tx_item['ln_value'] = Satoshis(ln_value) else: if item['type'] == 'swap': # swap items do not have all the fields. We can skip skip them # because they will eventually be in onchain_history # TODO: use attr.s objects instead of dicts continue transactions_tmp[txid] = item ln_value = Decimal(item['amount_msat']) / 1000 # for channel open/close tx item['ln_value'] = Satoshis(ln_value) # add lightning_transactions lightning_history = self.lnworker.get_lightning_history() if self.lnworker and include_lightning else {} for tx_item in lightning_history.values(): txid = tx_item.get('txid') ln_value = Decimal(tx_item['amount_msat']) / 1000 tx_item['lightning'] = True tx_item['ln_value'] = Satoshis(ln_value) key = tx_item.get('txid') or tx_item['payment_hash'] transactions_tmp[key] = tx_item # sort on-chain and LN stuff into new dict, by timestamp # (we rely on this being a *stable* sort) transactions = OrderedDictWithIndex() for k, v in sorted(list(transactions_tmp.items()), key=lambda x: x[1].get('monotonic_timestamp') or x[1].get('timestamp') or float('inf')): transactions[k] = v now = time.time() balance = 0 for item in transactions.values(): # add on-chain and lightning values value = Decimal(0) if item.get('bc_value'): value += item['bc_value'].value if item.get('ln_value'): value += item.get('ln_value').value # note: 'value' and 'balance' has msat precision (as LN has msat precision) item['value'] = Satoshis(value) balance += value item['balance'] = Satoshis(balance) if fx and fx.is_enabled() and fx.get_history_config(): txid = item.get('txid') if not item.get('lightning') and txid: fiat_fields = self.get_tx_item_fiat(tx_hash=txid, amount_sat=value, fx=fx, tx_fee=item['fee_sat']) item.update(fiat_fields) else: timestamp = item['timestamp'] or now fiat_value = value / Decimal(bitcoin.COIN) * fx.timestamp_rate(timestamp) item['fiat_value'] = Fiat(fiat_value, fx.ccy) item['fiat_default'] = True return transactions @profiler def get_detailed_history( self, from_timestamp=None, to_timestamp=None, fx=None, show_addresses=False, from_height=None, to_height=None): # History with capital gains, using utxo pricing # FIXME: Lightning capital gains would requires FIFO if (from_timestamp is not None or to_timestamp is not None) \ and (from_height is not None or to_height is not None): raise Exception('timestamp and block height based filtering cannot be used together') show_fiat = fx and fx.is_enabled() and fx.get_history_config() out = [] income = 0 expenditures = 0 capital_gains = Decimal(0) fiat_income = Decimal(0) fiat_expenditures = Decimal(0) now = time.time() for item in self.get_onchain_history(): timestamp = item['timestamp'] if from_timestamp and (timestamp or now) < from_timestamp: continue if to_timestamp and (timestamp or now) >= to_timestamp: continue height = item['height'] if from_height is not None and from_height > height > 0: continue if to_height is not None and (height >= to_height or height <= 0): continue tx_hash = item['txid'] tx = self.db.get_transaction(tx_hash) tx_fee = item['fee_sat'] item['fee'] = Satoshis(tx_fee) if tx_fee is not None else None if show_addresses: item['inputs'] = list(map(lambda x: x.to_json(), tx.inputs())) item['outputs'] = list(map(lambda x: {'address': x.get_ui_address_str(), 'value': Satoshis(x.value)}, tx.outputs())) # fixme: use in and out values value = item['bc_value'].value if value < 0: expenditures += -value else: income += value # fiat computations if show_fiat: fiat_fields = self.get_tx_item_fiat(tx_hash=tx_hash, amount_sat=value, fx=fx, tx_fee=tx_fee) fiat_value = fiat_fields['fiat_value'].value item.update(fiat_fields) if value < 0: capital_gains += fiat_fields['capital_gain'].value fiat_expenditures += -fiat_value else: fiat_income += fiat_value out.append(item) # add summary if out: first_item = out[0] last_item = out[-1] if from_height or to_height: start_height = from_height end_height = to_height else: start_height = first_item['height'] - 1 end_height = last_item['height'] b = first_item['bc_balance'].value v = first_item['bc_value'].value start_balance = None if b is None or v is None else b - v end_balance = last_item['bc_balance'].value if from_timestamp is not None and to_timestamp is not None: start_timestamp = from_timestamp end_timestamp = to_timestamp else: start_timestamp = first_item['timestamp'] end_timestamp = last_item['timestamp'] start_coins = self.get_utxos( domain=None, block_height=start_height, confirmed_funding_only=True, confirmed_spending_only=True, nonlocal_only=True) end_coins = self.get_utxos( domain=None, block_height=end_height, confirmed_funding_only=True, confirmed_spending_only=True, nonlocal_only=True) def summary_point(timestamp, height, balance, coins): date = timestamp_to_datetime(timestamp) out = { 'date': date, 'block_height': height, 'BTC_balance': Satoshis(balance), } if show_fiat: ap = self.acquisition_price(coins, fx.timestamp_rate, fx.ccy) lp = self.liquidation_price(coins, fx.timestamp_rate, timestamp) out['acquisition_price'] = Fiat(ap, fx.ccy) out['liquidation_price'] = Fiat(lp, fx.ccy) out['unrealized_gains'] = Fiat(lp - ap, fx.ccy) out['fiat_balance'] = Fiat(fx.historical_value(balance, date), fx.ccy) out['BTC_fiat_price'] = Fiat(fx.historical_value(COIN, date), fx.ccy) return out summary_start = summary_point(start_timestamp, start_height, start_balance, start_coins) summary_end = summary_point(end_timestamp, end_height, end_balance, end_coins) flow = { 'BTC_incoming': Satoshis(income), 'BTC_outgoing': Satoshis(expenditures) } if show_fiat: flow['fiat_currency'] = fx.ccy flow['fiat_incoming'] = Fiat(fiat_income, fx.ccy) flow['fiat_outgoing'] = Fiat(fiat_expenditures, fx.ccy) flow['realized_capital_gains'] = Fiat(capital_gains, fx.ccy) summary = { 'begin': summary_start, 'end': summary_end, 'flow': flow, } else: summary = {} return { 'transactions': out, 'summary': summary } def acquisition_price(self, coins, price_func, ccy): return Decimal(sum(self.coin_price(coin.prevout.txid.hex(), price_func, ccy, self.get_txin_value(coin)) for coin in coins)) def liquidation_price(self, coins, price_func, timestamp): p = price_func(timestamp) return sum([coin.value_sats() for coin in coins]) * p / Decimal(COIN) def default_fiat_value(self, tx_hash, fx, value_sat): return value_sat / Decimal(COIN) * self.price_at_timestamp(tx_hash, fx.timestamp_rate) def get_tx_item_fiat( self, *, tx_hash: str, amount_sat: int, fx: 'FxThread', tx_fee: Optional[int], ) -> Dict[str, Any]: item = {} fiat_value = self.get_fiat_value(tx_hash, fx.ccy) fiat_default = fiat_value is None fiat_rate = self.price_at_timestamp(tx_hash, fx.timestamp_rate) fiat_value = fiat_value if fiat_value is not None else self.default_fiat_value(tx_hash, fx, amount_sat) fiat_fee = tx_fee / Decimal(COIN) * fiat_rate if tx_fee is not None else None item['fiat_currency'] = fx.ccy item['fiat_rate'] = Fiat(fiat_rate, fx.ccy) item['fiat_value'] = Fiat(fiat_value, fx.ccy) item['fiat_fee'] = Fiat(fiat_fee, fx.ccy) if fiat_fee is not None else None item['fiat_default'] = fiat_default if amount_sat < 0: acquisition_price = - amount_sat / Decimal(COIN) * self.average_price(tx_hash, fx.timestamp_rate, fx.ccy) liquidation_price = - fiat_value item['acquisition_price'] = Fiat(acquisition_price, fx.ccy) cg = liquidation_price - acquisition_price item['capital_gain'] = Fiat(cg, fx.ccy) return item def get_label(self, key: str) -> str: # key is typically: address / txid / LN-payment-hash-hex return self._labels.get(key) or '' def get_label_for_txid(self, tx_hash: str) -> str: return self._labels.get(tx_hash) or self._get_default_label_for_txid(tx_hash) def _get_default_label_for_txid(self, tx_hash: str) -> str: # if no inputs are ismine, concat labels of output addresses if not self.db.get_txi_addresses(tx_hash): labels = [] for addr in self.db.get_txo_addresses(tx_hash): label = self._labels.get(addr) if label: labels.append(label) return ', '.join(labels) return '' def get_all_labels(self) -> Dict[str, str]: with self.lock: return copy.copy(self._labels) def get_tx_status(self, tx_hash, tx_mined_info: TxMinedInfo): extra = [] height = tx_mined_info.height conf = tx_mined_info.conf timestamp = tx_mined_info.timestamp if height == TX_HEIGHT_FUTURE: assert conf < 0, conf num_blocks_remainining = -conf return 2, f'in {num_blocks_remainining} blocks' if conf == 0: tx = self.db.get_transaction(tx_hash) if not tx: return 2, 'unknown' is_final = tx and tx.is_final() if not is_final: extra.append('rbf') fee = self.get_tx_fee(tx_hash) if fee is not None: size = tx.estimated_size() fee_per_byte = fee / size extra.append(format_fee_satoshis(fee_per_byte) + ' sat/b') if fee is not None and height in (TX_HEIGHT_UNCONF_PARENT, TX_HEIGHT_UNCONFIRMED) \ and self.config.has_fee_mempool(): exp_n = self.config.fee_to_depth(fee_per_byte) if exp_n is not None: extra.append('%.2f MB'%(exp_n/1000000)) if height == TX_HEIGHT_LOCAL: status = 3 elif height == TX_HEIGHT_UNCONF_PARENT: status = 1 elif height == TX_HEIGHT_UNCONFIRMED: status = 0 else: status = 2 # not SPV verified else: status = 3 + min(conf, 6) time_str = format_time(timestamp) if timestamp else _("unknown") status_str = TX_STATUS[status] if status < 4 else time_str if extra: status_str += ' [%s]'%(', '.join(extra)) return status, status_str def relayfee(self): return relayfee(self.network) def dust_threshold(self): return dust_threshold(self.network) def get_unconfirmed_base_tx_for_batching(self) -> Optional[Transaction]: candidate = None for hist_item in self.get_history(): # tx should not be mined yet if hist_item.tx_mined_status.conf > 0: continue # conservative future proofing of code: only allow known unconfirmed types if hist_item.tx_mined_status.height not in (TX_HEIGHT_UNCONFIRMED, TX_HEIGHT_UNCONF_PARENT, TX_HEIGHT_LOCAL): continue # tx should be "outgoing" from wallet if hist_item.delta >= 0: continue tx = self.db.get_transaction(hist_item.txid) if not tx: continue # is_mine outputs should not be spent yet # to avoid cancelling our own dependent transactions txid = tx.txid() if any([self.is_mine(o.address) and self.db.get_spent_outpoint(txid, output_idx) for output_idx, o in enumerate(tx.outputs())]): continue # all inputs should be is_mine if not all([self.is_mine(self.get_txin_address(txin)) for txin in tx.inputs()]): continue # do not mutate LN funding txs, as that would change their txid if self.is_lightning_funding_tx(txid): continue # tx must have opted-in for RBF (even if local, for consistency) if tx.is_final(): continue # prefer txns already in mempool (vs local) if hist_item.tx_mined_status.height == TX_HEIGHT_LOCAL: candidate = tx continue return tx return candidate def get_change_addresses_for_new_transaction( self, preferred_change_addr=None, *, allow_reusing_used_change_addrs: bool = True, ) -> List[str]: change_addrs = [] if preferred_change_addr: if isinstance(preferred_change_addr, (list, tuple)): change_addrs = list(preferred_change_addr) else: change_addrs = [preferred_change_addr] elif self.use_change: # Recalc and get unused change addresses addrs = self.calc_unused_change_addresses() # New change addresses are created only after a few # confirmations. if addrs: # if there are any unused, select all change_addrs = addrs else: # if there are none, take one randomly from the last few if not allow_reusing_used_change_addrs: return [] addrs = self.get_change_addresses(slice_start=-self.gap_limit_for_change) change_addrs = [random.choice(addrs)] if addrs else [] for addr in change_addrs: assert is_address(addr), f"not valid bitcoin address: {addr}" # note that change addresses are not necessarily ismine # in which case this is a no-op self.check_address_for_corruption(addr) max_change = self.max_change_outputs if self.multiple_change else 1 return change_addrs[:max_change] def get_single_change_address_for_new_transaction( self, preferred_change_addr=None, *, allow_reusing_used_change_addrs: bool = True, ) -> Optional[str]: addrs = self.get_change_addresses_for_new_transaction( preferred_change_addr=preferred_change_addr, allow_reusing_used_change_addrs=allow_reusing_used_change_addrs, ) if addrs: return addrs[0] return None @check_returned_address_for_corruption def get_new_sweep_address_for_channel(self) -> str: # Recalc and get unused change addresses addrs = self.calc_unused_change_addresses() if addrs: selected_addr = addrs[0] else: # if there are none, take one randomly from the last few addrs = self.get_change_addresses(slice_start=-self.gap_limit_for_change) if addrs: selected_addr = random.choice(addrs) else: # fallback for e.g. imported wallets selected_addr = self.get_receiving_address() assert is_address(selected_addr), f"not valid bitcoin address: {selected_addr}" return selected_addr def make_unsigned_transaction( self, *, coins: Sequence[PartialTxInput], outputs: List[PartialTxOutput], fee=None, change_addr: str = None, is_sweep=False, rbf=False) -> PartialTransaction: if not coins: # any bitcoin tx must have at least 1 input by consensus raise NotEnoughFunds() if any([c.already_has_some_signatures() for c in coins]): raise Exception("Some inputs already contain signatures!") # prevent side-effect with '!' outputs = copy.deepcopy(outputs) # check outputs i_max = [] i_max_sum = 0 for i, o in enumerate(outputs): weight = parse_max_spend(o.value) if weight: i_max_sum += weight i_max.append((weight, i)) if fee is None and self.config.fee_per_kb() is None: raise NoDynamicFeeEstimates() for item in coins: self.add_input_info(item) # Fee estimator if fee is None: fee_estimator = self.config.estimate_fee elif isinstance(fee, Number): fee_estimator = lambda size: fee elif callable(fee): fee_estimator = fee else: raise Exception(f'Invalid argument fee: {fee}') if len(i_max) == 0: # Let the coin chooser select the coins to spend coin_chooser = coinchooser.get_coin_chooser(self.config) # If there is an unconfirmed RBF tx, merge with it base_tx = self.get_unconfirmed_base_tx_for_batching() if self.config.get('batch_rbf', False) and base_tx: # make sure we don't try to spend change from the tx-to-be-replaced: coins = [c for c in coins if c.prevout.txid.hex() != base_tx.txid()] is_local = self.get_tx_height(base_tx.txid()).height == TX_HEIGHT_LOCAL base_tx = PartialTransaction.from_tx(base_tx) base_tx.add_info_from_wallet(self) base_tx_fee = base_tx.get_fee() relayfeerate = Decimal(self.relayfee()) / 1000 original_fee_estimator = fee_estimator def fee_estimator(size: Union[int, float, Decimal]) -> int: size = Decimal(size) lower_bound = base_tx_fee + round(size * relayfeerate) lower_bound = lower_bound if not is_local else 0 return int(max(lower_bound, original_fee_estimator(size))) txi = base_tx.inputs() txo = list(filter(lambda o: not self.is_change(o.address), base_tx.outputs())) old_change_addrs = [o.address for o in base_tx.outputs() if self.is_change(o.address)] else: txi = [] txo = [] old_change_addrs = [] # change address. if empty, coin_chooser will set it change_addrs = self.get_change_addresses_for_new_transaction(change_addr or old_change_addrs) tx = coin_chooser.make_tx( coins=coins, inputs=txi, outputs=list(outputs) + txo, change_addrs=change_addrs, fee_estimator_vb=fee_estimator, dust_threshold=self.dust_threshold()) else: # "spend max" branch # note: This *will* spend inputs with negative effective value (if there are any). # Given as the user is spending "max", and so might be abandoning the wallet, # try to include all UTXOs, otherwise leftover might remain in the UTXO set # forever. see #5433 # note: Actually, it might be the case that not all UTXOs from the wallet are # being spent if the user manually selected UTXOs. sendable = sum(map(lambda c: c.value_sats(), coins)) for (_,i) in i_max: outputs[i].value = 0 tx = PartialTransaction.from_io(list(coins), list(outputs)) fee = fee_estimator(tx.estimated_size()) amount = sendable - tx.output_value() - fee if amount < 0: raise NotEnoughFunds() distr_amount = 0 for (weight, i) in i_max: val = int((amount/i_max_sum) * weight) outputs[i].value = val distr_amount += val (x,i) = i_max[-1] outputs[i].value += (amount - distr_amount) tx = PartialTransaction.from_io(list(coins), list(outputs)) # Timelock tx to current height. tx.locktime = get_locktime_for_new_transaction(self.network) tx.set_rbf(rbf) tx.add_info_from_wallet(self) run_hook('make_unsigned_transaction', self, tx) return tx def mktx(self, *, outputs: List[PartialTxOutput], password=None, fee=None, change_addr=None, domain=None, rbf=False, nonlocal_only=False, tx_version=None, sign=True) -> PartialTransaction: coins = self.get_spendable_coins(domain, nonlocal_only=nonlocal_only) tx = self.make_unsigned_transaction( coins=coins, outputs=outputs, fee=fee, change_addr=change_addr, rbf=rbf) if tx_version is not None: tx.version = tx_version if sign: self.sign_transaction(tx, password) return tx def is_frozen_address(self, addr: str) -> bool: return addr in self._frozen_addresses def is_frozen_coin(self, utxo: PartialTxInput) -> bool: prevout_str = utxo.prevout.to_str() frozen = self._frozen_coins.get(prevout_str, None) # note: there are three possible states for 'frozen': # True/False if the user explicitly set it, # None otherwise if frozen is None: return self._is_coin_small_and_unconfirmed(utxo) return bool(frozen) def _is_coin_small_and_unconfirmed(self, utxo: PartialTxInput) -> bool: """If true, the coin should not be spent. The idea here is that an attacker might send us a UTXO in a large low-fee unconfirmed tx that will ~never confirm. If we spend it as part of a tx ourselves, that too will not confirm (unless we use a high fee, but that might not be worth it for a small value UTXO). In particular, this test triggers for large "dusting transactions" that are used for advertising purposes by some entities. see #6960 """ # confirmed UTXOs are fine; check this first for performance: block_height = utxo.block_height assert block_height is not None if block_height > 0: return False # exempt large value UTXOs value_sats = utxo.value_sats() assert value_sats is not None threshold = self.config.get('unconf_utxo_freeze_threshold', 5_000) if value_sats >= threshold: return False # if funding tx has any is_mine input, then UTXO is fine funding_tx = self.db.get_transaction(utxo.prevout.txid.hex()) if funding_tx is None: # we should typically have the funding tx available; # might not have it e.g. while not up_to_date return True if any(self.is_mine(self.get_txin_address(txin)) for txin in funding_tx.inputs()): return False return True def set_frozen_state_of_addresses(self, addrs: Sequence[str], freeze: bool) -> bool: """Set frozen state of the addresses to FREEZE, True or False""" if all(self.is_mine(addr) for addr in addrs): with self._freeze_lock: if freeze: self._frozen_addresses |= set(addrs) else: self._frozen_addresses -= set(addrs) self.db.put('frozen_addresses', list(self._frozen_addresses)) return True return False def set_frozen_state_of_coins(self, utxos: Sequence[str], freeze: bool) -> None: """Set frozen state of the utxos to FREEZE, True or False""" # basic sanity check that input is not garbage: (see if raises) [TxOutpoint.from_str(utxo) for utxo in utxos] with self._freeze_lock: for utxo in utxos: self._frozen_coins[utxo] = bool(freeze) def is_address_reserved(self, addr: str) -> bool: # note: atm 'reserved' status is only taken into consideration for 'change addresses' return addr in self._reserved_addresses def set_reserved_state_of_address(self, addr: str, *, reserved: bool) -> None: if not self.is_mine(addr): return with self.lock: if reserved: self._reserved_addresses.add(addr) else: self._reserved_addresses.discard(addr) self.db.put('reserved_addresses', list(self._reserved_addresses)) def can_export(self): return not self.is_watching_only() and hasattr(self.keystore, 'get_private_key') def address_is_old(self, address: str, *, req_conf: int = 3) -> bool: """Returns whether address has any history that is deeply confirmed. Used for reorg-safe(ish) gap limit roll-forward. """ max_conf = -1 h = self.db.get_addr_history(address) needs_spv_check = not self.config.get("skipmerklecheck", False) for tx_hash, tx_height in h: if needs_spv_check: tx_age = self.get_tx_height(tx_hash).conf else: if tx_height <= 0: tx_age = 0 else: tx_age = self.get_local_height() - tx_height + 1 max_conf = max(max_conf, tx_age) return max_conf >= req_conf def bump_fee( self, *, tx: Transaction, txid: str = None, new_fee_rate: Union[int, float, Decimal], coins: Sequence[PartialTxInput] = None, strategies: Sequence[BumpFeeStrategy] = None, ) -> PartialTransaction: """Increase the miner fee of 'tx'. 'new_fee_rate' is the target min rate in sat/vbyte 'coins' is a list of UTXOs we can choose from as potential new inputs to be added """ txid = txid or tx.txid() assert txid assert tx.txid() in (None, txid) if not isinstance(tx, PartialTransaction): tx = PartialTransaction.from_tx(tx) assert isinstance(tx, PartialTransaction) tx.remove_signatures() if tx.is_final(): raise CannotBumpFee(_('Transaction is final')) new_fee_rate = quantize_feerate(new_fee_rate) # strip excess precision try: # note: this might download input utxos over network tx.add_info_from_wallet(self, ignore_network_issues=False) except NetworkException as e: raise CannotBumpFee(repr(e)) old_tx_size = tx.estimated_size() old_fee = tx.get_fee() assert old_fee is not None old_fee_rate = old_fee / old_tx_size # sat/vbyte if new_fee_rate <= old_fee_rate: raise CannotBumpFee(_("The new fee rate needs to be higher than the old fee rate.")) if not strategies: strategies = [BumpFeeStrategy.COINCHOOSER, BumpFeeStrategy.DECREASE_CHANGE] tx_new = None exc = None for strat in strategies: try: if strat == BumpFeeStrategy.COINCHOOSER: tx_new = self._bump_fee_through_coinchooser( tx=tx, txid=txid, new_fee_rate=new_fee_rate, coins=coins, ) elif strat == BumpFeeStrategy.DECREASE_CHANGE: tx_new = self._bump_fee_through_decreasing_change( tx=tx, new_fee_rate=new_fee_rate) elif strat == BumpFeeStrategy.DECREASE_PAYMENT: tx_new = self._bump_fee_through_decreasing_payment( tx=tx, new_fee_rate=new_fee_rate) else: raise NotImplementedError(f"unexpected strategy: {strat}") except CannotBumpFee as e: exc = e else: strat_used = strat break if tx_new is None: assert exc raise exc # all strategies failed, re-raise last exception target_min_fee = new_fee_rate * tx_new.estimated_size() actual_fee = tx_new.get_fee() if actual_fee + 1 < target_min_fee: raise CannotBumpFee( f"bump_fee fee target was not met (strategy: {strat_used}). " f"got {actual_fee}, expected >={target_min_fee}. " f"target rate was {new_fee_rate}") tx_new.locktime = get_locktime_for_new_transaction(self.network) tx_new.set_rbf(True) tx_new.add_info_from_wallet(self) return tx_new def _bump_fee_through_coinchooser( self, *, tx: PartialTransaction, txid: str, new_fee_rate: Union[int, Decimal], coins: Sequence[PartialTxInput] = None, ) -> PartialTransaction: """Increase the miner fee of 'tx'. - keeps all inputs - keeps all not is_mine outputs, - allows adding new inputs """ assert txid tx = copy.deepcopy(tx) tx.add_info_from_wallet(self) assert tx.get_fee() is not None old_inputs = list(tx.inputs()) old_outputs = list(tx.outputs()) # change address old_change_addrs = [o.address for o in old_outputs if self.is_change(o.address)] change_addrs = self.get_change_addresses_for_new_transaction(old_change_addrs) # which outputs to keep? if old_change_addrs: fixed_outputs = list(filter(lambda o: not self.is_change(o.address), old_outputs)) else: if all(self.is_mine(o.address) for o in old_outputs): # all outputs are is_mine and none of them are change. # we bail out as it's unclear what the user would want! # the coinchooser bump fee method is probably not a good idea in this case raise CannotBumpFee(_('All outputs are non-change is_mine')) old_not_is_mine = list(filter(lambda o: not self.is_mine(o.address), old_outputs)) if old_not_is_mine: fixed_outputs = old_not_is_mine else: fixed_outputs = old_outputs if not fixed_outputs: raise CannotBumpFee(_('Could not figure out which outputs to keep')) if coins is None: coins = self.get_spendable_coins(None) # make sure we don't try to spend output from the tx-to-be-replaced: coins = [c for c in coins if c.prevout.txid.hex() != txid] for item in coins: self.add_input_info(item) def fee_estimator(size): return self.config.estimate_fee_for_feerate(fee_per_kb=new_fee_rate*1000, size=size) coin_chooser = coinchooser.get_coin_chooser(self.config) try: return coin_chooser.make_tx( coins=coins, inputs=old_inputs, outputs=fixed_outputs, change_addrs=change_addrs, fee_estimator_vb=fee_estimator, dust_threshold=self.dust_threshold()) except NotEnoughFunds as e: raise CannotBumpFee(e) def _bump_fee_through_decreasing_change( self, *, tx: PartialTransaction, new_fee_rate: Union[int, Decimal], ) -> PartialTransaction: """Increase the miner fee of 'tx'. - keeps all inputs - no new inputs are added - allows decreasing and removing outputs (change is decreased first) This is less "safe" than "coinchooser" method as it might end up decreasing e.g. a payment to a merchant; but e.g. if the user has sent "Max" previously, this is the only way to RBF. """ tx = copy.deepcopy(tx) tx.add_info_from_wallet(self) assert tx.get_fee() is not None inputs = tx.inputs() outputs = tx._outputs # note: we will mutate this directly # use own outputs s = list(filter(lambda o: self.is_mine(o.address), outputs)) # ... unless there is none if not s: s = outputs x_fee = run_hook('get_tx_extra_fee', self, tx) if x_fee: x_fee_address, x_fee_amount = x_fee s = list(filter(lambda o: o.address != x_fee_address, s)) if not s: raise CannotBumpFee('No outputs at all??') # prioritize low value outputs, to get rid of dust s = sorted(s, key=lambda o: o.value) for o in s: target_fee = int(math.ceil(tx.estimated_size() * new_fee_rate)) delta = target_fee - tx.get_fee() i = outputs.index(o) if o.value - delta >= self.dust_threshold(): new_output_value = o.value - delta assert isinstance(new_output_value, int) outputs[i].value = new_output_value delta = 0 break else: del outputs[i] # note: we mutated the outputs of tx, which will affect # tx.estimated_size() in the next iteration if delta > 0: raise CannotBumpFee(_('Could not find suitable outputs')) return PartialTransaction.from_io(inputs, outputs) def _bump_fee_through_decreasing_payment( self, *, tx: PartialTransaction, new_fee_rate: Union[int, Decimal], ) -> PartialTransaction: """Increase the miner fee of 'tx'. - keeps all inputs - no new inputs are added - decreases payment outputs (not change!). Each non-ismine output is decreased proportionally to their byte-size. """ tx = copy.deepcopy(tx) tx.add_info_from_wallet(self) assert tx.get_fee() is not None inputs = tx.inputs() outputs = tx.outputs() # select non-ismine outputs s = [(idx, out) for (idx, out) in enumerate(outputs) if not self.is_mine(out.address)] # exempt 2fa fee output if present x_fee = run_hook('get_tx_extra_fee', self, tx) if x_fee: x_fee_address, x_fee_amount = x_fee s = [(idx, out) for (idx, out) in s if out.address != x_fee_address] if not s: raise CannotBumpFee("Cannot find payment output") del_out_idxs = set() tx_size = tx.estimated_size() cur_fee = tx.get_fee() # Main loop. Each iteration decreases value of all selected outputs. # The number of iterations is bounded by len(s) as only the final iteration # can *not remove* any output. for __ in range(len(s) + 1): target_fee = int(math.ceil(tx_size * new_fee_rate)) delta_total = target_fee - cur_fee if delta_total <= 0: break out_size_total = sum(Transaction.estimated_output_size_for_script(out.scriptpubkey.hex()) for (idx, out) in s if idx not in del_out_idxs) for idx, out in s: out_size = Transaction.estimated_output_size_for_script(out.scriptpubkey.hex()) delta = int(math.ceil(delta_total * out_size / out_size_total)) if out.value - delta >= self.dust_threshold(): new_output_value = out.value - delta assert isinstance(new_output_value, int) outputs[idx].value = new_output_value cur_fee += delta else: # remove output tx_size -= out_size cur_fee += out.value del_out_idxs.add(idx) if delta_total > 0: raise CannotBumpFee(_('Could not find suitable outputs')) outputs = [out for (idx, out) in enumerate(outputs) if idx not in del_out_idxs] return PartialTransaction.from_io(inputs, outputs) def cpfp(self, tx: Transaction, fee: int) -> Optional[PartialTransaction]: txid = tx.txid() for i, o in enumerate(tx.outputs()): address, value = o.address, o.value if self.is_mine(address): break else: raise CannotCPFP(_("Could not find suitable output")) coins = self.get_addr_utxo(address) item = coins.get(TxOutpoint.from_str(txid+':%d'%i)) if not item: raise CannotCPFP(_("Could not find coins for output")) inputs = [item] out_address = (self.get_single_change_address_for_new_transaction(allow_reusing_used_change_addrs=False) or self.get_unused_address() or address) output_value = value - fee if output_value < self.dust_threshold(): raise CannotCPFP(_("The output value remaining after fee is too low.")) outputs = [PartialTxOutput.from_address_and_value(out_address, output_value)] locktime = get_locktime_for_new_transaction(self.network) tx_new = PartialTransaction.from_io(inputs, outputs, locktime=locktime) tx_new.set_rbf(True) tx_new.add_info_from_wallet(self) return tx_new def dscancel( self, *, tx: Transaction, new_fee_rate: Union[int, float, Decimal] ) -> PartialTransaction: """Double-Spend-Cancel: cancel an unconfirmed tx by double-spending its inputs, paying ourselves. 'new_fee_rate' is the target min rate in sat/vbyte """ if not isinstance(tx, PartialTransaction): tx = PartialTransaction.from_tx(tx) assert isinstance(tx, PartialTransaction) tx.remove_signatures() if tx.is_final(): raise CannotDoubleSpendTx(_('Transaction is final')) new_fee_rate = quantize_feerate(new_fee_rate) # strip excess precision try: # note: this might download input utxos over network tx.add_info_from_wallet(self, ignore_network_issues=False) except NetworkException as e: raise CannotDoubleSpendTx(repr(e)) old_tx_size = tx.estimated_size() old_fee = tx.get_fee() assert old_fee is not None old_fee_rate = old_fee / old_tx_size # sat/vbyte if new_fee_rate <= old_fee_rate: raise CannotDoubleSpendTx(_("The new fee rate needs to be higher than the old fee rate.")) # grab all ismine inputs inputs = [txin for txin in tx.inputs() if self.is_mine(self.get_txin_address(txin))] value = sum([txin.value_sats() for txin in inputs]) # figure out output address old_change_addrs = [o.address for o in tx.outputs() if self.is_mine(o.address)] out_address = (self.get_single_change_address_for_new_transaction(old_change_addrs) or self.get_receiving_address()) locktime = get_locktime_for_new_transaction(self.network) outputs = [PartialTxOutput.from_address_and_value(out_address, value)] tx_new = PartialTransaction.from_io(inputs, outputs, locktime=locktime) new_tx_size = tx_new.estimated_size() new_fee = max( new_fee_rate * new_tx_size, old_fee + self.relayfee() * new_tx_size / Decimal(1000), # BIP-125 rules 3 and 4 ) new_fee = int(math.ceil(new_fee)) output_value = value - new_fee if output_value < self.dust_threshold(): raise CannotDoubleSpendTx(_("The output value remaining after fee is too low.")) outputs = [PartialTxOutput.from_address_and_value(out_address, value - new_fee)] tx_new = PartialTransaction.from_io(inputs, outputs, locktime=locktime) tx_new.set_rbf(True) tx_new.add_info_from_wallet(self) return tx_new @abstractmethod def _add_input_sig_info(self, txin: PartialTxInput, address: str, *, only_der_suffix: bool) -> None: pass def _add_txinout_derivation_info(self, txinout: Union[PartialTxInput, PartialTxOutput], address: str, *, only_der_suffix: bool) -> None: pass # implemented by subclasses def _add_input_utxo_info( self, txin: PartialTxInput, *, address: str = None, ignore_network_issues: bool = True, ) -> None: # We prefer to include UTXO (full tx) for every input. # We cannot include UTXO if the prev tx is not signed yet though (chain of unsigned txs), # in which case we might include a WITNESS_UTXO. address = address or txin.address if txin.witness_utxo is None and txin.is_segwit() and address: received, spent = self.get_addr_io(address) item = received.get(txin.prevout.to_str()) if item: txin_value = item[1] txin.witness_utxo = TxOutput.from_address_and_value(address, txin_value) if txin.utxo is None: txin.utxo = self.get_input_tx(txin.prevout.txid.hex(), ignore_network_issues=ignore_network_issues) txin.ensure_there_is_only_one_utxo() def _learn_derivation_path_for_address_from_txinout(self, txinout: Union[PartialTxInput, PartialTxOutput], address: str) -> bool: """Tries to learn the derivation path for an address (potentially beyond gap limit) using data available in given txin/txout. Returns whether the address was found to be is_mine. """ return False # implemented by subclasses def add_input_info( self, txin: PartialTxInput, *, only_der_suffix: bool = False, ignore_network_issues: bool = True, ) -> None: address = self.get_txin_address(txin) # note: we add input utxos regardless of is_mine self._add_input_utxo_info(txin, ignore_network_issues=ignore_network_issues, address=address) if not self.is_mine(address): is_mine = self._learn_derivation_path_for_address_from_txinout(txin, address) if not is_mine: return # set script_type first, as later checks might rely on it: txin.script_type = self.get_txin_type(address) txin.num_sig = self.m if isinstance(self, Multisig_Wallet) else 1 if txin.redeem_script is None: try: redeem_script_hex = self.get_redeem_script(address) txin.redeem_script = bfh(redeem_script_hex) if redeem_script_hex else None except UnknownTxinType: pass if txin.witness_script is None: try: witness_script_hex = self.get_witness_script(address) txin.witness_script = bfh(witness_script_hex) if witness_script_hex else None except UnknownTxinType: pass self._add_input_sig_info(txin, address, only_der_suffix=only_der_suffix) def can_sign(self, tx: Transaction) -> bool: if not isinstance(tx, PartialTransaction): return False if tx.is_complete(): return False # add info to inputs if we can; otherwise we might return a false negative: tx.add_info_from_wallet(self) for txin in tx.inputs(): # note: is_mine check needed to avoid false positives. # just because keystore could sign, txin does not necessarily belong to wallet. # Example: we have p2pkh-like addresses and txin is a multisig that involves our pubkey. if not self.is_mine(txin.address): continue for k in self.get_keystores(): if k.can_sign_txin(txin): return True return False def get_input_tx(self, tx_hash: str, *, ignore_network_issues=False) -> Optional[Transaction]: # First look up an input transaction in the wallet where it # will likely be. If co-signing a transaction it may not have # all the input txs, in which case we ask the network. tx = self.db.get_transaction(tx_hash) if not tx and self.network and self.network.has_internet_connection(): try: raw_tx = self.network.run_from_another_thread( self.network.get_transaction(tx_hash, timeout=10)) except NetworkException as e: self.logger.info(f'got network error getting input txn. err: {repr(e)}. txid: {tx_hash}. ' f'if you are intentionally offline, consider using the --offline flag') if not ignore_network_issues: raise e else: tx = Transaction(raw_tx) if not tx and not ignore_network_issues: raise NetworkException('failed to get prev tx from network') return tx def add_output_info(self, txout: PartialTxOutput, *, only_der_suffix: bool = False) -> None: address = txout.address if not self.is_mine(address): is_mine = self._learn_derivation_path_for_address_from_txinout(txout, address) if not is_mine: return txout.script_type = self.get_txin_type(address) txout.is_mine = True txout.is_change = self.is_change(address) if isinstance(self, Multisig_Wallet): txout.num_sig = self.m self._add_txinout_derivation_info(txout, address, only_der_suffix=only_der_suffix) if txout.redeem_script is None: try: redeem_script_hex = self.get_redeem_script(address) txout.redeem_script = bfh(redeem_script_hex) if redeem_script_hex else None except UnknownTxinType: pass if txout.witness_script is None: try: witness_script_hex = self.get_witness_script(address) txout.witness_script = bfh(witness_script_hex) if witness_script_hex else None except UnknownTxinType: pass def sign_transaction(self, tx: Transaction, password) -> Optional[PartialTransaction]: if self.is_watching_only(): return if not isinstance(tx, PartialTransaction): return # add info to a temporary tx copy; including xpubs # and full derivation paths as hw keystores might want them tmp_tx = copy.deepcopy(tx) tmp_tx.add_info_from_wallet(self, include_xpubs=True) # sign. start with ready keystores. for k in sorted(self.get_keystores(), key=lambda ks: ks.ready_to_sign(), reverse=True): try: if k.can_sign(tmp_tx): k.sign_transaction(tmp_tx, password) except UserCancelled: continue # remove sensitive info; then copy back details from temporary tx tmp_tx.remove_xpubs_and_bip32_paths() tx.combine_with_other_psbt(tmp_tx) tx.add_info_from_wallet(self, include_xpubs=False) return tx def try_detecting_internal_addresses_corruption(self) -> None: pass def check_address_for_corruption(self, addr: str) -> None: pass def get_unused_addresses(self) -> Sequence[str]: domain = self.get_receiving_addresses() # TODO we should index receive_requests by id in_use_by_request = [k for k in self.receive_requests.keys() if self.get_request_status(k) != PR_EXPIRED] in_use_by_request = set(in_use_by_request) return [addr for addr in domain if not self.is_used(addr) and addr not in in_use_by_request] @check_returned_address_for_corruption def get_unused_address(self) -> Optional[str]: """Get an unused receiving address, if there is one. Note: there might NOT be one available! """ addrs = self.get_unused_addresses() if addrs: return addrs[0] @check_returned_address_for_corruption def get_receiving_address(self) -> str: """Get a receiving address. Guaranteed to always return an address.""" unused_addr = self.get_unused_address() if unused_addr: return unused_addr domain = self.get_receiving_addresses() if not domain: raise Exception("no receiving addresses in wallet?!") choice = domain[0] for addr in domain: if not self.is_used(addr): if addr not in self.receive_requests.keys(): return addr else: choice = addr return choice def create_new_address(self, for_change: bool = False): raise Exception("this wallet cannot generate new addresses") def import_address(self, address: str) -> str: raise Exception("this wallet cannot import addresses") def import_addresses(self, addresses: List[str], *, write_to_disk=True) -> Tuple[List[str], List[Tuple[str, str]]]: raise Exception("this wallet cannot import addresses") def delete_address(self, address: str) -> None: raise Exception("this wallet cannot delete addresses") def get_onchain_request_status(self, r: OnchainInvoice) -> Tuple[bool, Optional[int]]: address = r.get_address() amount = r.get_amount_sat() received, sent = self.get_addr_io(address) l = [] for txo, x in received.items(): h, v, is_cb = x txid, n = txo.split(':') tx_height = self.get_tx_height(txid) height = tx_height.height if height > 0 and height <= r.height: continue conf = tx_height.conf l.append((conf, v)) vsum = 0 for conf, v in reversed(sorted(l)): vsum += v if vsum >= amount: return True, conf return False, None def get_request_URI(self, req: OnchainInvoice) -> str: addr = req.get_address() message = self.get_label(addr) amount = req.amount_sat extra_query_params = {} if req.time: extra_query_params['time'] = str(int(req.time)) if req.exp: extra_query_params['exp'] = str(int(req.exp)) #if req.get('name') and req.get('sig'): # sig = bfh(req.get('sig')) # sig = bitcoin.base_encode(sig, base=58) # extra_query_params['name'] = req['name'] # extra_query_params['sig'] = sig uri = create_bip21_uri(addr, amount, message, extra_query_params=extra_query_params) return str(uri) def check_expired_status(self, r: Invoice, status): if r.is_lightning() and r.exp == 0: status = PR_EXPIRED # for BOLT-11 invoices, exp==0 means 0 seconds if status == PR_UNPAID and r.exp > 0 and r.time + r.exp < time.time(): status = PR_EXPIRED return status def get_invoice_status(self, invoice: Invoice): if invoice.is_lightning(): status = self.lnworker.get_invoice_status(invoice) if self.lnworker else PR_UNKNOWN else: if self.is_onchain_invoice_paid(invoice, 1): status =PR_PAID elif self.is_onchain_invoice_paid(invoice, 0): status = PR_UNCONFIRMED else: status = PR_UNPAID return self.check_expired_status(invoice, status) def get_request_status(self, key): r = self.get_request(key) if r is None: return PR_UNKNOWN if r.is_lightning(): assert isinstance(r, LNInvoice) status = self.lnworker.get_payment_status(bfh(r.rhash)) if self.lnworker else PR_UNKNOWN else: assert isinstance(r, OnchainInvoice) paid, conf = self.get_onchain_request_status(r) if not paid: status = PR_UNPAID elif conf == 0: status = PR_UNCONFIRMED else: status = PR_PAID return self.check_expired_status(r, status) def get_request(self, key): return self.receive_requests.get(key) def get_formatted_request(self, key): x = self.receive_requests.get(key) if x: return self.export_request(x) def export_request(self, x: Invoice) -> Dict[str, Any]: key = self.get_key_for_receive_request(x) status = self.get_request_status(key) status_str = x.get_status_str(status) is_lightning = x.is_lightning() d = { 'is_lightning': is_lightning, 'amount_BTC': format_satoshis(x.get_amount_sat()), 'message': x.message, 'timestamp': x.time, 'expiration': x.exp, 'status': status, 'status_str': status_str, } if is_lightning: assert isinstance(x, LNInvoice) d['rhash'] = x.rhash d['invoice'] = x.invoice d['amount_msat'] = x.get_amount_msat() if self.lnworker and status == PR_UNPAID: d['can_receive'] = self.lnworker.can_receive_invoice(x) else: assert isinstance(x, OnchainInvoice) paid, conf = self.get_onchain_request_status(x) d['amount_sat'] = x.get_amount_sat() d['address'] = x.get_address() d['URI'] = self.get_request_URI(x) if conf is not None: d['confirmations'] = conf # add URL if we are running a payserver payserver = self.config.get_netaddress('payserver_address') if payserver: root = self.config.get('payserver_root', '/r') use_ssl = bool(self.config.get('ssl_keyfile')) protocol = 'https' if use_ssl else 'http' base = '%s://%s:%d'%(protocol, payserver.host, payserver.port) d['view_url'] = base + root + '/pay?id=' + key if use_ssl and 'URI' in d: request_url = base + '/bip70/' + key + '.bip70' d['bip70_url'] = request_url return d def export_invoice(self, x: Invoice) -> Dict[str, Any]: status = self.get_invoice_status(x) status_str = x.get_status_str(status) is_lightning = x.is_lightning() d = { 'is_lightning': is_lightning, 'amount_BTC': format_satoshis(x.get_amount_sat()), 'message': x.message, 'timestamp': x.time, 'expiration': x.exp, 'status': status, 'status_str': status_str, } if is_lightning: assert isinstance(x, LNInvoice) d['invoice'] = x.invoice d['amount_msat'] = x.get_amount_msat() if self.lnworker and status == PR_UNPAID: d['can_pay'] = self.lnworker.can_pay_invoice(x) else: assert isinstance(x, OnchainInvoice) amount_sat = x.get_amount_sat() assert isinstance(amount_sat, (int, str, type(None))) d['amount_sat'] = amount_sat d['outputs'] = [y.to_legacy_tuple() for y in x.outputs] if x.bip70: d['bip70'] = x.bip70 d['requestor'] = x.requestor return d def receive_tx_callback(self, tx_hash, tx, tx_height): super().receive_tx_callback(tx_hash, tx, tx_height) self._update_request_statuses_touched_by_tx(tx_hash) def add_verified_tx(self, tx_hash, info): super().add_verified_tx(tx_hash, info) self._update_request_statuses_touched_by_tx(tx_hash) def undo_verifications(self, blockchain, above_height): reorged_txids = super().undo_verifications(blockchain, above_height) for txid in reorged_txids: self._update_request_statuses_touched_by_tx(txid) def _update_request_statuses_touched_by_tx(self, tx_hash: str) -> None: # FIXME in some cases if tx2 replaces unconfirmed tx1 in the mempool, we are not called. # For a given receive request, if tx1 touches it but tx2 does not, then # we were called when tx1 was added, but we will not get called when tx2 replaces tx1. tx = self.db.get_transaction(tx_hash) if tx is None: return for txo in tx.outputs(): addr = txo.address if addr in self.receive_requests: status = self.get_request_status(addr) util.trigger_callback('request_status', self, addr, status) def make_payment_request(self, address, amount_sat, message, expiration): # TODO maybe merge with wallet.create_invoice()... # note that they use incompatible "id" amount_sat = amount_sat or 0 timestamp = int(time.time()) _id = bh2u(sha256d(address + "%d"%timestamp))[0:10] expiration = expiration or 0 return OnchainInvoice( type=PR_TYPE_ONCHAIN, outputs=[PartialTxOutput.from_address_and_value(address, amount_sat)], message=message, time=timestamp, amount_sat=amount_sat, exp=expiration, id=_id, bip70=None, requestor=None, height=self.get_local_height(), ) def sign_payment_request(self, key, alias, alias_addr, password): # FIXME this is broken req = self.receive_requests.get(key) assert isinstance(req, OnchainInvoice) alias_privkey = self.export_private_key(alias_addr, password) pr = paymentrequest.make_unsigned_request(req) paymentrequest.sign_request_with_alias(pr, alias, alias_privkey) req.bip70 = pr.raw.hex() req['name'] = pr.pki_data req['sig'] = bh2u(pr.signature) self.receive_requests[key] = req @classmethod def get_key_for_outgoing_invoice(cls, invoice: Invoice) -> str: """Return the key to use for this invoice in self.invoices.""" if invoice.is_lightning(): assert isinstance(invoice, LNInvoice) key = invoice.rhash else: assert isinstance(invoice, OnchainInvoice) key = invoice.id return key def get_key_for_receive_request(self, req: Invoice, *, sanity_checks: bool = False) -> str: """Return the key to use for this invoice in self.receive_requests.""" if not req.is_lightning(): assert isinstance(req, OnchainInvoice) addr = req.get_address() if sanity_checks: if not bitcoin.is_address(addr): raise Exception(_('Invalid Bitcoin address.')) if not self.is_mine(addr): raise Exception(_('Address not in wallet.')) key = addr else: assert isinstance(req, LNInvoice) key = req.rhash return key def add_payment_request(self, req: Invoice, *, write_to_disk: bool = True): key = self.get_key_for_receive_request(req, sanity_checks=True) message = req.message self.receive_requests[key] = req self.set_label(key, message) # should be a default label if write_to_disk: self.save_db() return req def delete_request(self, key): """ lightning or on-chain """ if key in self.receive_requests: self.remove_payment_request(key) elif self.lnworker: self.lnworker.delete_payment(key) def delete_invoice(self, key): """ lightning or on-chain """ if key in self.invoices: self.invoices.pop(key) elif self.lnworker: self.lnworker.delete_payment(key) def remove_payment_request(self, addr) -> bool: found = False if addr in self.receive_requests: found = True self.receive_requests.pop(addr) self.save_db() return found def get_sorted_requests(self) -> List[Invoice]: """ sorted by timestamp """ out = [self.get_request(x) for x in self.receive_requests.keys()] out = [x for x in out if x is not None] out.sort(key=lambda x: x.time) return out def get_unpaid_requests(self): out = [self.get_request(x) for x in self.receive_requests.keys() if self.get_request_status(x) != PR_PAID] out = [x for x in out if x is not None] out.sort(key=lambda x: x.time) return out @abstractmethod def get_fingerprint(self) -> str: """Returns a string that can be used to identify this wallet. Used e.g. by Labels plugin, and LN channel backups. Returns empty string "" for wallets that don't have an ID. """ pass def can_import_privkey(self): return False def can_import_address(self): return False def can_delete_address(self): return False def has_password(self): return self.has_keystore_encryption() or self.has_storage_encryption() def can_have_keystore_encryption(self): return self.keystore and self.keystore.may_have_password() def get_available_storage_encryption_version(self) -> StorageEncryptionVersion: """Returns the type of storage encryption offered to the user. A wallet file (storage) is either encrypted with this version or is stored in plaintext. """ if isinstance(self.keystore, Hardware_KeyStore): return StorageEncryptionVersion.XPUB_PASSWORD else: return StorageEncryptionVersion.USER_PASSWORD def has_keystore_encryption(self): """Returns whether encryption is enabled for the keystore. If True, e.g. signing a transaction will require a password. """ if self.can_have_keystore_encryption(): return self.db.get('use_encryption', False) return False def has_storage_encryption(self): """Returns whether encryption is enabled for the wallet file on disk.""" return self.storage and self.storage.is_encrypted() @classmethod def may_have_password(cls): return True def check_password(self, password): if self.has_keystore_encryption(): self.keystore.check_password(password) if self.has_storage_encryption(): self.storage.check_password(password) def update_password(self, old_pw, new_pw, *, encrypt_storage: bool = True): if old_pw is None and self.has_password(): raise InvalidPassword() self.check_password(old_pw) if self.storage: if encrypt_storage: enc_version = self.get_available_storage_encryption_version() else: enc_version = StorageEncryptionVersion.PLAINTEXT self.storage.set_password(new_pw, enc_version) # make sure next storage.write() saves changes self.db.set_modified(True) # note: Encrypting storage with a hw device is currently only # allowed for non-multisig wallets. Further, # Hardware_KeyStore.may_have_password() == False. # If these were not the case, # extra care would need to be taken when encrypting keystores. self._update_password_for_keystore(old_pw, new_pw) encrypt_keystore = self.can_have_keystore_encryption() self.db.set_keystore_encryption(bool(new_pw) and encrypt_keystore) self.save_db() @abstractmethod def _update_password_for_keystore(self, old_pw: Optional[str], new_pw: Optional[str]) -> None: pass def sign_message(self, address: str, message: str, password) -> bytes: index = self.get_address_index(address) script_type = self.get_txin_type(address) assert script_type != "address" return self.keystore.sign_message(index, message, password, script_type=script_type) def decrypt_message(self, pubkey: str, message, password) -> bytes: addr = self.pubkeys_to_address([pubkey]) index = self.get_address_index(addr) return self.keystore.decrypt_message(index, message, password) @abstractmethod def pubkeys_to_address(self, pubkeys: Sequence[str]) -> Optional[str]: pass def price_at_timestamp(self, txid, price_func): """Returns fiat price of bitcoin at the time tx got confirmed.""" timestamp = self.get_tx_height(txid).timestamp return price_func(timestamp if timestamp else time.time()) def average_price(self, txid, price_func, ccy) -> Decimal: """ Average acquisition price of the inputs of a transaction """ input_value = 0 total_price = 0 txi_addresses = self.db.get_txi_addresses(txid) if not txi_addresses: return Decimal('NaN') for addr in txi_addresses: d = self.db.get_txi_addr(txid, addr) for ser, v in d: input_value += v total_price += self.coin_price(ser.split(':')[0], price_func, ccy, v) return total_price / (input_value/Decimal(COIN)) def clear_coin_price_cache(self): self._coin_price_cache = {} def coin_price(self, txid, price_func, ccy, txin_value) -> Decimal: """ Acquisition price of a coin. This assumes that either all inputs are mine, or no input is mine. """ if txin_value is None: return Decimal('NaN') cache_key = "{}:{}:{}".format(str(txid), str(ccy), str(txin_value)) result = self._coin_price_cache.get(cache_key, None) if result is not None: return result if self.db.get_txi_addresses(txid): result = self.average_price(txid, price_func, ccy) * txin_value/Decimal(COIN) self._coin_price_cache[cache_key] = result return result else: fiat_value = self.get_fiat_value(txid, ccy) if fiat_value is not None: return fiat_value else: p = self.price_at_timestamp(txid, price_func) return p * txin_value/Decimal(COIN) def is_billing_address(self, addr): # overridden for TrustedCoin wallets return False @abstractmethod def is_watching_only(self) -> bool: pass def get_keystore(self) -> Optional[KeyStore]: return self.keystore def get_keystores(self) -> Sequence[KeyStore]: return [self.keystore] if self.keystore else [] @abstractmethod def save_keystore(self): pass @abstractmethod def has_seed(self) -> bool: pass @abstractmethod def get_all_known_addresses_beyond_gap_limit(self) -> Set[str]: pass def create_transaction(self, outputs, *, fee=None, feerate=None, change_addr=None, domain_addr=None, domain_coins=None, unsigned=False, rbf=None, password=None, locktime=None): if fee is not None and feerate is not None: raise Exception("Cannot specify both 'fee' and 'feerate' at the same time!") coins = self.get_spendable_coins(domain_addr) if domain_coins is not None: coins = [coin for coin in coins if (coin.prevout.to_str() in domain_coins)] if feerate is not None: fee_per_kb = 1000 * Decimal(feerate) fee_estimator = partial(SimpleConfig.estimate_fee_for_feerate, fee_per_kb) else: fee_estimator = fee tx = self.make_unsigned_transaction( coins=coins, outputs=outputs, fee=fee_estimator, change_addr=change_addr) if locktime is not None: tx.locktime = locktime if rbf is None: rbf = bool(self.config.get('use_rbf', True)) tx.set_rbf(rbf) if not unsigned: self.sign_transaction(tx, password) return tx def get_warning_for_risk_of_burning_coins_as_fees(self, tx: 'PartialTransaction') -> Optional[str]: """Returns a warning message if there is risk of burning coins as fees if we sign. Note that if not all inputs are ismine, e.g. coinjoin, the risk is not just about fees. Note: - legacy sighash does not commit to any input amounts - BIP-0143 sighash only commits to the *corresponding* input amount - BIP-taproot sighash commits to *all* input amounts """ assert isinstance(tx, PartialTransaction) # if we have all full previous txs, we *know* all the input amounts -> fine if all([txin.utxo for txin in tx.inputs()]): return None # a single segwit input -> fine if len(tx.inputs()) == 1 and tx.inputs()[0].is_segwit() and tx.inputs()[0].witness_utxo: return None # coinjoin or similar if any([not self.is_mine(txin.address) for txin in tx.inputs()]): return (_("Warning") + ": " + _("The input amounts could not be verified as the previous transactions are missing.\n" "The amount of money being spent CANNOT be verified.")) # some inputs are legacy if any([not txin.is_segwit() for txin in tx.inputs()]): return (_("Warning") + ": " + _("The fee could not be verified. Signing non-segwit inputs is risky:\n" "if this transaction was maliciously modified before you sign,\n" "you might end up paying a higher mining fee than displayed.")) # all inputs are segwit # https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2017-August/014843.html return (_("Warning") + ": " + _("If you received this transaction from an untrusted device, " "do not accept to sign it more than once,\n" "otherwise you could end up paying a different fee.")) def get_tx_fee_warning( self, *, invoice_amt: int, tx_size: int, fee: int) -> Optional[Tuple[bool, str, str]]: feerate = Decimal(fee) / tx_size # sat/byte fee_ratio = Decimal(fee) / invoice_amt if invoice_amt else 1 long_warning = None short_warning = None allow_send = True if feerate < self.relayfee() / 1000: long_warning = ( _("This transaction requires a higher fee, or it will not be propagated by your current server.") + " " + _("Try to raise your transaction fee, or use a server with a lower relay fee.")) short_warning = _("below relay fee") + "!" allow_send = False elif fee_ratio >= FEE_RATIO_HIGH_WARNING: long_warning = ( _('Warning') + ': ' + _("The fee for this transaction seems unusually high.") + f' ({fee_ratio*100:.2f}% of amount)') short_warning = _("high fee ratio") + "!" elif feerate > FEERATE_WARNING_HIGH_FEE / 1000: long_warning = ( _('Warning') + ': ' + _("The fee for this transaction seems unusually high.") + f' (feerate: {feerate:.2f} sat/byte)') short_warning = _("high fee rate") + "!" if long_warning is None: return None else: return allow_send, long_warning, short_warning class Simple_Wallet(Abstract_Wallet): # wallet with a single keystore def is_watching_only(self): return self.keystore.is_watching_only() def _update_password_for_keystore(self, old_pw, new_pw): if self.keystore and self.keystore.may_have_password(): self.keystore.update_password(old_pw, new_pw) self.save_keystore() def save_keystore(self): self.db.put('keystore', self.keystore.dump()) @abstractmethod def get_public_key(self, address: str) -> Optional[str]: pass def get_public_keys(self, address: str) -> Sequence[str]: return [self.get_public_key(address)] def get_redeem_script(self, address: str) -> Optional[str]: txin_type = self.get_txin_type(address) if txin_type in ('p2pkh', 'p2wpkh', 'p2pk'): return None if txin_type == 'p2wpkh-p2sh': pubkey = self.get_public_key(address) return bitcoin.p2wpkh_nested_script(pubkey) if txin_type == 'address': return None raise UnknownTxinType(f'unexpected txin_type {txin_type}') def get_witness_script(self, address: str) -> Optional[str]: return None class Imported_Wallet(Simple_Wallet): # wallet made of imported addresses wallet_type = 'imported' txin_type = 'address' def __init__(self, db, storage, *, config): Abstract_Wallet.__init__(self, db, storage, config=config) self.use_change = db.get('use_change', False) def is_watching_only(self): return self.keystore is None def can_import_privkey(self): return bool(self.keystore) def load_keystore(self): self.keystore = load_keystore(self.db, 'keystore') if self.db.get('keystore') else None def save_keystore(self): self.db.put('keystore', self.keystore.dump()) def can_import_address(self): return self.is_watching_only() def can_delete_address(self): return True def has_seed(self): return False def is_deterministic(self): return False def is_change(self, address): return False def get_all_known_addresses_beyond_gap_limit(self) -> Set[str]: return set() def get_fingerprint(self): return '' def get_addresses(self): # note: overridden so that the history can be cleared return self.db.get_imported_addresses() def get_receiving_addresses(self, **kwargs): return self.get_addresses() def get_change_addresses(self, **kwargs): return self.get_addresses() def import_addresses(self, addresses: List[str], *, write_to_disk=True) -> Tuple[List[str], List[Tuple[str, str]]]: good_addr = [] # type: List[str] bad_addr = [] # type: List[Tuple[str, str]] for address in addresses: if not bitcoin.is_address(address): bad_addr.append((address, _('invalid address'))) continue if self.db.has_imported_address(address): bad_addr.append((address, _('address already in wallet'))) continue good_addr.append(address) self.db.add_imported_address(address, {}) self.add_address(address) if write_to_disk: self.save_db() return good_addr, bad_addr def import_address(self, address: str) -> str: good_addr, bad_addr = self.import_addresses([address]) if good_addr and good_addr[0] == address: return address else: raise BitcoinException(str(bad_addr[0][1])) def delete_address(self, address: str) -> None: if not self.db.has_imported_address(address): return if len(self.get_addresses()) <= 1: raise UserFacingException("cannot delete last remaining address from wallet") transactions_to_remove = set() # only referred to by this address transactions_new = set() # txs that are not only referred to by address with self.lock: for addr in self.db.get_history(): details = self.get_address_history(addr) if addr == address: for tx_hash, height in details: transactions_to_remove.add(tx_hash) else: for tx_hash, height in details: transactions_new.add(tx_hash) transactions_to_remove -= transactions_new self.db.remove_addr_history(address) for tx_hash in transactions_to_remove: self._remove_transaction(tx_hash) self.set_label(address, None) self.remove_payment_request(address) self.set_frozen_state_of_addresses([address], False) pubkey = self.get_public_key(address) self.db.remove_imported_address(address) if pubkey: # delete key iff no other address uses it (e.g. p2pkh and p2wpkh for same key) for txin_type in bitcoin.WIF_SCRIPT_TYPES.keys(): try: addr2 = bitcoin.pubkey_to_address(txin_type, pubkey) except NotImplementedError: pass else: if self.db.has_imported_address(addr2): break else: self.keystore.delete_imported_key(pubkey) self.save_keystore() self.save_db() def get_change_addresses_for_new_transaction(self, *args, **kwargs) -> List[str]: # for an imported wallet, if all "change addresses" are already used, # it is probably better to send change back to the "from address", than to # send it to another random used address and link them together, hence # we force "allow_reusing_used_change_addrs=False" return super().get_change_addresses_for_new_transaction( *args, **{**kwargs, "allow_reusing_used_change_addrs": False}, ) def calc_unused_change_addresses(self) -> Sequence[str]: with self.lock: unused_addrs = [addr for addr in self.get_change_addresses() if not self.is_used(addr) and not self.is_address_reserved(addr)] return unused_addrs def is_mine(self, address) -> bool: if not address: return False return self.db.has_imported_address(address) def get_address_index(self, address) -> Optional[str]: # returns None if address is not mine return self.get_public_key(address) def get_address_path_str(self, address): return None def get_public_key(self, address) -> Optional[str]: x = self.db.get_imported_address(address) return x.get('pubkey') if x else None def import_private_keys(self, keys: List[str], password: Optional[str], *, write_to_disk=True) -> Tuple[List[str], List[Tuple[str, str]]]: good_addr = [] # type: List[str] bad_keys = [] # type: List[Tuple[str, str]] for key in keys: try: txin_type, pubkey = self.keystore.import_privkey(key, password) except Exception as e: bad_keys.append((key, _('invalid private key') + f': {e}')) continue if txin_type not in ('p2pkh', 'p2wpkh', 'p2wpkh-p2sh'): bad_keys.append((key, _('not implemented type') + f': {txin_type}')) continue addr = bitcoin.pubkey_to_address(txin_type, pubkey) good_addr.append(addr) self.db.add_imported_address(addr, {'type':txin_type, 'pubkey':pubkey}) self.add_address(addr) self.save_keystore() if write_to_disk: self.save_db() return good_addr, bad_keys def import_private_key(self, key: str, password: Optional[str]) -> str: good_addr, bad_keys = self.import_private_keys([key], password=password) if good_addr: return good_addr[0] else: raise BitcoinException(str(bad_keys[0][1])) def get_txin_type(self, address): return self.db.get_imported_address(address).get('type', 'address') @profiler def try_detecting_internal_addresses_corruption(self): # we check only a random sample, for performance addresses = self.get_addresses() addresses = random.sample(addresses, min(len(addresses), 10)) for addr_found in addresses: self.check_address_for_corruption(addr_found) def check_address_for_corruption(self, addr): if addr and self.is_mine(addr): pubkey = self.get_public_key(addr) if not pubkey: return txin_type = self.get_txin_type(addr) if txin_type == 'address': return if addr != bitcoin.pubkey_to_address(txin_type, pubkey): raise InternalAddressCorruption() def _add_input_sig_info(self, txin, address, *, only_der_suffix): if not self.is_mine(address): return if txin.script_type in ('unknown', 'address'): return elif txin.script_type in ('p2pkh', 'p2wpkh', 'p2wpkh-p2sh'): pubkey = self.get_public_key(address) if not pubkey: return txin.pubkeys = [bfh(pubkey)] else: raise Exception(f'Unexpected script type: {txin.script_type}. ' f'Imported wallets are not implemented to handle this.') def pubkeys_to_address(self, pubkeys): pubkey = pubkeys[0] # FIXME This is slow. # Ideally we would re-derive the address from the pubkey and the txin_type, # but we don't know the txin_type, and we only have an addr->txin_type map. # so instead a linear search of reverse-lookups is done... for addr in self.db.get_imported_addresses(): if self.db.get_imported_address(addr)['pubkey'] == pubkey: return addr return None def decrypt_message(self, pubkey: str, message, password) -> bytes: # this is significantly faster than the implementation in the superclass return self.keystore.decrypt_message(pubkey, message, password) class Deterministic_Wallet(Abstract_Wallet): def __init__(self, db, storage, *, config): self._ephemeral_addr_to_addr_index = {} # type: Dict[str, Sequence[int]] Abstract_Wallet.__init__(self, db, storage, config=config) self.gap_limit = db.get('gap_limit', 20) # generate addresses now. note that without libsecp this might block # for a few seconds! self.synchronize() # lightning_privkey2 is not deterministic (legacy wallets, bip39) ln_xprv = self.db.get('lightning_xprv') or self.db.get('lightning_privkey2') # lnworker can only be initialized once receiving addresses are available # therefore we instantiate lnworker in DeterministicWallet self.lnworker = LNWallet(self, ln_xprv) if ln_xprv else None def has_seed(self): return self.keystore.has_seed() def get_addresses(self): # note: overridden so that the history can be cleared. # addresses are ordered based on derivation out = self.get_receiving_addresses() out += self.get_change_addresses() return out def get_receiving_addresses(self, *, slice_start=None, slice_stop=None): return self.db.get_receiving_addresses(slice_start=slice_start, slice_stop=slice_stop) def get_change_addresses(self, *, slice_start=None, slice_stop=None): return self.db.get_change_addresses(slice_start=slice_start, slice_stop=slice_stop) @profiler def try_detecting_internal_addresses_corruption(self): addresses_all = self.get_addresses() # sample 1: first few addresses_sample1 = addresses_all[:10] # sample2: a few more randomly selected addresses_rand = addresses_all[10:] addresses_sample2 = random.sample(addresses_rand, min(len(addresses_rand), 10)) for addr_found in itertools.chain(addresses_sample1, addresses_sample2): self.check_address_for_corruption(addr_found) def check_address_for_corruption(self, addr): if addr and self.is_mine(addr): if addr != self.derive_address(*self.get_address_index(addr)): raise InternalAddressCorruption() def get_seed(self, password): return self.keystore.get_seed(password) def change_gap_limit(self, value): '''This method is not called in the code, it is kept for console use''' value = int(value) if value >= self.min_acceptable_gap(): self.gap_limit = value self.db.put('gap_limit', self.gap_limit) self.save_db() return True else: return False def num_unused_trailing_addresses(self, addresses): k = 0 for addr in addresses[::-1]: if self.db.get_addr_history(addr): break k += 1 return k def min_acceptable_gap(self) -> int: # fixme: this assumes wallet is synchronized n = 0 nmax = 0 addresses = self.get_receiving_addresses() k = self.num_unused_trailing_addresses(addresses) for addr in addresses[0:-k]: if self.address_is_old(addr): n = 0 else: n += 1 nmax = max(nmax, n) return nmax + 1 @abstractmethod def derive_pubkeys(self, c: int, i: int) -> Sequence[str]: pass def derive_address(self, for_change: int, n: int) -> str: for_change = int(for_change) pubkeys = self.derive_pubkeys(for_change, n) return self.pubkeys_to_address(pubkeys) def export_private_key_for_path(self, path: Union[Sequence[int], str], password: Optional[str]) -> str: if isinstance(path, str): path = convert_bip32_path_to_list_of_uint32(path) pk, compressed = self.keystore.get_private_key(path, password) txin_type = self.get_txin_type() # assumes no mixed-scripts in wallet return bitcoin.serialize_privkey(pk, compressed, txin_type) def get_public_keys_with_deriv_info(self, address: str): der_suffix = self.get_address_index(address) der_suffix = [int(x) for x in der_suffix] return {k.derive_pubkey(*der_suffix): (k, der_suffix) for k in self.get_keystores()} def _add_input_sig_info(self, txin, address, *, only_der_suffix): self._add_txinout_derivation_info(txin, address, only_der_suffix=only_der_suffix) def _add_txinout_derivation_info(self, txinout, address, *, only_der_suffix): if not self.is_mine(address): return pubkey_deriv_info = self.get_public_keys_with_deriv_info(address) txinout.pubkeys = sorted([pk for pk in list(pubkey_deriv_info)]) for pubkey in pubkey_deriv_info: ks, der_suffix = pubkey_deriv_info[pubkey] fp_bytes, der_full = ks.get_fp_and_derivation_to_be_used_in_partial_tx(der_suffix, only_der_suffix=only_der_suffix) txinout.bip32_paths[pubkey] = (fp_bytes, der_full) def create_new_address(self, for_change: bool = False): assert type(for_change) is bool with self.lock: n = self.db.num_change_addresses() if for_change else self.db.num_receiving_addresses() address = self.derive_address(int(for_change), n) self.db.add_change_address(address) if for_change else self.db.add_receiving_address(address) self.add_address(address) if for_change: # note: if it's actually "old", it will get filtered later self._not_old_change_addresses.append(address) return address def synchronize_sequence(self, for_change): limit = self.gap_limit_for_change if for_change else self.gap_limit while True: num_addr = self.db.num_change_addresses() if for_change else self.db.num_receiving_addresses() if num_addr < limit: self.create_new_address(for_change) continue if for_change: last_few_addresses = self.get_change_addresses(slice_start=-limit) else: last_few_addresses = self.get_receiving_addresses(slice_start=-limit) if any(map(self.address_is_old, last_few_addresses)): self.create_new_address(for_change) else: break @AddressSynchronizer.with_local_height_cached def synchronize(self): with self.lock: self.synchronize_sequence(False) self.synchronize_sequence(True) def get_all_known_addresses_beyond_gap_limit(self): # note that we don't stop at first large gap found = set() def process_addresses(addrs, gap_limit): rolling_num_unused = 0 for addr in addrs: if self.db.get_addr_history(addr): rolling_num_unused = 0 else: if rolling_num_unused >= gap_limit: found.add(addr) rolling_num_unused += 1 process_addresses(self.get_receiving_addresses(), self.gap_limit) process_addresses(self.get_change_addresses(), self.gap_limit_for_change) return found def get_address_index(self, address) -> Optional[Sequence[int]]: return self.db.get_address_index(address) or self._ephemeral_addr_to_addr_index.get(address) def get_address_path_str(self, address): intpath = self.get_address_index(address) if intpath is None: return None return convert_bip32_intpath_to_strpath(intpath) def _learn_derivation_path_for_address_from_txinout(self, txinout, address): for ks in self.get_keystores(): pubkey, der_suffix = ks.find_my_pubkey_in_txinout(txinout, only_der_suffix=True) if der_suffix is not None: # note: we already know the pubkey belongs to the keystore, # but the script template might be different if len(der_suffix) != 2: continue try: my_address = self.derive_address(*der_suffix) except CannotDerivePubkey: my_address = None if my_address == address: self._ephemeral_addr_to_addr_index[address] = list(der_suffix) return True return False def get_master_public_keys(self): return [self.get_master_public_key()] def get_fingerprint(self): return self.get_master_public_key() def get_txin_type(self, address=None): return self.txin_type class Simple_Deterministic_Wallet(Simple_Wallet, Deterministic_Wallet): """ Deterministic Wallet with a single pubkey per address """ def __init__(self, db, storage, *, config): Deterministic_Wallet.__init__(self, db, storage, config=config) def get_public_key(self, address): sequence = self.get_address_index(address) pubkeys = self.derive_pubkeys(*sequence) return pubkeys[0] def load_keystore(self): self.keystore = load_keystore(self.db, 'keystore') try: xtype = bip32.xpub_type(self.keystore.xpub) except: xtype = 'standard' self.txin_type = 'p2pkh' if xtype == 'standard' else xtype def get_master_public_key(self): return self.keystore.get_master_public_key() def derive_pubkeys(self, c, i): return [self.keystore.derive_pubkey(c, i).hex()] class Standard_Wallet(Simple_Deterministic_Wallet): wallet_type = 'standard' def pubkeys_to_address(self, pubkeys): pubkey = pubkeys[0] return bitcoin.pubkey_to_address(self.txin_type, pubkey) class Multisig_Wallet(Deterministic_Wallet): # generic m of n def __init__(self, db, storage, *, config): self.wallet_type = db.get('wallet_type') self.m, self.n = multisig_type(self.wallet_type) Deterministic_Wallet.__init__(self, db, storage, config=config) def get_public_keys(self, address): return [pk.hex() for pk in self.get_public_keys_with_deriv_info(address)] def pubkeys_to_address(self, pubkeys): redeem_script = self.pubkeys_to_scriptcode(pubkeys) return bitcoin.redeem_script_to_address(self.txin_type, redeem_script) def pubkeys_to_scriptcode(self, pubkeys: Sequence[str]) -> str: return transaction.multisig_script(sorted(pubkeys), self.m) def get_redeem_script(self, address): txin_type = self.get_txin_type(address) pubkeys = self.get_public_keys(address) scriptcode = self.pubkeys_to_scriptcode(pubkeys) if txin_type == 'p2sh': return scriptcode elif txin_type == 'p2wsh-p2sh': return bitcoin.p2wsh_nested_script(scriptcode) elif txin_type == 'p2wsh': return None raise UnknownTxinType(f'unexpected txin_type {txin_type}') def get_witness_script(self, address): txin_type = self.get_txin_type(address) pubkeys = self.get_public_keys(address) scriptcode = self.pubkeys_to_scriptcode(pubkeys) if txin_type == 'p2sh': return None elif txin_type in ('p2wsh-p2sh', 'p2wsh'): return scriptcode raise UnknownTxinType(f'unexpected txin_type {txin_type}') def derive_pubkeys(self, c, i): return [k.derive_pubkey(c, i).hex() for k in self.get_keystores()] def load_keystore(self): self.keystores = {} for i in range(self.n): name = 'x%d/'%(i+1) self.keystores[name] = load_keystore(self.db, name) self.keystore = self.keystores['x1/'] xtype = bip32.xpub_type(self.keystore.xpub) self.txin_type = 'p2sh' if xtype == 'standard' else xtype def save_keystore(self): for name, k in self.keystores.items(): self.db.put(name, k.dump()) def get_keystore(self): return self.keystores.get('x1/') def get_keystores(self): return [self.keystores[i] for i in sorted(self.keystores.keys())] def can_have_keystore_encryption(self): return any([k.may_have_password() for k in self.get_keystores()]) def _update_password_for_keystore(self, old_pw, new_pw): for name, keystore in self.keystores.items(): if keystore.may_have_password(): keystore.update_password(old_pw, new_pw) self.db.put(name, keystore.dump()) def check_password(self, password): for name, keystore in self.keystores.items(): if keystore.may_have_password(): keystore.check_password(password) if self.has_storage_encryption(): self.storage.check_password(password) def get_available_storage_encryption_version(self): # multisig wallets are not offered hw device encryption return StorageEncryptionVersion.USER_PASSWORD def has_seed(self): return self.keystore.has_seed() def is_watching_only(self): return all([k.is_watching_only() for k in self.get_keystores()]) def get_master_public_key(self): return self.keystore.get_master_public_key() def get_master_public_keys(self): return [k.get_master_public_key() for k in self.get_keystores()] def get_fingerprint(self): return ''.join(sorted(self.get_master_public_keys())) wallet_types = ['standard', 'multisig', 'imported'] def register_wallet_type(category): wallet_types.append(category) wallet_constructors = { 'standard': Standard_Wallet, 'old': Standard_Wallet, 'xpub': Standard_Wallet, 'imported': Imported_Wallet } def register_constructor(wallet_type, constructor): wallet_constructors[wallet_type] = constructor # former WalletFactory class Wallet(object): """The main wallet "entry point". This class is actually a factory that will return a wallet of the correct type when passed a WalletStorage instance.""" def __new__(self, db: 'WalletDB', storage: Optional[WalletStorage], *, config: SimpleConfig): wallet_type = db.get('wallet_type') WalletClass = Wallet.wallet_class(wallet_type) wallet = WalletClass(db, storage, config=config) return wallet @staticmethod def wallet_class(wallet_type): if multisig_type(wallet_type): return Multisig_Wallet if wallet_type in wallet_constructors: return wallet_constructors[wallet_type] raise WalletFileException("Unknown wallet type: " + str(wallet_type)) def create_new_wallet(*, path, config: SimpleConfig, passphrase=None, password=None, encrypt_file=True, seed_type=None, gap_limit=None) -> dict: """Create a new wallet""" storage = WalletStorage(path) if storage.file_exists(): raise Exception("Remove the existing wallet first!") db = WalletDB('', manual_upgrades=False) seed = Mnemonic('en').make_seed(seed_type=seed_type) k = keystore.from_seed(seed, passphrase) db.put('keystore', k.dump()) db.put('wallet_type', 'standard') if k.can_have_deterministic_lightning_xprv(): db.put('lightning_xprv', k.get_lightning_xprv(None)) if gap_limit is not None: db.put('gap_limit', gap_limit) wallet = Wallet(db, storage, config=config) wallet.update_password(old_pw=None, new_pw=password, encrypt_storage=encrypt_file) wallet.synchronize() msg = "Please keep your seed in a safe place; if you lose it, you will not be able to restore your wallet." wallet.save_db() return {'seed': seed, 'wallet': wallet, 'msg': msg} def restore_wallet_from_text(text, *, path, config: SimpleConfig, passphrase=None, password=None, encrypt_file=True, gap_limit=None) -> dict: """Restore a wallet from text. Text can be a seed phrase, a master public key, a master private key, a list of bitcoin addresses or bitcoin private keys.""" storage = WalletStorage(path) if storage.file_exists(): raise Exception("Remove the existing wallet first!") db = WalletDB('', manual_upgrades=False) text = text.strip() if keystore.is_address_list(text): wallet = Imported_Wallet(db, storage, config=config) addresses = text.split() good_inputs, bad_inputs = wallet.import_addresses(addresses, write_to_disk=False) # FIXME tell user about bad_inputs if not good_inputs: raise Exception("None of the given addresses can be imported") elif keystore.is_private_key_list(text, allow_spaces_inside_key=False): k = keystore.Imported_KeyStore({}) db.put('keystore', k.dump()) wallet = Imported_Wallet(db, storage, config=config) keys = keystore.get_private_keys(text, allow_spaces_inside_key=False) good_inputs, bad_inputs = wallet.import_private_keys(keys, None, write_to_disk=False) # FIXME tell user about bad_inputs if not good_inputs: raise Exception("None of the given privkeys can be imported") else: if keystore.is_master_key(text): k = keystore.from_master_key(text) elif keystore.is_seed(text): k = keystore.from_seed(text, passphrase) if k.can_have_deterministic_lightning_xprv(): db.put('lightning_xprv', k.get_lightning_xprv(None)) else: raise Exception("Seed or key not recognized") db.put('keystore', k.dump()) db.put('wallet_type', 'standard') if gap_limit is not None: db.put('gap_limit', gap_limit) wallet = Wallet(db, storage, config=config) assert not storage.file_exists(), "file was created too soon! plaintext keys might have been written to disk" wallet.update_password(old_pw=None, new_pw=password, encrypt_storage=encrypt_file) wallet.synchronize() msg = ("This wallet was restored offline. It may contain more addresses than displayed. " "Start a daemon and use load_wallet to sync its history.") wallet.save_db() return {'wallet': wallet, 'msg': msg} def check_password_for_directory(config: SimpleConfig, old_password, new_password=None) -> Tuple[bool, bool]: """Checks password against all wallets, returns whether they can be unified and whether they are already. If new_password is not None, update all wallet passwords to new_password. """ dirname = os.path.dirname(config.get_wallet_path()) failed = [] is_unified = True for filename in os.listdir(dirname): path = os.path.join(dirname, filename) if not os.path.isfile(path): continue basename = os.path.basename(path) storage = WalletStorage(path) if not storage.is_encrypted(): is_unified = False # it is a bit wasteful load the wallet here, but that is fine # because we are progressively enforcing storage encryption. try: db = WalletDB(storage.read(), manual_upgrades=False) wallet = Wallet(db, storage, config=config) except: _logger.exception(f'failed to load {basename}:') failed.append(basename) continue if wallet.has_keystore_encryption(): try: wallet.check_password(old_password) except: failed.append(basename) continue if new_password: wallet.update_password(old_password, new_password) else: if new_password: wallet.update_password(None, new_password) continue if not storage.is_encrypted_with_user_pw(): failed.append(basename) continue try: storage.check_password(old_password) except: failed.append(basename) continue try: db = WalletDB(storage.read(), manual_upgrades=False) wallet = Wallet(db, storage, config=config) except: _logger.exception(f'failed to load {basename}:') failed.append(basename) continue try: wallet.check_password(old_password) except: failed.append(basename) continue if new_password: wallet.update_password(old_password, new_password) can_be_unified = failed == [] is_unified = can_be_unified and is_unified return can_be_unified, is_unified def update_password_for_directory(config: SimpleConfig, old_password, new_password) -> bool: " returns whether password is unified " if new_password is None: # we opened a non-encrypted wallet return False can_be_unified, is_unified = check_password_for_directory(config, old_password, None) if not can_be_unified: return False if is_unified and old_password == new_password: return True check_password_for_directory(config, old_password, new_password) return True
{ "content_hash": "68a974b66a378fba81389f8143f061b6", "timestamp": "", "source": "github", "line_count": 3399, "max_line_length": 150, "avg_line_length": 41.79082082965578, "alnum_prop": 0.5836307700972213, "repo_name": "wakiyamap/electrum-mona", "id": "40aaa6630e97d7edb65ed335a333aed488f09fe4", "size": "143415", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "electrum_mona/wallet.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "13043" }, { "name": "GLSL", "bytes": "289" }, { "name": "Java", "bytes": "2929" }, { "name": "Makefile", "bytes": "2162" }, { "name": "NSIS", "bytes": "7779" }, { "name": "Python", "bytes": "4381566" }, { "name": "Ruby", "bytes": "16375" }, { "name": "Shell", "bytes": "100799" }, { "name": "kvlang", "bytes": "67448" } ], "symlink_target": "" }
""" This file is part of python-webuntis :copyright: (c) 2012 by Markus Unterwaditzer. :license: BSD, see LICENSE for more details. """ from webuntis import utils, objects, errors from webuntis.utils import result_wrapper, log, rpc_request from webuntis.utils.userinput import unicode_string class JSONRPCSession(object): """Lower-level version of :py:class:`Session`. Do not use this.""" config = None '''Dictionary with configuration.''' def __init__(self, **kwargs): self.config = utils.FilterDict(utils.config_keys) config = { 'server': None, 'school': None, 'useragent': None, 'username': None, 'password': None, 'jsessionid': None, 'login_repeat': 0, '_http_session': None } config.update(kwargs) self.config.update(config) def __enter__(self): """Context-manager""" return self def __exit__(self, exc_type, exc_value, traceback): """Context-manager -- the only thing we need to clean up is to log out """ self.logout(suppress_errors=True) def logout(self, suppress_errors=False): """ Log out of session :type suppress_errors: bool :param suppress_errors: Whether to suppress errors. :raises: :py:class:`webuntis.errors.NotLoggedInError` -- Can't log out because not logged in. Raised unless ``suppress_errors`` is ``True``. """ def throw_errors(): if not suppress_errors: raise errors.NotLoggedInError('We already were logged out.') try: # Send a JSON-RPC 'logout' method without parameters to log out self._request('logout') except errors.NotLoggedInError: throw_errors() try: del self.config['jsessionid'] except KeyError: throw_errors() def login(self): """Initializes an authentication, provided we have the credentials for it. :returns: The session. This is useful for jQuery-like command chaining:: s = webuntis.Session(...).login() :raises: :py:class:`webuntis.errors.BadCredentialsError` -- Username/Password missing or invalid. :raises: :py:class:`webuntis.errors.AuthError` -- Didn't receive a session ID for unknown reasons. """ try: username = self.config['username'] password = self.config['password'] useragent = self.config['useragent'] except KeyError as e: raise errors.BadCredentialsError('Missing config: ' + str(e)) res = self._request('authenticate', { 'user': username, 'password': password, 'client': useragent }, use_login_repeat=False) if 'sessionId' in res: sid = self.config['jsessionid'] = res['sessionId'] log('debug', 'Did get a jsessionid from the server: ' + sid) else: raise errors.AuthError('Something went wrong while authenticating', res) return self def _request(self, method, params=None, use_login_repeat=None): if not isinstance(method, unicode_string): method = method.decode('ascii') if use_login_repeat is None: use_login_repeat = (method not in ('logout', 'authenticate')) attempts_left = self.config['login_repeat'] if use_login_repeat else 0 data = None while data is None: try: data = rpc_request(self.config, method, params or {}) except errors.NotLoggedInError: if attempts_left > 0: self.logout(suppress_errors=True) self.login() else: raise errors.NotLoggedInError( 'Tried to login several times, failed. Original method' ' was ' + method) else: return data attempts_left -= 1 # new round! class ResultWrapperMixin(object): @result_wrapper def departments(self): """Get all departments. :rtype: :py:class:`webuntis.objects.DepartmentList` """ return objects.DepartmentList, 'getDepartments', {} @result_wrapper def holidays(self): """Get all holidays. :rtype: :py:class:`webuntis.objects.HolidayList` """ return objects.HolidayList, 'getHolidays', {} @result_wrapper def klassen(self, schoolyear=None): """Get all school classes. :param schoolyear: The schoolyear where the classes should be fetched from. :type schoolyear: :py:class:`webuntis.objects.SchoolyearObject` or an integer ID of it :rtype: :py:class:`webuntis.objects.KlassenList` """ params = {} if schoolyear: params['schoolyearId'] = int(schoolyear) return objects.KlassenList, 'getKlassen', params @result_wrapper def timetable(self, start, end, **type_and_id): """Get the timetable for a specific school class and time period. :type start: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param start: The beginning of the time period. :type end: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param end: The end of the time period. :rtype: :py:class:`webuntis.objects.PeriodList` Furthermore you have to explicitly define a klasse, teacher, subject, room or student parameter containing the id or the object of the thing you want to get a timetable about:: import datetime today = datetime.date.today() monday = today - datetime.timedelta(days=today.weekday()) friday = monday + datetime.timedelta(days=4) klasse = s.klassen().filter(id=1)[0] # schoolclass #1 tt = s.timetable(klasse=klasse, start=monday, end=friday) :raises: :exc:`ValueError`, :exc:`TypeError` """ element_type_table = { 'klasse': 1, 'teacher': 2, 'subject': 3, 'room': 4, 'student': 5 } invalid_type_error = TypeError( 'You have to specify exactly one of the following parameters by ' 'keyword: ' + (', '.join(element_type_table.keys())) ) if len(type_and_id) != 1: raise invalid_type_error element_type, element_id = list(type_and_id.items())[0] element_type = utils.userinput.string(element_type) if element_type not in element_type_table: raise invalid_type_error # if we have to deal with an object in element_id, # its id gets placed here anyway parameters = self._create_date_param(end, start, id=int(element_id), type=element_type_table[element_type]) return objects.PeriodList, 'getTimetable', parameters @result_wrapper def rooms(self): """Get all rooms of a school. :rtype: :py:class:`webuntis.objects.RoomList` """ return objects.RoomList, 'getRooms', {} @result_wrapper def schoolyears(self): """Get all schoolyears. :rtype: :py:class:`webuntis.objects.SchoolyearList` """ return objects.SchoolyearList, 'getSchoolyears', {} @result_wrapper def subjects(self): """Get all subjects. :rtype: :py:class:`webuntis.objects.SubjectList` """ return objects.SubjectList, 'getSubjects', {} @result_wrapper def teachers(self): """Get all teachers. :rtype: :py:class:`webuntis.objects.TeacherList` """ return objects.TeacherList, 'getTeachers', {} @result_wrapper def statusdata(self): """Information about lesson types and period codes, specifically about the colors used to highlight them in the web-interface of WebUntis. :rtype: :py:class:`webuntis.objects.StatusData` """ return objects.StatusData, 'getStatusData', {} @result_wrapper def last_import_time(self): """Information about the last change made. :rtype: py:class:`webuntis.objects.TimeStampObject` """ return objects.TimeStampObject, 'getLatestImportTime', {} @result_wrapper def substitutions(self, start, end, department_id=0): """Get all substitutions. :type start: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param start: The beginning of the time period. :type end: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param end: The end of the time period. :param department_id: int, set to 0 for all departments or if not applicable :rtype: :py:class:`webuntis.objects.SubstitutionList` """ parameters = self._create_date_param(end, start, departmentId=department_id) return objects.SubstitutionList, 'getSubstitutions', parameters @result_wrapper def timegrid_units(self): """Information about the Timegrid. :return: :rtype: :py:class:`webuntis.objects.TimegridObject` """ return objects.TimegridObject, 'getTimegridUnits', {} @result_wrapper def students(self): """Get all students :rtype: :py:class:`webuntis.objects.StudentsList` """ return objects.StudentsList, 'getStudents', {} @result_wrapper def exam_types(self): """Information about the Exam types. needs additional rights Master/Exam Types -- Stammdaten /Pruefungsart :rtype: :py:class:`webuntis.objects.ExamTypeList` """ return objects.ExamTypeList, 'getExamTypes', {} @result_wrapper def exams(self, start, end, exam_type_id=0): """Information about the Exams. :type start: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param start: The beginning of the time period. :type end: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param end: The end of the time period. :param exam_type_id: int - id of Exam, @TODO: allow examtype id/name :rtype: :py:class:`webuntis.objects.ExamsList` """ parameters = self._create_date_param(end, start, examTypeId=exam_type_id) return objects.ExamsList, 'getExams', parameters @result_wrapper def timetable_with_absences(self, start, end): """Information about the Exams. :type start: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param start: The beginning of the time period. :type end: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param end: The end of the time period. :rtype: :py:class:`webuntis.objects.AbsencesList` """ parameters = {u'options': self._create_date_param(end, start)} return objects.AbsencesList, 'getTimetableWithAbsences', parameters @result_wrapper def class_reg_events(self, start, end): """Information about the ClassRegEvents :type start: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param start: The beginning of the time period. :type end: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param end: The end of the time period. :rtype: :py:class:`webuntis.objects.ClassRegEventList` """ parameters = self._create_date_param(end, start) return objects.ClassRegEventList, 'getClassregEvents', parameters # @TODO this is a copy of timetable() @result_wrapper def class_reg_event_for_id(self, start, end, **type_and_id): """Get the Information about the ClassRegEvents for a specific school class and time period. :type start: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param start: The beginning of the time period. :type end: :py:class:`datetime.datetime` or :py:class:`datetime.date` or int :param end: The end of the time period. :rtype: :py:class:`webuntis.objects.ClassRegEventList` see timetable for the type_and_id parameter :raises: :exc:`ValueError`, :exc:`TypeError` """ element_type_table = { 'klasse': 1, 'teacher': 2, 'subject': 3, 'room': 4, 'student': 5 } invalid_type_error = TypeError( 'You have to specify exactly one of the following parameters by ' 'keyword: ' + (', '.join(element_type_table.keys())) ) if len(type_and_id) != 1: raise invalid_type_error element_type, element_id = list(type_and_id.items())[0] element_type = utils.userinput.string(element_type) if element_type not in element_type_table: raise invalid_type_error # if we have to deal with an object in element_id, # its id gets placed here anyway parameters = self._create_date_param(end, start, id=int(element_id), type=element_type_table[element_type]) return objects.ClassRegEventList, 'getClassregEvents', parameters @result_wrapper def class_reg_categories(self): """Information about the Request remark categories :rtype: :py:class:`webuntis.objects.ClassRegClassRegCategoryList` """ return objects.ClassRegCategoryList, 'getClassregCategories', {} @result_wrapper def class_reg_category_groups(self): """Information about the Request remark categories groups :rtype: :py:class:`webuntis.objects.ClassRegClassRegCategoryGroupList` """ return objects.ClassRegCategoryGroupList, 'getClassregCategoryGroups', {} @result_wrapper def class_reg_categories(self): return objects.ClassRegCategoryList, 'getClassregCategories', {} @result_wrapper def class_reg_category_groups(self): return objects.ClassRegCategoryGroupList, 'getClassregCategoryGroups', {} @staticmethod def _create_date_param(end, start, **kwargs): json_start = utils.datetime_utils.format_date(start) json_end = utils.datetime_utils.format_date(end) if json_start > json_end: raise ValueError('Start can\'t be later than the end.') parameters = dict({ 'startDate': json_start, 'endDate': json_end, }, **kwargs) return parameters def get_student(self, surname, fore_name, dob=0): """ Search for a student by name :param surname: family name :type surname: str :param fore_name: fore name :type fore_name: str :param dob: date of birth, use 0 if unknown -- unknown Unit! :type dob: int :return: a dummy StudentObject with just the id filled :raises: :exc:`KeyError` """ s = self._search(surname=surname, fore_name=fore_name, dob=dob, what=5) id = s._data if not id: raise KeyError("Student not found") data = {"id": id, "name": surname, "longName": surname, "foreName": fore_name} return objects.StudentObject(data=data, parent=s._parent, session=s._session) def get_teacher(self, surname, fore_name, dob=0): """ Search for a teacher by name :param surname: family name :type surname: str :param fore_name: fore name :type fore_name: str :param dob: date of birth, use 0 if unknown -- unknown Unit! :type dob: int :return: a dummy TeacherObject with just the id and name filled :raises: :exc:`KeyError` """ t = self._search(surname=surname, fore_name=fore_name, dob=dob, what=2) id = t._data if not id: raise KeyError("Teacher not found") data = {"id": id, "name": surname, "longName": surname, "foreName": fore_name, "title": ""} return objects.TeacherObject(data=data, parent=t._parent, session=t._session) @result_wrapper def _search(self, surname, fore_name, dob=0, what=-1): """ search for student or teacher :rtype: :py:class:`webuntis.objects._OnlyID` """ return objects.Result, 'getPersonId', { "sn": surname, "fn": fore_name, "dob": dob, "type": what } class Session(JSONRPCSession, ResultWrapperMixin): """The origin of everything you want to do with the WebUntis API. Can be used as a context-manager to provide automatic log-out. Configuration can be set with keyword arguments when initializing :py:class:`Session`. Unless noted otherwise, they get saved in a dictionary located in the instance's :py:attr:`config` attribute and can be modified afterwards. :type username: str :param username: The username used for the API. :type password: str :param password: The password used for the API. :type server: str :param server: A host name, a URL, or a URL without path. :: s = webuntis.Session(..., server='thalia.webuntis.com') # 'https://thalia.webuntis.com/WebUntis/jsonrpc.do' # Want to disable SSL? # make sure there's NO SLASH at the end! s.config['server'] = 'http://thalia.webuntis.com' # 'http://thalia.webuntis.com/WebUntis/jsonrpc.do' # or maybe use a completely different API endpoint? s.config['server'] = 'http://thalia.webuntis.com/WebUntis/jsonrpc2.do' # 'http://thalia.webuntis.com/WebUntis/jsonrpc2.do' # or just change the path? s.config['server'] = 'thalia.webuntis.com/WebUntis/jsonrpc2.do' # 'https://thalia.webuntis.com/WebUntis/jsonrpc2.do' s.config['server'] = '!"$%/WebUntis/jsonrpc.do' # ValueError: Not a valid hostname :type school: str :param school: A valid school name. :type useragent: str :param useragent: A string containing a useragent. Please include useful information, such as an email address, for the server maintainer. Just like you would do with the HTTP useragents of bots. :type cachelen: int :param cachelen: The maximum size of the internal cache. All results are saved in it, but they only get used if you set the ``from_cache`` parameter on a session method to ``True``. This parameter is not saved in the configuration dictionary. :: s.timetable(klasse=123) # saves in cache s.timetable(klasse=123) # fetch data again, override old value s.timetable(klasse=123, from_cache=True) # get directly from cache The reason this cache was added is that the API only allows you to fetch a whole list of objects (teachers/schoolclasses/...), not single ones. It would seriously harm performance to fetch the whole list each time we want information about a single object. Without the cache, i sometimes experienced a performance decrease about twenty seconds, so i wouldn't set the ``cachelen`` to anything smaller than ``5``. Default value is ``20``. You can clear the cache using:: s.cache.clear('timetable') # clears all cached timetables s.cache.clear() # clears everything from the cache :type jsessionid: str :param jsessionid: The session key to use. You usually shouldn't touch this. :type login_repeat: int :param login_repeat: The amount of times `python-webuntis` should try to login when finding no or an expired session. Default to ``0``, meaning it won't do that. :type use_cache: bool :param use_cache: always use the cache """ cache = None '''Contains the caching dictionary for requests.''' # Repeated here because sphinx doesn't recognize it when defined in # JSONRPCSession: config = None '''The config dictionary, filled with most keyword arguments from initialization.''' def __init__(self, **config): if 'use_cache' in config: result_wrapper.session_use_cache = bool(config['use_cache']) del config['use_cache'] cachelen = config.pop('cachelen', 20) self.cache = utils.SessionCache(maxlen=cachelen) JSONRPCSession.__init__(self, **config)
{ "content_hash": "cdc0b7e37c75fccef70919e09c2a3dca", "timestamp": "", "source": "github", "line_count": 607, "max_line_length": 103, "avg_line_length": 34.38550247116969, "alnum_prop": 0.6063146799540053, "repo_name": "maphy-psd/python-webuntis", "id": "50a862d3032f7b7b9440654552754240ee2b86e0", "size": "20872", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "webuntis/session.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Makefile", "bytes": "51" }, { "name": "Python", "bytes": "75861" } ], "symlink_target": "" }
"""Provides a variety of device interactions with power. """ # pylint: disable=unused-argument import collections import contextlib import csv import logging from pylib import constants from pylib.device import decorators from pylib.device import device_errors from pylib.device import device_utils from pylib.utils import timeout_retry _DEFAULT_TIMEOUT = 30 _DEFAULT_RETRIES = 3 _DEVICE_PROFILES = [ { 'name': 'Nexus 4', 'witness_file': '/sys/module/pm8921_charger/parameters/disabled', 'enable_command': ( 'echo 0 > /sys/module/pm8921_charger/parameters/disabled && ' 'dumpsys battery reset'), 'disable_command': ( 'echo 1 > /sys/module/pm8921_charger/parameters/disabled && ' 'dumpsys battery set ac 0 && dumpsys battery set usb 0'), 'charge_counter': None, 'voltage': None, 'current': None, }, { 'name': 'Nexus 5', # Nexus 5 # Setting the HIZ bit of the bq24192 causes the charger to actually ignore # energy coming from USB. Setting the power_supply offline just updates the # Android system to reflect that. 'witness_file': '/sys/kernel/debug/bq24192/INPUT_SRC_CONT', 'enable_command': ( 'echo 0x4A > /sys/kernel/debug/bq24192/INPUT_SRC_CONT && ' 'echo 1 > /sys/class/power_supply/usb/online &&' 'dumpsys battery reset'), 'disable_command': ( 'echo 0xCA > /sys/kernel/debug/bq24192/INPUT_SRC_CONT && ' 'chmod 644 /sys/class/power_supply/usb/online && ' 'echo 0 > /sys/class/power_supply/usb/online && ' 'dumpsys battery set ac 0 && dumpsys battery set usb 0'), 'charge_counter': None, 'voltage': None, 'current': None, }, { 'name': 'Nexus 6', 'witness_file': None, 'enable_command': ( 'echo 1 > /sys/class/power_supply/battery/charging_enabled && ' 'dumpsys battery reset'), 'disable_command': ( 'echo 0 > /sys/class/power_supply/battery/charging_enabled && ' 'dumpsys battery set ac 0 && dumpsys battery set usb 0'), 'charge_counter': ( '/sys/class/power_supply/max170xx_battery/charge_counter_ext'), 'voltage': '/sys/class/power_supply/max170xx_battery/voltage_now', 'current': '/sys/class/power_supply/max170xx_battery/current_now', }, { 'name': 'Nexus 9', 'witness_file': None, 'enable_command': ( 'echo Disconnected > ' '/sys/bus/i2c/drivers/bq2419x/0-006b/input_cable_state && ' 'dumpsys battery reset'), 'disable_command': ( 'echo Connected > ' '/sys/bus/i2c/drivers/bq2419x/0-006b/input_cable_state && ' 'dumpsys battery set ac 0 && dumpsys battery set usb 0'), 'charge_counter': ( '/sys/class/power_supply/max170xx_battery/charge_counter_ext'), 'voltage': '/sys/class/power_supply/max170xx_battery/voltage_now', 'current': '/sys/class/power_supply/max170xx_battery/current_now', }, { 'name': 'Nexus 10', 'witness_file': None, 'enable_command': None, 'disable_command': None, 'charge_counter': ( '/sys/class/power_supply/ds2784-fuelgauge/charge_counter_ext'), 'voltage': '/sys/class/power_supply/ds2784-fuelgauge/voltage_now', 'current': '/sys/class/power_supply/ds2784-fuelgauge/current_now', }, ] # The list of useful dumpsys columns. # Index of the column containing the format version. _DUMP_VERSION_INDEX = 0 # Index of the column containing the type of the row. _ROW_TYPE_INDEX = 3 # Index of the column containing the uid. _PACKAGE_UID_INDEX = 4 # Index of the column containing the application package. _PACKAGE_NAME_INDEX = 5 # The column containing the uid of the power data. _PWI_UID_INDEX = 1 # The column containing the type of consumption. Only consumtion since last # charge are of interest here. _PWI_AGGREGATION_INDEX = 2 # The column containing the amount of power used, in mah. _PWI_POWER_CONSUMPTION_INDEX = 5 class BatteryUtils(object): def __init__(self, device, default_timeout=_DEFAULT_TIMEOUT, default_retries=_DEFAULT_RETRIES): """BatteryUtils constructor. Args: device: A DeviceUtils instance. default_timeout: An integer containing the default number of seconds to wait for an operation to complete if no explicit value is provided. default_retries: An integer containing the default number or times an operation should be retried on failure if no explicit value is provided. Raises: TypeError: If it is not passed a DeviceUtils instance. """ if not isinstance(device, device_utils.DeviceUtils): raise TypeError('Must be initialized with DeviceUtils object.') self._device = device self._cache = device.GetClientCache(self.__class__.__name__) self._default_timeout = default_timeout self._default_retries = default_retries @decorators.WithTimeoutAndRetriesFromInstance() def SupportsFuelGauge(self, timeout=None, retries=None): """Detect if fuel gauge chip is present. Args: timeout: timeout in seconds retries: number of retries Returns: True if known fuel gauge files are present. False otherwise. """ self._DiscoverDeviceProfile() return (self._cache['profile']['enable_command'] != None and self._cache['profile']['charge_counter'] != None) @decorators.WithTimeoutAndRetriesFromInstance() def GetFuelGaugeChargeCounter(self, timeout=None, retries=None): """Get value of charge_counter on fuel gauge chip. Device must have charging disabled for this, not just battery updates disabled. The only device that this currently works with is the nexus 5. Args: timeout: timeout in seconds retries: number of retries Returns: value of charge_counter for fuel gauge chip in units of nAh. Raises: device_errors.CommandFailedError: If fuel gauge chip not found. """ if self.SupportsFuelGauge(): return int(self._device.ReadFile( self._cache['profile']['charge_counter'])) raise device_errors.CommandFailedError( 'Unable to find fuel gauge.') @decorators.WithTimeoutAndRetriesFromInstance() def GetNetworkData(self, package, timeout=None, retries=None): """Get network data for specific package. Args: package: package name you want network data for. timeout: timeout in seconds retries: number of retries Returns: Tuple of (sent_data, recieved_data) None if no network data found """ # If device_utils clears cache, cache['uids'] doesn't exist if 'uids' not in self._cache: self._cache['uids'] = {} if package not in self._cache['uids']: self.GetPowerData() if package not in self._cache['uids']: logging.warning('No UID found for %s. Can\'t get network data.', package) return None network_data_path = '/proc/uid_stat/%s/' % self._cache['uids'][package] try: send_data = int(self._device.ReadFile(network_data_path + 'tcp_snd')) # If ReadFile throws exception, it means no network data usage file for # package has been recorded. Return 0 sent and 0 received. except device_errors.AdbShellCommandFailedError: logging.warning('No sent data found for package %s', package) send_data = 0 try: recv_data = int(self._device.ReadFile(network_data_path + 'tcp_rcv')) except device_errors.AdbShellCommandFailedError: logging.warning('No received data found for package %s', package) recv_data = 0 return (send_data, recv_data) @decorators.WithTimeoutAndRetriesFromInstance() def GetPowerData(self, timeout=None, retries=None): """Get power data for device. Args: timeout: timeout in seconds retries: number of retries Returns: Dict of power data, keyed on package names. { package_name: { 'uid': uid, 'data': [1,2,3] }, } """ if 'uids' not in self._cache: self._cache['uids'] = {} dumpsys_output = self._device.RunShellCommand( ['dumpsys', 'batterystats', '-c'], check_return=True) csvreader = csv.reader(dumpsys_output) pwi_entries = collections.defaultdict(list) for entry in csvreader: if entry[_DUMP_VERSION_INDEX] not in ['8', '9']: # Wrong dumpsys version. raise device_errors.DeviceVersionError( 'Dumpsys version must be 8 or 9. %s found.' % entry[_DUMP_VERSION_INDEX]) if _ROW_TYPE_INDEX < len(entry) and entry[_ROW_TYPE_INDEX] == 'uid': current_package = entry[_PACKAGE_NAME_INDEX] if (self._cache['uids'].get(current_package) and self._cache['uids'].get(current_package) != entry[_PACKAGE_UID_INDEX]): raise device_errors.CommandFailedError( 'Package %s found multiple times with differnt UIDs %s and %s' % (current_package, self._cache['uids'][current_package], entry[_PACKAGE_UID_INDEX])) self._cache['uids'][current_package] = entry[_PACKAGE_UID_INDEX] elif (_PWI_POWER_CONSUMPTION_INDEX < len(entry) and entry[_ROW_TYPE_INDEX] == 'pwi' and entry[_PWI_AGGREGATION_INDEX] == 'l'): pwi_entries[entry[_PWI_UID_INDEX]].append( float(entry[_PWI_POWER_CONSUMPTION_INDEX])) return {p: {'uid': uid, 'data': pwi_entries[uid]} for p, uid in self._cache['uids'].iteritems()} @decorators.WithTimeoutAndRetriesFromInstance() def GetPackagePowerData(self, package, timeout=None, retries=None): """Get power data for particular package. Args: package: Package to get power data on. returns: Dict of UID and power data. { 'uid': uid, 'data': [1,2,3] } None if the package is not found in the power data. """ return self.GetPowerData().get(package) @decorators.WithTimeoutAndRetriesFromInstance() def GetBatteryInfo(self, timeout=None, retries=None): """Gets battery info for the device. Args: timeout: timeout in seconds retries: number of retries Returns: A dict containing various battery information as reported by dumpsys battery. """ result = {} # Skip the first line, which is just a header. for line in self._device.RunShellCommand( ['dumpsys', 'battery'], check_return=True)[1:]: # If usb charging has been disabled, an extra line of header exists. if 'UPDATES STOPPED' in line: logging.warning('Dumpsys battery not receiving updates. ' 'Run dumpsys battery reset if this is in error.') elif ':' not in line: logging.warning('Unknown line found in dumpsys battery: "%s"', line) else: k, v = line.split(':', 1) result[k.strip()] = v.strip() return result @decorators.WithTimeoutAndRetriesFromInstance() def GetCharging(self, timeout=None, retries=None): """Gets the charging state of the device. Args: timeout: timeout in seconds retries: number of retries Returns: True if the device is charging, false otherwise. """ battery_info = self.GetBatteryInfo() for k in ('AC powered', 'USB powered', 'Wireless powered'): if (k in battery_info and battery_info[k].lower() in ('true', '1', 'yes')): return True return False @decorators.WithTimeoutAndRetriesFromInstance() def SetCharging(self, enabled, timeout=None, retries=None): """Enables or disables charging on the device. Args: enabled: A boolean indicating whether charging should be enabled or disabled. timeout: timeout in seconds retries: number of retries Raises: device_errors.CommandFailedError: If method of disabling charging cannot be determined. """ self._DiscoverDeviceProfile() if not self._cache['profile']['enable_command']: raise device_errors.CommandFailedError( 'Unable to find charging commands.') if enabled: command = self._cache['profile']['enable_command'] else: command = self._cache['profile']['disable_command'] def set_and_verify_charging(): self._device.RunShellCommand(command, check_return=True) return self.GetCharging() == enabled timeout_retry.WaitFor(set_and_verify_charging, wait_period=1) # TODO(rnephew): Make private when all use cases can use the context manager. @decorators.WithTimeoutAndRetriesFromInstance() def DisableBatteryUpdates(self, timeout=None, retries=None): """Resets battery data and makes device appear like it is not charging so that it will collect power data since last charge. Args: timeout: timeout in seconds retries: number of retries Raises: device_errors.CommandFailedError: When resetting batterystats fails to reset power values. device_errors.DeviceVersionError: If device is not L or higher. """ def battery_updates_disabled(): return self.GetCharging() is False self._ClearPowerData() self._device.RunShellCommand(['dumpsys', 'battery', 'set', 'ac', '0'], check_return=True) self._device.RunShellCommand(['dumpsys', 'battery', 'set', 'usb', '0'], check_return=True) timeout_retry.WaitFor(battery_updates_disabled, wait_period=1) # TODO(rnephew): Make private when all use cases can use the context manager. @decorators.WithTimeoutAndRetriesFromInstance() def EnableBatteryUpdates(self, timeout=None, retries=None): """Restarts device charging so that dumpsys no longer collects power data. Args: timeout: timeout in seconds retries: number of retries Raises: device_errors.DeviceVersionError: If device is not L or higher. """ def battery_updates_enabled(): return (self.GetCharging() or not bool('UPDATES STOPPED' in self._device.RunShellCommand( ['dumpsys', 'battery'], check_return=True))) self._device.RunShellCommand(['dumpsys', 'battery', 'reset'], check_return=True) timeout_retry.WaitFor(battery_updates_enabled, wait_period=1) @contextlib.contextmanager def BatteryMeasurement(self, timeout=None, retries=None): """Context manager that enables battery data collection. It makes the device appear to stop charging so that dumpsys will start collecting power data since last charge. Once the with block is exited, charging is resumed and power data since last charge is no longer collected. Only for devices L and higher. Example usage: with BatteryMeasurement(): browser_actions() get_power_data() # report usage within this block after_measurements() # Anything that runs after power # measurements are collected Args: timeout: timeout in seconds retries: number of retries Raises: device_errors.DeviceVersionError: If device is not L or higher. """ if (self._device.build_version_sdk < constants.ANDROID_SDK_VERSION_CODES.LOLLIPOP): raise device_errors.DeviceVersionError('Device must be L or higher.') try: self.DisableBatteryUpdates(timeout=timeout, retries=retries) yield finally: self.EnableBatteryUpdates(timeout=timeout, retries=retries) def ChargeDeviceToLevel(self, level, wait_period=60): """Enables charging and waits for device to be charged to given level. Args: level: level of charge to wait for. wait_period: time in seconds to wait between checking. """ self.SetCharging(True) def device_charged(): battery_level = self.GetBatteryInfo().get('level') if battery_level is None: logging.warning('Unable to find current battery level.') battery_level = 100 else: logging.info('current battery level: %s', battery_level) battery_level = int(battery_level) return battery_level >= level timeout_retry.WaitFor(device_charged, wait_period=wait_period) def LetBatteryCoolToTemperature(self, target_temp, wait_period=60): """Lets device sit to give battery time to cool down Args: temp: maximum temperature to allow in tenths of degrees c. wait_period: time in seconds to wait between checking. """ def cool_device(): temp = self.GetBatteryInfo().get('temperature') if temp is None: logging.warning('Unable to find current battery temperature.') temp = 0 else: logging.info('Current battery temperature: %s', temp) return int(temp) <= target_temp logging.info('Waiting for the device to cool down to %s (0.1 C)', target_temp) timeout_retry.WaitFor(cool_device, wait_period=wait_period) @decorators.WithTimeoutAndRetriesFromInstance() def TieredSetCharging(self, enabled, timeout=None, retries=None): """Enables or disables charging on the device. Args: enabled: A boolean indicating whether charging should be enabled or disabled. timeout: timeout in seconds retries: number of retries """ if self.GetCharging() == enabled: logging.warning('Device charging already in expected state: %s', enabled) return if enabled: try: self.SetCharging(enabled) except device_errors.CommandFailedError: logging.info('Unable to enable charging via hardware.' ' Falling back to software enabling.') self.EnableBatteryUpdates() else: try: self._ClearPowerData() self.SetCharging(enabled) except device_errors.CommandFailedError: logging.info('Unable to disable charging via hardware.' ' Falling back to software disabling.') self.DisableBatteryUpdates() @contextlib.contextmanager def PowerMeasurement(self, timeout=None, retries=None): """Context manager that enables battery power collection. Once the with block is exited, charging is resumed. Will attempt to disable charging at the hardware level, and if that fails will fall back to software disabling of battery updates. Only for devices L and higher. Example usage: with PowerMeasurement(): browser_actions() get_power_data() # report usage within this block after_measurements() # Anything that runs after power # measurements are collected Args: timeout: timeout in seconds retries: number of retries """ try: self.TieredSetCharging(False, timeout=timeout, retries=retries) yield finally: self.TieredSetCharging(True, timeout=timeout, retries=retries) def _ClearPowerData(self): """Resets battery data and makes device appear like it is not charging so that it will collect power data since last charge. Returns: True if power data cleared. False if power data clearing is not supported (pre-L) Raises: device_errors.DeviceVersionError: If power clearing is supported, but fails. """ if (self._device.build_version_sdk < constants.ANDROID_SDK_VERSION_CODES.LOLLIPOP): logging.warning('Dumpsys power data only available on 5.0 and above. ' 'Cannot clear power data.') return False self._device.RunShellCommand( ['dumpsys', 'battery', 'set', 'usb', '1'], check_return=True) self._device.RunShellCommand( ['dumpsys', 'battery', 'set', 'ac', '1'], check_return=True) self._device.RunShellCommand( ['dumpsys', 'batterystats', '--reset'], check_return=True) battery_data = self._device.RunShellCommand( ['dumpsys', 'batterystats', '--charged', '--checkin'], check_return=True, large_output=True) for line in battery_data: l = line.split(',') if (len(l) > _PWI_POWER_CONSUMPTION_INDEX and l[_ROW_TYPE_INDEX] == 'pwi' and l[_PWI_POWER_CONSUMPTION_INDEX] != 0): self._device.RunShellCommand( ['dumpsys', 'battery', 'reset'], check_return=True) raise device_errors.CommandFailedError( 'Non-zero pmi value found after reset.') self._device.RunShellCommand( ['dumpsys', 'battery', 'reset'], check_return=True) return True def _DiscoverDeviceProfile(self): """Checks and caches device information. Returns: True if profile is found, false otherwise. """ if 'profile' in self._cache: return True for profile in _DEVICE_PROFILES: if self._device.product_model == profile['name']: self._cache['profile'] = profile return True self._cache['profile'] = { 'name': None, 'witness_file': None, 'enable_command': None, 'disable_command': None, 'charge_counter': None, 'voltage': None, 'current': None, } return False
{ "content_hash": "4bd53e6d2b2f597c85f12d7730301f99", "timestamp": "", "source": "github", "line_count": 591, "max_line_length": 80, "avg_line_length": 35.7580372250423, "alnum_prop": 0.6503099417971893, "repo_name": "SaschaMester/delicium", "id": "7c106a97ff3ceb512b278c462143664fb1c5b941", "size": "21296", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "build/android/pylib/device/battery_utils.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "AppleScript", "bytes": "6973" }, { "name": "Arduino", "bytes": "464" }, { "name": "Assembly", "bytes": "23829" }, { "name": "Batchfile", "bytes": "8451" }, { "name": "C", "bytes": "4171711" }, { "name": "C++", "bytes": "243066171" }, { "name": "CSS", "bytes": "935112" }, { "name": "DM", "bytes": "60" }, { "name": "Groff", "bytes": "2494" }, { "name": "HTML", "bytes": "27211018" }, { "name": "Java", "bytes": "14285999" }, { "name": "JavaScript", "bytes": "20413885" }, { "name": "Makefile", "bytes": "23496" }, { "name": "Objective-C", "bytes": "1725804" }, { "name": "Objective-C++", "bytes": "9880229" }, { "name": "PHP", "bytes": "97817" }, { "name": "PLpgSQL", "bytes": "178732" }, { "name": "Perl", "bytes": "63937" }, { "name": "Protocol Buffer", "bytes": "478406" }, { "name": "Python", "bytes": "8261413" }, { "name": "Shell", "bytes": "482077" }, { "name": "Standard ML", "bytes": "5034" }, { "name": "XSLT", "bytes": "418" }, { "name": "nesC", "bytes": "18347" } ], "symlink_target": "" }
import urllib from datetime import datetime, timedelta from django.contrib.auth.models import User from django.contrib.sites.models import Site from django.core.mail import send_mail from django.core.urlresolvers import reverse, reverse_lazy from django.db import models from django.template.loader import render_to_string from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from hackingweek import settings class Category(models.Model): name = models.CharField(max_length=128) class Meta: verbose_name_plural = "categories" def __unicode__(self): return self.name class Challenge(models.Model): category = models.ForeignKey(Category) name = models.CharField(max_length=128) author = models.CharField(max_length=128) body = models.CharField(max_length=4096) # TODO: Keys should be stored hashed in case somebody manage to dump the db key = models.CharField(max_length=512) def __unicode__(self): return self.name class UserProfile(models.Model): """Decorate the regular User model with extra information about the user""" user = models.OneToOneField(User) status = models.CharField(max_length=32) organisation = models.CharField(max_length=128) class Team(models.Model): name = models.CharField(max_length=128, unique=True) members = models.ManyToManyField(User, null=True, blank=True) # Storing Team score data score = models.IntegerField(default=0) breakthroughs = models.IntegerField(default=0) # The 'is_active' field denotes if the team has validated at least # one challenge in order to know if it has to be considered as # active in the contest. is_active = models.BooleanField(default=False) def __unicode__(self): return self.name class Validation(models.Model): date = models.DateTimeField(default=timezone.now) user = models.ForeignKey(User, related_name='validation_user') team = models.ForeignKey(Team, related_name='validation_team') challenge = models.ForeignKey(Challenge, related_name='validation_challenge') class TeamJoinRequest(models.Model): team = models.ForeignKey(Team) requester = models.ForeignKey(User, related_name='teamjoinrequest_requester') responder = models.ForeignKey(User, related_name='teamjoinrequest_responder') created = models.DateTimeField(default=timezone.now) key = models.CharField(max_length=64, unique=True) @classmethod def create(cls, request=None, **kwargs): # Check if a similar request already exists before proceeding try: _object = cls.objects.get(requester=kwargs['requester'], responder=kwargs['responder'], team=kwargs['team']) # If the request has expired keep going #if _object.key_expired(): # raise cls.DoesNotExist # If not, return None joinrequest = None except cls.DoesNotExist: from uuid import uuid1 kwargs['key'] = uuid1().hex joinrequest = cls(**kwargs) joinrequest.save() return joinrequest def send_join_request(self): protocol = getattr(settings, "DEFAULT_HTTP_PROTOCOL", "http") current_site = Site.objects.get_current() accept_url = "{0}://{1}{2}".format( protocol, current_site.domain, reverse('team_join_accept', kwargs = {'pk': self.team.pk, 'key': self.key,} ) ) ctx = { "team" : self.team, "username" : self.requester.username, "current_site": current_site, "accept_url" : accept_url, } subject = render_to_string("email/team_join_request_subject.txt", ctx) message = render_to_string("email/team_join_request_message.txt", ctx) send_mail(subject.rstrip(), message, settings.DEFAULT_FROM_EMAIL, [self.responder.email]) def send_join_accept(self): ctx = { "team" : self.team.name, "responder" : self.responder.username, "requester" : self.requester.username, "site": Site.objects.get_current().name, } subject = render_to_string("email/team_join_accept_subject.txt", ctx) message = render_to_string("email/team_join_accept_message.txt", ctx) for member in self.team.members.all(): send_mail(subject.rstrip(), message, settings.DEFAULT_FROM_EMAIL, [member.email]) def key_expired(self): expiration_date = self.created + \ timedelta(days=settings.TEAM_JOIN_REQUEST_EXPIRE_DAYS) if expiration_date <= timezone.now(): self.delete() return expiration_date <= timezone.now()
{ "content_hash": "567d1f2779fa2ef8acfb7d440c4c0697", "timestamp": "", "source": "github", "line_count": 147, "max_line_length": 81, "avg_line_length": 34.326530612244895, "alnum_prop": 0.6236623067776457, "repo_name": "perror/hackingweek", "id": "7e654b4bed83f903f008ced5fd23a13ca4d627c3", "size": "5046", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "hackingweek/models.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "CSS", "bytes": "152334" }, { "name": "HTML", "bytes": "43079" }, { "name": "JavaScript", "bytes": "573" }, { "name": "Makefile", "bytes": "2963" }, { "name": "Python", "bytes": "70441" } ], "symlink_target": "" }
import elastictools.elasticclient import elastictools.request
{ "content_hash": "8655c87367d9cff877e12eb8902d4c3a", "timestamp": "", "source": "github", "line_count": 3, "max_line_length": 33, "avg_line_length": 21, "alnum_prop": 0.8888888888888888, "repo_name": "skyhound/elastic-tools", "id": "e0904f29500b23ac0ea5cd4020d7acc73ac74b4f", "size": "63", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "elastictools/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "83" }, { "name": "Python", "bytes": "20679" } ], "symlink_target": "" }
from typing import Any, Callable, Dict, List, Optional, TypeVar from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._virtual_machine_images_edge_zone_operations import ( build_get_request, build_list_offers_request, build_list_publishers_request, build_list_request, build_list_skus_request, ) T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class VirtualMachineImagesEdgeZoneOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.compute.v2021_03_01.aio.ComputeManagementClient`'s :attr:`virtual_machine_images_edge_zone` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace_async async def get( self, location: str, edge_zone: str, publisher_name: str, offer: str, skus: str, version: str, **kwargs: Any ) -> _models.VirtualMachineImage: """Gets a virtual machine image in an edge zone. :param location: The name of a supported Azure region. Required. :type location: str :param edge_zone: The name of the edge zone. Required. :type edge_zone: str :param publisher_name: A valid image publisher. Required. :type publisher_name: str :param offer: A valid image publisher offer. Required. :type offer: str :param skus: A valid image SKU. Required. :type skus: str :param version: A valid image SKU version. Required. :type version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VirtualMachineImage or the result of cls(response) :rtype: ~azure.mgmt.compute.v2021_03_01.models.VirtualMachineImage :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-03-01")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[_models.VirtualMachineImage] request = build_get_request( location=location, edge_zone=edge_zone, publisher_name=publisher_name, offer=offer, skus=skus, version=version, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.CloudErrorAutoGenerated, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("VirtualMachineImage", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/edgeZones/{edgeZone}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus/{skus}/versions/{version}"} # type: ignore @distributed_trace_async async def list( self, location: str, edge_zone: str, publisher_name: str, offer: str, skus: str, expand: Optional[str] = None, top: Optional[int] = None, orderby: Optional[str] = None, **kwargs: Any ) -> List[_models.VirtualMachineImageResource]: """Gets a list of all virtual machine image versions for the specified location, edge zone, publisher, offer, and SKU. :param location: The name of a supported Azure region. Required. :type location: str :param edge_zone: The name of the edge zone. Required. :type edge_zone: str :param publisher_name: A valid image publisher. Required. :type publisher_name: str :param offer: A valid image publisher offer. Required. :type offer: str :param skus: A valid image SKU. Required. :type skus: str :param expand: The expand expression to apply on the operation. Default value is None. :type expand: str :param top: An integer value specifying the number of images to return that matches supplied values. Default value is None. :type top: int :param orderby: Specifies the order of the results returned. Formatted as an OData query. Default value is None. :type orderby: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineImageResource or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2021_03_01.models.VirtualMachineImageResource] :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-03-01")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[List[_models.VirtualMachineImageResource]] request = build_list_request( location=location, edge_zone=edge_zone, publisher_name=publisher_name, offer=offer, skus=skus, subscription_id=self._config.subscription_id, expand=expand, top=top, orderby=orderby, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.CloudErrorAutoGenerated, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("[VirtualMachineImageResource]", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/edgeZones/{edgeZone}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus/{skus}/versions"} # type: ignore @distributed_trace_async async def list_offers( self, location: str, edge_zone: str, publisher_name: str, **kwargs: Any ) -> List[_models.VirtualMachineImageResource]: """Gets a list of virtual machine image offers for the specified location, edge zone and publisher. :param location: The name of a supported Azure region. Required. :type location: str :param edge_zone: The name of the edge zone. Required. :type edge_zone: str :param publisher_name: A valid image publisher. Required. :type publisher_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineImageResource or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2021_03_01.models.VirtualMachineImageResource] :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-03-01")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[List[_models.VirtualMachineImageResource]] request = build_list_offers_request( location=location, edge_zone=edge_zone, publisher_name=publisher_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_offers.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.CloudErrorAutoGenerated, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("[VirtualMachineImageResource]", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_offers.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/edgeZones/{edgeZone}/publishers/{publisherName}/artifacttypes/vmimage/offers"} # type: ignore @distributed_trace_async async def list_publishers( self, location: str, edge_zone: str, **kwargs: Any ) -> List[_models.VirtualMachineImageResource]: """Gets a list of virtual machine image publishers for the specified Azure location and edge zone. :param location: The name of a supported Azure region. Required. :type location: str :param edge_zone: The name of the edge zone. Required. :type edge_zone: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineImageResource or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2021_03_01.models.VirtualMachineImageResource] :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-03-01")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[List[_models.VirtualMachineImageResource]] request = build_list_publishers_request( location=location, edge_zone=edge_zone, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_publishers.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.CloudErrorAutoGenerated, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("[VirtualMachineImageResource]", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_publishers.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/edgeZones/{edgeZone}/publishers"} # type: ignore @distributed_trace_async async def list_skus( self, location: str, edge_zone: str, publisher_name: str, offer: str, **kwargs: Any ) -> List[_models.VirtualMachineImageResource]: """Gets a list of virtual machine image SKUs for the specified location, edge zone, publisher, and offer. :param location: The name of a supported Azure region. Required. :type location: str :param edge_zone: The name of the edge zone. Required. :type edge_zone: str :param publisher_name: A valid image publisher. Required. :type publisher_name: str :param offer: A valid image publisher offer. Required. :type offer: str :keyword callable cls: A custom type or function that will be passed the direct response :return: list of VirtualMachineImageResource or the result of cls(response) :rtype: list[~azure.mgmt.compute.v2021_03_01.models.VirtualMachineImageResource] :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop("api_version", _params.pop("api-version", "2021-03-01")) # type: str cls = kwargs.pop("cls", None) # type: ClsType[List[_models.VirtualMachineImageResource]] request = build_list_skus_request( location=location, edge_zone=edge_zone, publisher_name=publisher_name, offer=offer, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_skus.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.CloudErrorAutoGenerated, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("[VirtualMachineImageResource]", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_skus.metadata = {"url": "/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/edgeZones/{edgeZone}/publishers/{publisherName}/artifacttypes/vmimage/offers/{offer}/skus"} # type: ignore
{ "content_hash": "25f8f8c40a00e8ca8b834a944a1e9fca", "timestamp": "", "source": "github", "line_count": 407, "max_line_length": 242, "avg_line_length": 43.958230958230956, "alnum_prop": 0.6497121457716171, "repo_name": "Azure/azure-sdk-for-python", "id": "eb3ff6e4aff7256d9cbafd97a59274d15bc82a4d", "size": "18391", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2021_03_01/aio/operations/_virtual_machine_images_edge_zone_operations.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
from nose.plugins.attrib import attr import unittest #from pyon.ion.endpoint import ProcessRPCClient from pyon.public import log, IonObject, RT, PRED, BadRequest from pyon.util.int_test import IonIntegrationTestCase from pyon.agent.agent import ResourceAgentClient from pyon.util.context import LocalContextMixin from coverage_model.coverage import GridDomain, GridShape, CRS from coverage_model.basic_types import MutabilityEnum, AxisTypeEnum from ion.services.dm.utility.granule.taxonomy import TaxyTool from ion.services.dm.utility.granule_utils import time_series_domain from ion.services.dm.inventory.dataset_management_service import DatasetManagementService # MI imports from ion.agents.instrument.instrument_agent import InstrumentAgentState from interface.objects import AgentCommand from interface.services.coi.iresource_registry_service import ResourceRegistryServiceClient from interface.services.dm.ipubsub_management_service import PubsubManagementServiceClient from interface.services.dm.idataset_management_service import DatasetManagementServiceClient from interface.services.sa.idata_product_management_service import DataProductManagementServiceClient from interface.services.sa.idata_acquisition_management_service import DataAcquisitionManagementServiceClient # Agent parameters. EDA_RESOURCE_ID = '123xyz' EDA_NAME = 'ExampleEDA' EDA_MOD = 'ion.agents.data.external_dataset_agent' EDA_CLS = 'ExternalDatasetAgent' class FakeProcess(LocalContextMixin): """ A fake process used because the test case is not an ion process. """ name = '' id='' process_type = '' @attr('INT', group='sa') class TestExternalDatasetAgentMgmt(IonIntegrationTestCase): # DataHandler config DVR_CONFIG = { 'dvr_mod' : 'ion.agents.data.handlers.base_data_handler', 'dvr_cls' : 'DummyDataHandler', } def setUp(self): # Start container self._start_container() self.container.start_rel_from_url('res/deploy/r2deploy.yml') log.debug("TestExternalDatasetAgentMgmt: started services") # Now create client to DataProductManagementService self.rrclient = ResourceRegistryServiceClient(node=self.container.node) self.damsclient = DataAcquisitionManagementServiceClient(node=self.container.node) self.pubsubcli = PubsubManagementServiceClient(node=self.container.node) self.dpclient = DataProductManagementServiceClient(node=self.container.node) self.datasetclient = DatasetManagementServiceClient(node=self.container.node) # @unittest.skip('not yet working. fix activate_data_product_persistence()') #@unittest.skip() @unittest.skip('not working') def test_activateDatasetAgent(self): # Create ExternalDatasetModel datsetModel_obj = IonObject(RT.ExternalDatasetModel, name='ExampleDatasetModel', description="ExampleDatasetModel", datset_type="FibSeries" ) try: datasetModel_id = self.damsclient.create_external_dataset_model(datsetModel_obj) except BadRequest as ex: self.fail("failed to create new ExternalDatasetModel: %s" %ex) log.debug("TestExternalDatasetAgentMgmt: new ExternalDatasetModel id = %s", str(datasetModel_id) ) # Create ExternalDatasetAgent datasetAgent_obj = IonObject(RT.ExternalDatasetAgent, name='datasetagent007', description="datasetagent007", handler_module=EDA_MOD, handler_class=EDA_CLS ) try: datasetAgent_id = self.damsclient.create_external_dataset_agent(datasetAgent_obj, datasetModel_id) except BadRequest as ex: self.fail("failed to create new ExternalDatasetAgent: %s" %ex) log.debug("TestExternalDatasetAgentMgmt: new ExternalDatasetAgent id = %s", str(datasetAgent_id) ) # Create ExternalDataset log.debug('TestExternalDatasetAgentMgmt: Create external dataset resource ') extDataset_obj = IonObject(RT.ExternalDataset, name='ExtDataset', description="ExtDataset" ) try: extDataset_id = self.damsclient.create_external_dataset(extDataset_obj, datasetModel_id) except BadRequest as ex: self.fail("failed to create new external dataset resource: %s" %ex) log.debug("TestExternalDatasetAgentMgmt: new ExternalDataset id = %s ", str(extDataset_id)) #register the dataset as a data producer dproducer_id = self.damsclient.register_external_data_set(extDataset_id) # create a stream definition for the data from the ctd simulator pdict_id = self.dataset_management.read_parameter_dictionary_by_name('ctd_parsed_param_dict', id_only=True) ctd_stream_def_id = self.pubsubcli.create_stream_definition(name='SBE37_CDM', parameter_dictionary_id=pdict_id) log.debug("TestExternalDatasetAgentMgmt: new Stream Definition id = %s", str(ctd_stream_def_id)) log.debug("TestExternalDatasetAgentMgmt: Creating new data product with a stream definition") dp_obj = IonObject(RT.DataProduct,name='eoi dataset data',description=' stream test') dp_obj = IonObject(RT.DataProduct, name='DP1', description='some new dp') data_product_id1 = self.dpclient.create_data_product(dp_obj, ctd_stream_def_id) log.debug("TestExternalDatasetAgentMgmt: new dp_id = %s", str(data_product_id1) ) self.damsclient.assign_data_product(input_resource_id=extDataset_id, data_product_id=data_product_id1) #todo fix the problem here.... self.dpclient.activate_data_product_persistence(data_product_id=data_product_id1) # Retrieve the id of the OUTPUT stream from the out Data Product stream_ids, _ = self.rrclient.find_objects(data_product_id1, PRED.hasStream, None, True) log.debug("TestExternalDatasetAgentMgmt: Data product streams1 = %s", str(stream_ids) ) stream_id = stream_ids[0] # Build a taxonomy for the dataset tx = TaxyTool() tx.add_taxonomy_set('data', 'external_data') # Augment the DVR_CONFIG with the necessary pieces self.DVR_CONFIG['dh_cfg'] = { 'TESTING':True, 'stream_id':stream_id,#TODO: This should probably be a 'stream_config' dict with stream_name:stream_id members 'data_producer_id':dproducer_id, # 'external_dataset_res':extDataset_obj, # Not needed - retrieved by EDA based on resource_id 'taxonomy':tx.dump(), #TODO: Currently does not support sets 'max_records':4, } # Create agent config. self._stream_config = {} agent_config = { 'driver_config' : self.DVR_CONFIG, 'stream_config' : self._stream_config, 'agent' : {'resource_id': EDA_RESOURCE_ID}, 'test_mode' : True } extDatasetAgentInstance_obj = IonObject(RT.ExternalDatasetAgentInstance, name='DatasetAgentInstance', description="DatasetAgentInstance", dataset_driver_config = self.DVR_CONFIG, dataset_agent_config = agent_config) extDatasetAgentInstance_id = self.damsclient.create_external_dataset_agent_instance(external_dataset_agent_instance=extDatasetAgentInstance_obj, external_dataset_agent_id=datasetAgent_id, external_dataset_id=extDataset_id) log.debug("TestExternalDatasetAgentMgmt: Dataset agent instance obj: = %s", str(extDatasetAgentInstance_obj) ) log.debug("TestExternalDatasetAgentMgmt: Dataset agent instance id: = %s", str(extDatasetAgentInstance_id) ) #Check that the instance is currently not active id, active = self.damsclient.retrieve_external_dataset_agent_instance(extDataset_id) log.debug("TestExternalDatasetAgentMgmt: Dataset agent instance id: = %s active 1 = %s ", str(id), str(active) ) self.damsclient.start_external_dataset_agent_instance(extDatasetAgentInstance_id) dataset_agent_instance_obj= self.damsclient.read_external_dataset_agent_instance(extDatasetAgentInstance_id) log.debug("TestExternalDatasetAgentMgmt: Dataset agent instance obj: = %s", str(dataset_agent_instance_obj) ) # now the instance process should be active id, active = self.damsclient.retrieve_external_dataset_agent_instance(extDataset_id) log.debug("TestExternalDatasetAgentMgmt: Dataset agent instance id: = %s active 2 = %s ", str(id), str(active) ) # Start a resource agent client to talk with the instrument agent. self._dsa_client = ResourceAgentClient(extDataset_id, process=FakeProcess()) print 'TestExternalDatasetAgentMgmt: got ia client %s', self._dsa_client log.debug("TestExternalDatasetAgentMgmt: got dataset client %s", str(self._dsa_client)) # cmd=AgentCommand(command='initialize') # _ = self._dsa_client.execute_agent(cmd) # # cmd = AgentCommand(command='go_active') # _ = self._dsa_client.execute_agent(cmd) # # cmd = AgentCommand(command='run') # _ = self._dsa_client.execute_agent(cmd) # # log.info('Send an unconstrained request for data (\'new data\')') # cmd = AgentCommand(command='acquire_data') # self._dsa_client.execute(cmd) # # log.info('Send a second unconstrained request for data (\'new data\'), should be rejected') # cmd = AgentCommand(command='acquire_data') # self._dsa_client.execute(cmd) # # cmd = AgentCommand(command='reset') # _ = self._dsa_client.execute_agent(cmd) # cmd = AgentCommand(command='get_current_state') # retval = self._dsa_client.execute_agent(cmd) # state = retval.result # TODO: Think about what we really should be testing at this point # The following is taken from ion.agents.data.test.test_external_dataset_agent.ExternalDatasetAgentTestBase.test_states() # TODO: Do we also need to show data retrieval? cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.UNINITIALIZED) cmd = AgentCommand(command='initialize') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.INACTIVE) cmd = AgentCommand(command='go_active') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.IDLE) cmd = AgentCommand(command='run') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.OBSERVATORY) cmd = AgentCommand(command='pause') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.STOPPED) cmd = AgentCommand(command='resume') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.OBSERVATORY) cmd = AgentCommand(command='clear') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.IDLE) cmd = AgentCommand(command='run') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.OBSERVATORY) cmd = AgentCommand(command='pause') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.STOPPED) cmd = AgentCommand(command='clear') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.IDLE) cmd = AgentCommand(command='run') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.OBSERVATORY) cmd = AgentCommand(command='reset') retval = self._dsa_client.execute_agent(cmd) cmd = AgentCommand(command='get_current_state') retval = self._dsa_client.execute_agent(cmd) state = retval.result self.assertEqual(state, InstrumentAgentState.UNINITIALIZED) #------------------------------- # Deactivate InstrumentAgentInstance #------------------------------- self.damsclient.stop_external_dataset_agent_instance(extDatasetAgentInstance_id) def test_dataset_agent_prepare_support(self): eda_sup = self.damsclient.prepare_external_dataset_agent_support() eda_obj = IonObject(RT.ExternalDatasetAgent, name="ExternalDatasetAgent") eda_id = self.damsclient.create_external_dataset_agent(eda_obj) eda_sup = self.damsclient.prepare_external_dataset_agent_support(external_dataset_agent_id=eda_id) edai_sup = self.damsclient.prepare_external_dataset_agent_instance_support() edai_obj = IonObject(RT.ExternalDatasetAgentInstance, name="ExternalDatasetAgentInstance") edai_id = self.damsclient.create_external_dataset_agent_instance(edai_obj) edai_sup = self.damsclient.prepare_external_dataset_agent_instance_support(external_dataset_agent_instance_id=edai_id)
{ "content_hash": "8c8ed6732fe654c90a529f2e646b22b5", "timestamp": "", "source": "github", "line_count": 310, "max_line_length": 230, "avg_line_length": 46.55806451612903, "alnum_prop": 0.6950045035682118, "repo_name": "ooici/coi-services", "id": "6d4d9c3849cf24b8614b36d94858b39a7623fb71", "size": "14433", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ion/services/sa/acquisition/test/test_external_dataset_agent_mgmt.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "C", "bytes": "403012" }, { "name": "C++", "bytes": "251803" }, { "name": "CSS", "bytes": "689" }, { "name": "Erlang", "bytes": "532" }, { "name": "JavaScript", "bytes": "11627" }, { "name": "Objective-C", "bytes": "8918" }, { "name": "Python", "bytes": "7964384" }, { "name": "Shell", "bytes": "9221" }, { "name": "nesC", "bytes": "57712131" } ], "symlink_target": "" }
import asyncio import logging import signal from contextlib import AsyncExitStack from typing import Any from urllib.parse import SplitResult import __main__ from asgiref.sync import async_to_sync, sync_to_async from django.conf import settings from django.core.management.base import BaseCommand, CommandError, CommandParser from tornado import autoreload from tornado.platform.asyncio import AsyncIOMainLoop settings.RUNNING_INSIDE_TORNADO = True if settings.PRODUCTION: settings.SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") from zerver.lib.async_utils import NoAutoCreateEventLoopPolicy from zerver.lib.debug import interactive_debug_listen from zerver.tornado.application import create_tornado_application, setup_tornado_rabbitmq from zerver.tornado.descriptors import set_current_port from zerver.tornado.event_queue import ( add_client_gc_hook, dump_event_queues, get_wrapped_process_notification, missedmessage_hook, setup_event_queue, ) from zerver.tornado.sharding import notify_tornado_queue_name if settings.USING_RABBITMQ: from zerver.lib.queue import TornadoQueueClient, set_queue_client asyncio.set_event_loop_policy(NoAutoCreateEventLoopPolicy()) class Command(BaseCommand): help = "Starts a Tornado Web server wrapping Django." def add_arguments(self, parser: CommandParser) -> None: parser.add_argument( "addrport", help="[port number or ipaddr:port]", ) def handle(self, *args: Any, **options: Any) -> None: interactive_debug_listen() addrport = options["addrport"] assert isinstance(addrport, str) from tornado import httpserver if addrport.isdigit(): addr, port = "", int(addrport) else: r = SplitResult("", addrport, "", "", "") if r.port is None: raise CommandError(f"{addrport!r} does not have a valid port number.") addr, port = r.hostname or "", r.port if not addr: addr = "127.0.0.1" if settings.DEBUG: logging.basicConfig( level=logging.INFO, format="%(asctime)s %(levelname)-8s %(message)s" ) async def inner_run() -> None: from django.utils import translation AsyncIOMainLoop().install() loop = asyncio.get_running_loop() stop_fut = loop.create_future() def stop() -> None: if not stop_fut.done(): stop_fut.set_result(None) def add_signal_handlers() -> None: loop.add_signal_handler(signal.SIGINT, stop), loop.add_signal_handler(signal.SIGTERM, stop), def remove_signal_handlers() -> None: loop.remove_signal_handler(signal.SIGINT), loop.remove_signal_handler(signal.SIGTERM), async with AsyncExitStack() as stack: stack.push_async_callback( sync_to_async(remove_signal_handlers, thread_sensitive=True) ) await sync_to_async(add_signal_handlers, thread_sensitive=True)() set_current_port(port) translation.activate(settings.LANGUAGE_CODE) # We pass display_num_errors=False, since Django will # likely display similar output anyway. self.check(display_num_errors=False) print(f"Tornado server (re)started on port {port}") if settings.USING_RABBITMQ: queue_client = TornadoQueueClient() set_queue_client(queue_client) # Process notifications received via RabbitMQ queue_name = notify_tornado_queue_name(port) stack.callback(queue_client.close) queue_client.start_json_consumer( queue_name, get_wrapped_process_notification(queue_name) ) # Application is an instance of Django's standard wsgi handler. application = create_tornado_application() # start tornado web server in single-threaded mode http_server = httpserver.HTTPServer(application, xheaders=True) stack.push_async_callback(http_server.close_all_connections) stack.callback(http_server.stop) http_server.listen(port, address=addr) from zerver.tornado.ioloop_logging import logging_data logging_data["port"] = str(port) await setup_event_queue(http_server, port) stack.callback(dump_event_queues, port) add_client_gc_hook(missedmessage_hook) if settings.USING_RABBITMQ: setup_tornado_rabbitmq(queue_client) if hasattr(__main__, "add_reload_hook"): autoreload.start() await stop_fut # Monkey patch tornado.autoreload to prevent it from continuing # to watch for changes after catching our SystemExit. Otherwise # the user needs to press Ctrl+C twice. __main__.wait = lambda: None async_to_sync(inner_run, force_new_loop=True)()
{ "content_hash": "fe40f6caf44580e7a8b8503fba62e17a", "timestamp": "", "source": "github", "line_count": 141, "max_line_length": 89, "avg_line_length": 37.744680851063826, "alnum_prop": 0.6110484780157835, "repo_name": "zulip/zulip", "id": "e74ea0d96980e389d3f0b2b52d61432145d7865f", "size": "5322", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "zerver/management/commands/runtornado.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "509211" }, { "name": "Dockerfile", "bytes": "4219" }, { "name": "Emacs Lisp", "bytes": "157" }, { "name": "HTML", "bytes": "696430" }, { "name": "Handlebars", "bytes": "384277" }, { "name": "JavaScript", "bytes": "4098367" }, { "name": "Perl", "bytes": "10163" }, { "name": "Puppet", "bytes": "112433" }, { "name": "Python", "bytes": "10336945" }, { "name": "Ruby", "bytes": "3166" }, { "name": "Shell", "bytes": "147162" }, { "name": "TypeScript", "bytes": "286785" } ], "symlink_target": "" }
import requests import begin def search(seq, threshold=1): url = "http://api.bigsi.io/search?threshold=%f&seq=%s" % ( float(threshold), seq) results = requests.get(url).json() samples = [] for i, j in list(results.values())[0]["results"].items(): samples.append(i) return samples @begin.start def main(seq, threshold=1): samples = search(seq, threshold) for s in samples: print(s)
{ "content_hash": "b6a5faf0788e45ce8d0025f89c63a171", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 62, "avg_line_length": 21.9, "alnum_prop": 0.6187214611872146, "repo_name": "Phelimb/cbg", "id": "37f1d652b4505dd2537ac308d562079d76849da3", "size": "438", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "example-scripts/search.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "46144" }, { "name": "Python", "bytes": "151200" }, { "name": "R", "bytes": "1806" }, { "name": "Ruby", "bytes": "60866" }, { "name": "Shell", "bytes": "1014" } ], "symlink_target": "" }
from .__version__ import __version__ from tensorx.layers import * from tensorx.random import * from tensorx.ops import * from tensorx.math import * from tensorx.metrics import * from tensorx.train import * from tensorx.init import * from tensorx.loss import * from tensorx.activation import * from tensorx.logic import *
{ "content_hash": "ac1fb87ac1e50f8d4cca40ecb6bf0b9e", "timestamp": "", "source": "github", "line_count": 12, "max_line_length": 36, "avg_line_length": 26.833333333333332, "alnum_prop": 0.7701863354037267, "repo_name": "davidenunes/tensorx", "id": "1a81ae9d0c79a0f816eef308ac80df3b71502616", "size": "322", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tensorx/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "590753" } ], "symlink_target": "" }
__author__ = 'Shinichi Nakagawa' from configparser import ConfigParser from boto3.session import Session import glob import os class Storage(object): def __init__(self, config_file): """ init :param config_file: Application config file :return: """ self.config = ConfigParser() self.config.read(config_file) self.session = Session( aws_access_key_id=self.config['aws']['access_key'], aws_secret_access_key=self.config['aws']['secret_access_key'], region_name=self.config['aws']['region'] ) self.s3 = self.session.resource('s3') self.s3client = self.session.client('s3') self.bucket_name = self.config['baseball_report']['bucket_name'] def upload_files(self, dir_path, extension, key_name, delimiter='/', delete=True): """ file upload for S3 :param dir_path: input_file_path :param extension: upload file extension :param key_name: bucket key name :param delimiter: Delimiter :param delete: Delete Flg :return: None """ for file_name in glob.glob(delimiter.join([dir_path, '*{extension}'.format(extension=extension)])): remote_file_name = delimiter.join( [ key_name, file_name.replace('{dir_path}{delimiter}'.format(dir_path=dir_path, delimiter=delimiter), '') ] ) self.s3client.upload_file(file_name, self.bucket_name, remote_file_name) if delete: os.remove(file_name)
{ "content_hash": "011ca8b26f3c3ff9c89fd083134797bd", "timestamp": "", "source": "github", "line_count": 46, "max_line_length": 113, "avg_line_length": 35.41304347826087, "alnum_prop": 0.576427255985267, "repo_name": "Shinichi-Nakagawa/xp2015_baseball_tools", "id": "436707bf7535d9db139410a2ebd3f1a5f2b2544c", "size": "1676", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "service/storage.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "38461" } ], "symlink_target": "" }
import json import platform import textwrap import warnings from datetime import datetime from . import config from .compat import binary_type, string_types from .exceptions import ( APIError, BadGateway, BadRequest, ConnectionError, Forbidden, InternalError, MethodNotAllowed, NotFound, ServiceUnavailable, Unauthorized, ) from .timezone import utc from .version import version # TODO: use urlfetch for Google App Engine try: import requests from requests.adapters import HTTPAdapter from urllib3.util import Retry retry = Retry(total=3, backoff_factor=0.2) _session = requests.session() _session.mount('http://', HTTPAdapter(max_retries=retry)) _session.mount('https://', HTTPAdapter(max_retries=retry)) _lib = 'requests' _lib_ver = requests.__version__ except ImportError: warnings.warn( '\n\n' + textwrap.fill( 'requests library is not available, falling to urllib2. ' 'Note that urllib2 does NOT verifies SSL certificates, so ' 'we recommend to install requests, if possible.' ) ) try: from urllib2 import Request, urlopen, HTTPError, URLError, \ __version__ as urllib_ver _lib = 'urllib2' _lib_ver = urllib_ver except ImportError: from urllib.request import Request, urlopen from urllib.error import HTTPError, URLError _lib = 'urllib2' _lib_ver = 'internal' try: from urllib.parse import urlencode except ImportError: from urllib import urlencode def urlify(params, prefix=''): from .models import CubObject def is_number(s): try: float(s) return True except ValueError: return False result = {} items = params.items() if isinstance(params, dict) else enumerate(params) for k, v in items: key = '%s[%s]' % (prefix, k) if prefix else k if isinstance(v, (dict, list, tuple)): result.update(urlify(v, key)) elif isinstance(v, bool): result[key] = 'true' if v else 'false' elif v is None: result[key] = 'null' elif isinstance(v, string_types): if isinstance(v, binary_type): # Must be utf-8, raise exception if it isn't v = v.decode('utf-8') if v in ('true', 'false', 'null') or is_number(v): v = '"%s"' % v result[key] = v elif isinstance(v, CubObject): result[key] = v.id else: result[key] = v return result def json_datetime_hook(dikt): for k, v in dikt.items(): if isinstance(v, string_types) and v.endswith('Z'): try: dt = datetime.strptime(v, '%Y-%m-%dT%H:%M:%SZ') except ValueError: pass else: dt = dt.replace(tzinfo=utc) dikt[k] = dt return dikt class API(object): def __init__(self, key=None, base_url=None, timeout=None): self.api_key = key or config.api_key self.base_url = base_url or config.api_url self.timeout = timeout or config.api_timeout def url(self, url): return '%s%s' % (self.base_url, url) def requests_request(self, method, url, data, headers, timeout): if method == 'get': abs_url = '%s?%s' % (url, urlencode(data)) params = {} else: abs_url = url params = data response = _session.request( method, abs_url, data=params, headers=headers, timeout=timeout ) http_code = response.status_code http_body = response.content return http_code, http_body def urllib2_request(self, method, url, data, headers, timeout): params = urlencode(data) if method == 'get': abs_url = '%s?%s' % (url, params) req = Request(abs_url, None, headers) elif method == 'post': req = Request(url, params.encode('ascii'), headers) elif method == 'delete': abs_url = '%s?%s' % (url, params) req = Request(abs_url, None, headers) req.get_method = lambda: 'DELETE' else: raise APIError('Unsupported method: %s' % method) try: response = urlopen(req, timeout=timeout) http_code = response.code http_body = response.read() except HTTPError as e: http_code = e.code http_body = e.read() return http_code, http_body def request(self, method, url, params=None): params = params or {} if not self.api_key: raise Unauthorized( 'You did not provide an API key. There are 2 ways to do it:\n' '\n1) set it globally for all requests via ' 'cub.config.api_key, like this:\n' '\nimport cub\n' '\ncub.config.api_key = "<your-key>"\n' '\n' '\n2) pass it to methods which communicate with the API as ' 'keyword argument, like this:\n' '\nfrom cub import User\n' '\ninv = User.get(api_key="<your-key>", ...)' ) abs_url = self.url(url) client_info = { 'publisher': 'ivelum', 'platform': platform.platform(), 'language': 'Python %s' % platform.python_version(), 'httplib': '%s v%s' % (_lib, _lib_ver) } headers = { 'Authorization': 'Bearer %s' % self.api_key, 'User-Agent': 'Cub Client for Python, v%s' % version, 'Content-Type': 'application/x-www-form-urlencoded', 'X-Cub-User-Agent-Info': json.dumps(client_info) } data = urlify(params) # Send request to API and handle communication errors if _lib == 'requests': try: http_code, http_body = self.requests_request( method, abs_url, data=data, headers=headers, timeout=self.timeout ) except requests.RequestException: raise ConnectionError( 'Cannot connect to Cub API using URL %s' % abs_url ) elif _lib == 'urllib2': try: http_code, http_body = self.urllib2_request( method, abs_url, data=data, headers=headers, timeout=self.timeout ) except URLError: raise ConnectionError( 'Cannot connect to Cub API using URL %s' % abs_url ) try: json_body = json.loads( http_body.decode('utf-8'), object_hook=json_datetime_hook, ) except Exception: raise APIError( 'Invalid response from the API: %s' % http_body, http_code, http_body ) # Handle API errors if http_code != 200: try: error = json_body['error'] err_desc = error['description'] err_params = {} err_params.update(error.get('params', {})) except (KeyError, TypeError, ValueError): raise APIError( 'Invalid response from the API: %s' % json_body, http_code, http_body, json_body ) if http_code == 400: err_msg = err_desc if err_params: err_msg += '\nParams:\n' + '\n'.join( ['%s: %s' % (k, v) for k, v in err_params.items()] ) raise BadRequest(err_msg, http_code, http_body, json_body) elif http_code == 401: raise Unauthorized(err_desc, http_code, http_body, json_body) elif http_code == 403: raise Forbidden(err_desc, http_code, http_body, json_body) elif http_code == 404: raise NotFound(err_desc, http_code, http_body, json_body) elif http_code == 405: raise MethodNotAllowed( err_desc, http_code, http_body, json_body) elif http_code == 500: raise InternalError(err_desc, http_code, http_body, json_body) elif http_code == 502: raise BadGateway(err_desc, http_code, http_body, json_body) elif http_code == 503: raise ServiceUnavailable( err_desc, http_code, http_body, json_body ) else: raise APIError(err_desc, http_code, http_body, json_body) return json_body
{ "content_hash": "756837b13a1db77fb153bf633463a40d", "timestamp": "", "source": "github", "line_count": 266, "max_line_length": 78, "avg_line_length": 33.96616541353384, "alnum_prop": 0.5117874930824571, "repo_name": "ivelum/cub-python", "id": "8853591ec2e7aceb240f45c6e0c498fb76563ca9", "size": "9035", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "cub/transport.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "22449" } ], "symlink_target": "" }
""" smashlib.plugins.prefilter_url """ from smashlib.util.ipy import register_prefilter from smashlib.prefilters.url import URLChecker, URLHandler from smashlib.plugins import Plugin from smashlib.util.ipy import uninstall_prefilter class URLPlugin(Plugin): """ installs the IPython prefilter which handles urls """ def install(self): register_prefilter(URLChecker, URLHandler) return self def uninstall(self): return uninstall_prefilter(URLChecker, URLHandler) def load_ipython_extension(ip): """ called by %load_ext magic """ return URLPlugin(get_ipython()).install() def unload_ipython_extension(ip): """ called by %unload_ext magic """ plugin = URLPlugin() plugin.uninstall()
{ "content_hash": "10d0755d86b71706625ae4ef2040a2ed", "timestamp": "", "source": "github", "line_count": 29, "max_line_length": 61, "avg_line_length": 25.689655172413794, "alnum_prop": 0.7167785234899329, "repo_name": "mattvonrocketstein/smash", "id": "f30f0547bc8a95b1781c0f5466fc8ada7ca0c22d", "size": "745", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "smashlib/plugins/prefilter_url.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "162188" }, { "name": "HTML", "bytes": "32106" }, { "name": "JavaScript", "bytes": "1615935" }, { "name": "Makefile", "bytes": "550" }, { "name": "Python", "bytes": "4934398" }, { "name": "Shell", "bytes": "2990" } ], "symlink_target": "" }
import numpy as np from cs231n.layers import * from cs231n.layer_utils import * class TwoLayerNet(object): """ A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension of D, a hidden dimension of H, and perform classification over C classes. The architecure should be affine - relu - affine - softmax. Note that this class does not implement gradient descent; instead, it will interact with a separate Solver object that is responsible for running optimization. The learnable parameters of the model are stored in the dictionary self.params that maps parameter names to numpy arrays. """ def __init__(self, input_dim=3*32*32, hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0): """ Initialize a new network. Inputs: - input_dim: An integer giving the size of the input - hidden_dim: An integer giving the size of the hidden layer - num_classes: An integer giving the number of classes to classify - dropout: Scalar between 0 and 1 giving dropout strength. - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - reg: Scalar giving L2 regularization strength. """ self.params = {} self.reg = reg ############################################################################ # TODO: Initialize the weights and biases of the two-layer net. Weights # # should be initialized from a Gaussian with standard deviation equal to # # weight_scale, and biases should be initialized to zero. All weights and # # biases should be stored in the dictionary self.params, with first layer # # weights and biases using the keys 'W1' and 'b1' and second layer weights # # and biases using the keys 'W2' and 'b2'. # ############################################################################ self.params['W1'] = np.random.randn(input_dim, hidden_dim) * weight_scale self.params['b1'] = np.zeros(hidden_dim) self.params['W2'] = np.random.randn(hidden_dim, num_classes) * weight_scale self.params['b2'] = np.zeros(num_classes) ############################################################################ # END OF YOUR CODE # ############################################################################ def loss(self, X, y=None): """ Compute loss and gradient for a minibatch of data. Inputs: - X: Array of input data of shape (N, d_1, ..., d_k) - y: Array of labels, of shape (N,). y[i] gives the label for X[i]. Returns: If y is None, then run a test-time forward pass of the model and return: - scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c. If y is not None, then run a training-time forward and backward pass and return a tuple of: - loss: Scalar value giving the loss - grads: Dictionary with the same keys as self.params, mapping parameter names to gradients of the loss with respect to those parameters. """ ############################################################################ # TODO: Implement the forward pass for the two-layer net, computing the # # class scores for X and storing them in the scores variable. # ############################################################################ l1, l1_cache = affine_relu_forward(X, self.params['W1'], self.params['b1']) l2, l2_cache = affine_forward(l1, self.params['W2'], self.params['b2']) scores = l2 ############################################################################ # END OF YOUR CODE # ############################################################################ # If y is None then we are in test mode so just return scores if y is None: return scores grads = {} loss, d_scores = softmax_loss(scores, y) loss += np.sum(self.params['W1'] ** 2) * 0.5 * self.reg loss += np.sum(self.params['W2'] ** 2) * 0.5 * self.reg ############################################################################ # TODO: Implement the backward pass for the two-layer net. Store the loss # # in the loss variable and gradients in the grads dictionary. Compute data # # loss using softmax, and make sure that grads[k] holds the gradients for # # self.params[k]. Don't forget to add L2 regularization! # # # # NOTE: To ensure that your implementation matches ours and you pass the # # automated tests, make sure that your L2 regularization includes a factor # # of 0.5 to simplify the expression for the gradient. # ############################################################################ d_l2, grads['W2'], grads['b2'] = affine_backward(d_scores, l2_cache) _, grads['W1'], grads['b1'] = affine_relu_backward(d_l2, l1_cache) # add loss of L2 regularization grads['W2'] += self.params['W2'] * self.reg grads['W1'] += self.params['W1'] * self.reg ############################################################################ # END OF YOUR CODE # ############################################################################ return loss, grads class FullyConnectedNet(object): """ A fully-connected neural network with an arbitrary number of hidden layers, ReLU nonlinearities, and a softmax loss function. This will also implement dropout and batch normalization as options. For a network with L layers, the architecture will be {affine - [batch norm] - relu - [dropout]} x (L - 1) - affine - softmax where batch normalization and dropout are optional, and the {...} block is repeated L - 1 times. Similar to the TwoLayerNet above, learnable parameters are stored in the self.params dictionary and will be learned using the Solver class. """ def GetWeightName(self, kth): return 'W' + str(kth) def GetBiasName(self, kth): return 'B' + str(kth) def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10, dropout=0, use_batchnorm=False, reg=0.0, weight_scale=1e-2, dtype=np.float32, seed=None): """ Initialize a new FullyConnectedNet. Inputs: - hidden_dims: A list of integers giving the size of each hidden layer. - input_dim: An integer giving the size of the input. - num_classes: An integer giving the number of classes to classify. - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=0 then the network should not use dropout at all. - use_batchnorm: Whether or not the network should use batch normalization. - reg: Scalar giving L2 regularization strength. - weight_scale: Scalar giving the standard deviation for random initialization of the weights. - dtype: A numpy datatype object; all computations will be performed using this datatype. float32 is faster but less accurate, so you should use float64 for numeric gradient checking. - seed: If not None, then pass this random seed to the dropout layers. This will make the dropout layers deteriminstic so we can gradient check the model. """ self.use_batchnorm = use_batchnorm self.use_dropout = dropout > 0 self.reg = reg self.num_layers = 1 + len(hidden_dims) self.dtype = dtype self.params = {} ############################################################################ # TODO: Initialize the parameters of the network, storing all values in # # the self.params dictionary. Store weights and biases for the first layer # # in W1 and b1; for the second layer use W2 and b2, etc. Weights should be # # initialized from a normal distribution with standard deviation equal to # # weight_scale and biases should be initialized to zero. # # # # When using batch normalization, store scale and shift parameters for the # # first layer in gamma1 and beta1; for the second layer use gamma2 and # # beta2, etc. Scale parameters should be initialized to one and shift # # parameters should be initialized to zero. # ############################################################################ for l in xrange(self.num_layers): if l == 0: input_d = input_dim else: input_d = hidden_dims[l-1] if l < self.num_layers - 1: out_d = hidden_dims[l] else: out_d = num_classes self.params[self.GetWeightName(l)] = np.random.randn(input_d, out_d) * weight_scale self.params[self.GetBiasName(l)] = np.zeros(out_d) ############################################################################ # END OF YOUR CODE # ############################################################################ # When using dropout we need to pass a dropout_param dictionary to each # dropout layer so that the layer knows the dropout probability and the mode # (train / test). You can pass the same dropout_param to each dropout layer. self.dropout_param = {} if self.use_dropout: self.dropout_param = {'mode': 'train', 'p': dropout} if seed is not None: self.dropout_param['seed'] = seed # With batch normalization we need to keep track of running means and # variances, so we need to pass a special bn_param object to each batch # normalization layer. You should pass self.bn_params[0] to the forward pass # of the first batch normalization layer, self.bn_params[1] to the forward # pass of the second batch normalization layer, etc. self.bn_params = [] if self.use_batchnorm: self.bn_params = [{'mode': 'train'} for i in xrange(self.num_layers - 1)] # Cast all parameters to the correct datatype for k, v in self.params.iteritems(): self.params[k] = v.astype(dtype) def loss(self, X, y=None): """ Compute loss and gradient for the fully-connected net. Input / output: Same as TwoLayerNet above. """ X = X.astype(self.dtype) mode = 'test' if y is None else 'train' # Set train/test mode for batchnorm params and dropout param since they # behave differently during training and testing. if self.dropout_param is not None: self.dropout_param['mode'] = mode if self.use_batchnorm: for bn_param in self.bn_params: bn_param[mode] = mode ############################################################################ # TODO: Implement the forward pass for the fully-connected net, computing # # the class scores for X and storing them in the scores variable. # # # # When using dropout, you'll need to pass self.dropout_param to each # # dropout forward pass. # # # # When using batch normalization, you'll need to pass self.bn_params[0] to # # the forward pass for the first batch normalization layer, pass # # self.bn_params[1] to the forward pass for the second batch normalization # # layer, etc. # ############################################################################ last_layer_output = X cache = {} for l in xrange(self.num_layers): if l < (self.num_layers - 1): if (not self.use_batchnorm) and (not self.use_dropout): last_layer_output, cache[l] = affine_relu_forward(last_layer_output, self.params[self.GetWeightName(l)], self.params[self.GetBiasName(l)]) else: assert False else: last_layer_output, cache[l] = affine_forward(last_layer_output, self.params[self.GetWeightName(l)], self.params[self.GetBiasName(l)]) scores = last_layer_output ############################################################################ # END OF YOUR CODE # ############################################################################ # If test mode return early if mode == 'test': return scores ############################################################################ # TODO: Implement the backward pass for the fully-connected net. Store the # # loss in the loss variable and gradients in the grads dictionary. Compute # # data loss using softmax, and make sure that grads[k] holds the gradients # # for self.params[k]. Don't forget to add L2 regularization! # # # # When using batch normalization, you don't need to regularize the scale # # and shift parameters. # # # # NOTE: To ensure that your implementation matches ours and you pass the # # automated tests, make sure that your L2 regularization includes a factor # # of 0.5 to simplify the expression for the gradient. # ############################################################################ grads = {} loss, d_scores = softmax_loss(scores, y) delta = d_scores for l in xrange(self.num_layers - 1, -1, -1): if l == self.num_layers - 1: delta, grads[self.GetWeightName(l)], grads[self.GetBiasName(l)] = affine_backward(delta, cache[l]) else: delta, grads[self.GetWeightName(l)], grads[self.GetBiasName(l)] = affine_relu_backward(delta, cache[l]) loss += np.sum(self.params[self.GetWeightName(l)] **2) * 0.5 * self.reg grads[self.GetWeightName(l)] += self.params[self.GetWeightName(l)] * self.reg ############################################################################ # END OF YOUR CODE # ############################################################################ return loss, grads
{ "content_hash": "75a5e287f6409502ad1d2577f8ed1838", "timestamp": "", "source": "github", "line_count": 308, "max_line_length": 111, "avg_line_length": 47.84415584415584, "alnum_prop": 0.5273479913137894, "repo_name": "HrWangChengdu/CS231n", "id": "f57cf30d4eebb42e58dd29f3254655ccb10cc4f0", "size": "14736", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "assignment2/cs231n/classifiers/fc_net.py", "mode": "33188", "license": "mit", "language": [ { "name": "Jupyter Notebook", "bytes": "1293469" }, { "name": "Python", "bytes": "49805" }, { "name": "Shell", "bytes": "819" } ], "symlink_target": "" }
""" Main storage of Dynamic Protocol API """ from NetCatKS.DProtocol.api.interfaces.storage import IProtocolStogareInterface from zope.interface import implementer __author__ = 'dimd' @implementer(IProtocolStogareInterface) class ProtocolStorageImplementor(object): """ This storage having implement a singleton pattern. It's possible to be use only in a case when the protocol having implement id field """ session = {} __instance = None def __new__(cls): """ We having implement a singleton pattern for our Container to ensure that all commands point to one place :return: instance """ if ProtocolStorageImplementor.__instance is None: ProtocolStorageImplementor.__instance = object.__new__(cls) return ProtocolStorageImplementor.__instance
{ "content_hash": "f0312afb7735abda4fb135e2c2c3656d", "timestamp": "", "source": "github", "line_count": 36, "max_line_length": 112, "avg_line_length": 23.47222222222222, "alnum_prop": 0.693491124260355, "repo_name": "dimddev/NetCatKS", "id": "d63e3d340cef68bb02df0ac64ad2e5e41bb64926", "size": "845", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "NetCatKS/DProtocol/api/implementors/storage/__init__.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "182697" } ], "symlink_target": "" }
from django.db import models from django.utils import timezone from ckeditor.fields import RichTextField from ckeditor_uploader.fields import RichTextUploadingField class News_post(models.Model): ''' Model contains all news articles. ''' title = models.CharField(max_length=200) image = RichTextUploadingField() text = RichTextUploadingField() created_date = models.DateTimeField(default=timezone.now) published_date = models.DateTimeField(blank=True, null=True) def as_dict(self): ''' Method returns information represented as a dictionary. ''' return { 'id': self.id, 'title': self.title, 'image': self.image, 'text': self.text, 'created_date': self.created_date, 'published_date': self.published_date } def publish(self): ''' Method point article as publshed. ''' self.published_date = timezone.now() self.save() def unpublish(self): ''' Mrthod point article as unpublished. ''' self.published_date = None self.save() def __str__(self): ''' String representation. ''' return self.title
{ "content_hash": "7630abe54f1d19952a4cdb854bee62cd", "timestamp": "", "source": "github", "line_count": 49, "max_line_length": 64, "avg_line_length": 25.46938775510204, "alnum_prop": 0.5993589743589743, "repo_name": "maistrovas/News_app", "id": "5c401436f736f52a837df1f28f09f318a1adc928", "size": "1248", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "news/models.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "71070" }, { "name": "HTML", "bytes": "7497" }, { "name": "JavaScript", "bytes": "497947" }, { "name": "Python", "bytes": "12992" } ], "symlink_target": "" }
class Publication(): def __init__(self, topic_id, id, client): self.topic_id = topic_id self.id = id self.client = client # Get all publications for the associated Topic. Requires authorization of **read_any_publications**, or **read_application_publications**. # '/api/topics/:topic_id/publications' GET # def list(self, options = {}): body = options['query'] if 'query' in options else {} response = self.client.get('/api/topics/' + self.topic_id + '/publications', body, options) return response # Retrieve a specific publication on the associated topic by Id. Requires authorization of **read_any_publications**, or **read_application_publications**. # '/api/topics/:topic_id/publications/:id' GET # def find(self, options = {}): body = options['query'] if 'query' in options else {} response = self.client.get('/api/topics/' + self.topic_id + '/publications/' + self.id + '', body, options) return response # Create a new publication on the associated Topic which can be easily retrieved later using an id. Requires authorization of **manage_any_publications**, or **manage_application_publications**. # '/api/topics/:topic_id/publications' POST # # publication - A Hash containing `host`:The ip address or host of the connection(required).`protocol`:the protocol to communicate over (http, tcp, udp, mqtt) (required)`port`:The port of the connection. def create(self, publication, options = {}): body = options['body'] if 'body' in options else {} body['publication'] = publication response = self.client.post('/api/topics/' + self.topic_id + '/publications', body, options) return response # Update a publication. Requires authorization of **manage_any_publications**, or **manage_application_publications**. # '/api/topics/:topic_id/publications/:id' PUT # # publication - A Hash containing `host`:The ip address or host of the connection(required).`protocol`:the protocol to communicate over (http, tcp, udp, mqtt) (required)`port`:The port of the connection. def update(self, publication, options = {}): body = options['body'] if 'body' in options else {} body['publication'] = publication response = self.client.put('/api/topics/' + self.topic_id + '/publications/' + self.id + '', body, options) return response # Remove a saved publication on the associated Topic by Id. Requires authorization of **manage_any_publications**, or **manage_application_publications**. # '/api/topics/:topic_id/publications/:id' DELETE # def delete(self, options = {}): body = options['body'] if 'body' in options else {} response = self.client.delete('/api/topics/' + self.topic_id + '/publications/' + self.id + '', body, options) return response
{ "content_hash": "96cb637bfda0b9567c61bff67b09c124", "timestamp": "", "source": "github", "line_count": 61, "max_line_length": 204, "avg_line_length": 44.622950819672134, "alnum_prop": 0.7046289493019838, "repo_name": "cwadding/sensit-python", "id": "835eef73bc469db005dae190762a17675f720ebf", "size": "2940", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "sensit/api/publication.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "34294" } ], "symlink_target": "" }
"""Prints all histogram names.""" from __future__ import print_function import argparse import os import subprocess import sys import tempfile try: from StringIO import StringIO # for Python 2 except ImportError: from io import StringIO # for Python 3 sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common')) import path_util import extract_histograms import histogram_paths import merge_xml def get_names(xml_files): """Returns all histogram names generated from a list of xml files. Args: xml_files: A list of open file objects containing histogram definitions. Returns: A tuple of (names, obsolete names), where the obsolete names is a subset of all names. """ doc = merge_xml.MergeFiles(files=xml_files) histograms, had_errors = extract_histograms.ExtractHistogramsFromDom(doc) if had_errors: raise ValueError("Error parsing inputs.") names = set(extract_histograms.ExtractNames(histograms)) obsolete_names = set(extract_histograms.ExtractObsoleteNames(histograms)) return (names, obsolete_names) def histogram_xml_files(): return [open(f) for f in histogram_paths.ALL_XMLS] def get_diff(revision): """Returns the added / removed histogram names relative to git revision Args: revision: A git revision as described in https://git-scm.com/docs/gitrevisions Returns: A tuple of (added names, removed names, obsoleted names), where each entry is sorted in ascending order. """ def get_file_at_revision(path): """Returns a file-like object containing |path|'s content at |revision|""" obj = "%s:%s" % (revision, path) contents = subprocess.check_output( ("git", "cat-file", "--textconv", obj)).decode() # Just store the contents in memory. histograms.xml is big, but it isn't # _that_ big. return StringIO(contents) prev_files = [] for p in histogram_paths.ALL_XMLS_RELATIVE: try: prev_files.append(get_file_at_revision(p)) except subprocess.CalledProcessError: # Paths might not exist in the provided revision. continue current_histogram_names, current_obsolete_names = get_names( histogram_xml_files()) prev_histogram_names, prev_obsolete_names = get_names(prev_files) added_names = sorted(list(current_histogram_names - prev_histogram_names)) removed_names = sorted(list(prev_histogram_names - current_histogram_names)) obsoleted_names = sorted(list(current_obsolete_names - prev_obsolete_names)) return (added_names, removed_names, obsoleted_names) def print_diff_names(revision): added_names, removed_names, obsoleted_names = get_diff(revision) print("%d histograms added:" % len(added_names)) for name in added_names: print(name) print("%d histograms removed:" % len(removed_names)) for name in removed_names: print(name) print("%d histograms obsoleted:" % len(obsoleted_names)) for name in obsoleted_names: print(name) def main(argv): parser = argparse.ArgumentParser(description='Print histogram names.') parser.add_argument('--diff', type=str, help='Git revision to diff against (e.g. HEAD~)') args = parser.parse_args(argv[1:]) if args.diff is not None: print_diff_names(args.diff) else: for name in get_names(histogram_xml_files()): print(name) if __name__ == '__main__': main(sys.argv)
{ "content_hash": "4eabc496dbc2c91d078b0e4d8a550eb6", "timestamp": "", "source": "github", "line_count": 114, "max_line_length": 79, "avg_line_length": 29.719298245614034, "alnum_prop": 0.6992325855962219, "repo_name": "ric2b/Vivaldi-browser", "id": "2d8aba3dcf55944b63cc7158714db9c5baf0757a", "size": "3573", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "chromium/tools/metrics/histograms/print_histogram_names.py", "mode": "33261", "license": "bsd-3-clause", "language": [], "symlink_target": "" }
from __future__ import absolute_import import datetime from django.conf import settings from django.http import HttpResponse from django.test import TestCase from django.utils import timezone from mock import patch, MagicMock from zerver.lib.test_helpers import MockLDAP from confirmation.models import Confirmation from zilencer.models import Deployment from zerver.forms import HomepageForm, WRONG_SUBDOMAIN_ERROR from zerver.lib.actions import do_change_password from zerver.views.invite import get_invitee_emails_set from zerver.views.registration import confirmation_key from zerver.models import ( get_realm, get_prereg_user_by_email, get_user_profile_by_email, get_unique_open_realm, completely_open, PreregistrationUser, Realm, RealmAlias, Recipient, Referral, ScheduledJob, UserProfile, UserMessage, Stream, Subscription, ScheduledJob ) from zerver.management.commands.deliver_email import send_email_job from zerver.lib.actions import ( set_default_streams, do_change_is_admin, get_stream ) from zerver.lib.initial_password import initial_password from zerver.lib.actions import ( do_deactivate_realm, do_set_realm_property, add_new_user_history, ) from zerver.lib.digest import send_digest_email from zerver.lib.notifications import ( enqueue_welcome_emails, one_click_unsubscribe_link, send_local_email_template_with_delay) from zerver.lib.test_helpers import find_pattern_in_email, find_key_by_email, queries_captured, \ HostRequestMock from zerver.lib.test_classes import ( ZulipTestCase, ) from zerver.lib.test_runner import slow from zerver.lib.sessions import get_session_dict_user from zerver.context_processors import common_context import re import ujson from typing import Dict, List, Set, Optional from six.moves import urllib from six.moves import range from typing import Any, Text import os class AddNewUserHistoryTest(ZulipTestCase): def test_add_new_user_history_race(self): # type: () -> None """Sends a message during user creation""" # Create a user who hasn't had historical messages added stream_dict = { "Denmark": {"description": "A Scandinavian country", "invite_only": False}, "Verona": {"description": "A city in Italy", "invite_only": False} } # type: Dict[Text, Dict[Text, Any]] set_default_streams(get_realm("zulip"), stream_dict) with patch("zerver.lib.actions.add_new_user_history"): self.register("test@zulip.com", "test") user_profile = get_user_profile_by_email("test@zulip.com") subs = Subscription.objects.select_related("recipient").filter( user_profile=user_profile, recipient__type=Recipient.STREAM) streams = Stream.objects.filter(id__in=[sub.recipient.type_id for sub in subs]) self.send_message("hamlet@zulip.com", streams[0].name, Recipient.STREAM, "test") add_new_user_history(user_profile, streams) class PasswordResetTest(ZulipTestCase): """ Log in, reset password, log out, log in with new password. """ def test_password_reset(self): # type: () -> None email = 'hamlet@zulip.com' old_password = initial_password(email) self.login(email) # test password reset template result = self.client_get('/accounts/password/reset/') self.assert_in_response('Reset your password.', result) # start the password reset process by supplying an email address result = self.client_post('/accounts/password/reset/', {'email': email}) # check the redirect link telling you to check mail for password reset link self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/password/reset/done/")) result = self.client_get(result["Location"]) self.assert_in_response("Check your email to finish the process.", result) # Visit the password reset link. password_reset_url = self.get_confirmation_url_from_outbox(email, "(\S+)") result = self.client_get(password_reset_url) self.assertEqual(result.status_code, 200) # Reset your password result = self.client_post(password_reset_url, {'new_password1': 'new_password', 'new_password2': 'new_password'}) # password reset succeeded self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith("/password/done/")) # log back in with new password self.login(email, password='new_password') user_profile = get_user_profile_by_email('hamlet@zulip.com') self.assertEqual(get_session_dict_user(self.client.session), user_profile.id) # make sure old password no longer works self.login(email, password=old_password, fails=True) def test_redirect_endpoints(self): # type: () -> None ''' These tests are mostly designed to give us 100% URL coverage in our URL coverage reports. Our mechanism for finding URL coverage doesn't handle redirects, so we just have a few quick tests here. ''' result = self.client_get('/accounts/password/reset/done/') self.assert_in_success_response(["Check your email"], result) result = self.client_get('/accounts/password/done/') self.assert_in_success_response(["We've reset your password!"], result) result = self.client_get('/accounts/send_confirm/alice@example.com') self.assert_in_success_response(["Still no email?"], result) class LoginTest(ZulipTestCase): """ Logging in, registration, and logging out. """ def test_login(self): # type: () -> None self.login("hamlet@zulip.com") user_profile = get_user_profile_by_email('hamlet@zulip.com') self.assertEqual(get_session_dict_user(self.client.session), user_profile.id) def test_login_bad_password(self): # type: () -> None self.login("hamlet@zulip.com", password="wrongpassword", fails=True) self.assertIsNone(get_session_dict_user(self.client.session)) def test_login_nonexist_user(self): # type: () -> None result = self.login_with_return("xxx@zulip.com", "xxx") self.assert_in_response("Please enter a correct email and password", result) def test_register(self): # type: () -> None realm = get_realm("zulip") stream_dict = {"stream_"+str(i): {"description": "stream_%s_description" % i, "invite_only": False} for i in range(40)} # type: Dict[Text, Dict[Text, Any]] for stream_name in stream_dict.keys(): self.make_stream(stream_name, realm=realm) set_default_streams(realm, stream_dict) with queries_captured() as queries: self.register("test@zulip.com", "test") # Ensure the number of queries we make is not O(streams) self.assert_max_length(queries, 69) user_profile = get_user_profile_by_email('test@zulip.com') self.assertEqual(get_session_dict_user(self.client.session), user_profile.id) self.assertFalse(user_profile.enable_stream_desktop_notifications) def test_register_deactivated(self): # type: () -> None """ If you try to register for a deactivated realm, you get a clear error page. """ realm = get_realm("zulip") realm.deactivated = True realm.save(update_fields=["deactivated"]) result = self.register("test@zulip.com", "test") self.assert_in_response("has been deactivated", result) with self.assertRaises(UserProfile.DoesNotExist): get_user_profile_by_email('test@zulip.com') def test_login_deactivated(self): # type: () -> None """ If you try to log in to a deactivated realm, you get a clear error page. """ realm = get_realm("zulip") realm.deactivated = True realm.save(update_fields=["deactivated"]) result = self.login_with_return("hamlet@zulip.com") self.assert_in_response("has been deactivated", result) def test_logout(self): # type: () -> None self.login("hamlet@zulip.com") self.client_post('/accounts/logout/') self.assertIsNone(get_session_dict_user(self.client.session)) def test_non_ascii_login(self): # type: () -> None """ You can log in even if your password contain non-ASCII characters. """ email = "test@zulip.com" password = u"hümbüǵ" # Registering succeeds. self.register("test@zulip.com", password) user_profile = get_user_profile_by_email(email) self.assertEqual(get_session_dict_user(self.client.session), user_profile.id) self.client_post('/accounts/logout/') self.assertIsNone(get_session_dict_user(self.client.session)) # Logging in succeeds. self.client_post('/accounts/logout/') self.login(email, password) self.assertEqual(get_session_dict_user(self.client.session), user_profile.id) def test_login_page_redirects_logged_in_user(self): # type: () -> None """You will be redirected to the app's main page if you land on the login page when already logged in. """ self.login("cordelia@zulip.com") response = self.client_get("/login/") self.assertEqual(response["Location"], "/") class InviteUserTest(ZulipTestCase): def invite(self, users, streams, body=''): # type: (str, List[Text], str) -> HttpResponse """ Invites the specified users to Zulip with the specified streams. users should be a string containing the users to invite, comma or newline separated. streams should be a list of strings. """ return self.client_post("/json/invite_users", {"invitee_emails": users, "stream": streams, "custom_body": body}) def check_sent_emails(self, correct_recipients, custom_body=None): # type: (List[str], Optional[str]) -> None from django.core.mail import outbox self.assertEqual(len(outbox), len(correct_recipients)) email_recipients = [email.recipients()[0] for email in outbox] self.assertEqual(sorted(email_recipients), sorted(correct_recipients)) if len(outbox) == 0: return if custom_body is None: self.assertNotIn("Message from", outbox[0].body) else: self.assertIn("Message from ", outbox[0].body) self.assertIn(custom_body, outbox[0].body) def test_bulk_invite_users(self): # type: () -> None """The bulk_invite_users code path is for the first user in a realm.""" self.login('hamlet@zulip.com') invitees = ['alice@zulip.com', 'bob@zulip.com'] params = { 'invitee_emails': ujson.dumps(invitees), } result = self.client_post('/json/invite/bulk', params) self.assert_json_success(result) self.check_sent_emails(invitees) def test_bulk_invite_users_invalid_emails(self): # type: () -> None self.login('hamlet@zulip.com') invitees = ['alice@zulip.com', 'bobnoatzulip.com'] params = { 'invitee_emails': ujson.dumps(invitees), } self.assert_json_error( self.client_post('/json/invite/bulk', params), 'Some emails did not validate, so we didn\'t send any invitations.') self.check_sent_emails([]) def test_successful_invite_user(self): # type: () -> None """ A call to /json/invite_users with valid parameters causes an invitation email to be sent. """ self.login("hamlet@zulip.com") invitee = "alice-test@zulip.com" self.assert_json_success(self.invite(invitee, ["Denmark"])) self.assertTrue(find_key_by_email(invitee)) self.check_sent_emails([invitee]) def test_successful_invite_user_with_custom_body(self): # type: () -> None """ A call to /json/invite_users with valid parameters causes an invitation email to be sent. """ self.login("hamlet@zulip.com") invitee = "alice-test@zulip.com" body = "Custom Text." self.assert_json_success(self.invite(invitee, ["Denmark"], body)) self.assertTrue(find_pattern_in_email(invitee, body)) self.check_sent_emails([invitee], custom_body=body) def test_successful_invite_user_with_name(self): # type: () -> None """ A call to /json/invite_users with valid parameters causes an invitation email to be sent. """ self.login("hamlet@zulip.com") email = "alice-test@zulip.com" invitee = "Alice Test <{}>".format(email) self.assert_json_success(self.invite(invitee, ["Denmark"])) self.assertTrue(find_key_by_email(email)) self.check_sent_emails([email]) def test_successful_invite_user_with_name_and_normal_one(self): # type: () -> None """ A call to /json/invite_users with valid parameters causes an invitation email to be sent. """ self.login("hamlet@zulip.com") email = "alice-test@zulip.com" email2 = "bob-test@zulip.com" invitee = "Alice Test <{}>, {}".format(email, email2) self.assert_json_success(self.invite(invitee, ["Denmark"])) self.assertTrue(find_key_by_email(email)) self.assertTrue(find_key_by_email(email2)) self.check_sent_emails([email, email2]) def test_successful_invite_user_with_notifications_stream(self): # type: () -> None """ A call to /json/invite_users with valid parameters unconditionally subscribes the invitee to the notifications stream if it exists and is public. """ realm = get_realm('zulip') notifications_stream = get_stream('Verona', realm) realm.notifications_stream = notifications_stream realm.save() self.login('hamlet@zulip.com') invitee = 'alice-test@zulip.com' self.assert_json_success(self.invite(invitee, ['Denmark'])) self.assertTrue(find_key_by_email(invitee)) self.check_sent_emails([invitee]) prereg_user = get_prereg_user_by_email(invitee) streams = list(prereg_user.streams.all()) self.assertTrue(notifications_stream in streams) def test_invite_user_signup_initial_history(self): # type: () -> None """ Test that a new user invited to a stream receives some initial history but only from public streams. """ self.login("hamlet@zulip.com") user_profile = get_user_profile_by_email("hamlet@zulip.com") private_stream_name = "Secret" self.make_stream(private_stream_name, invite_only=True) self.subscribe_to_stream(user_profile.email, private_stream_name) public_msg_id = self.send_message("hamlet@zulip.com", "Denmark", Recipient.STREAM, "Public topic", "Public message") secret_msg_id = self.send_message("hamlet@zulip.com", private_stream_name, Recipient.STREAM, "Secret topic", "Secret message") invitee = "alice-test@zulip.com" self.assert_json_success(self.invite(invitee, [private_stream_name, "Denmark"])) self.assertTrue(find_key_by_email(invitee)) self.submit_reg_form_for_user("alice-test@zulip.com", "password") invitee_profile = get_user_profile_by_email(invitee) invitee_msg_ids = [um.message_id for um in UserMessage.objects.filter(user_profile=invitee_profile)] self.assertTrue(public_msg_id in invitee_msg_ids) self.assertFalse(secret_msg_id in invitee_msg_ids) def test_multi_user_invite(self): # type: () -> None """ Invites multiple users with a variety of delimiters. """ self.login("hamlet@zulip.com") # Intentionally use a weird string. self.assert_json_success(self.invite( """bob-test@zulip.com, carol-test@zulip.com, dave-test@zulip.com earl-test@zulip.com""", ["Denmark"])) for user in ("bob", "carol", "dave", "earl"): self.assertTrue(find_key_by_email("%s-test@zulip.com" % (user,))) self.check_sent_emails(["bob-test@zulip.com", "carol-test@zulip.com", "dave-test@zulip.com", "earl-test@zulip.com"]) def test_missing_or_invalid_params(self): # type: () -> None """ Tests inviting with various missing or invalid parameters. """ self.login("hamlet@zulip.com") self.assert_json_error( self.client_post("/json/invite_users", {"invitee_emails": "foo@zulip.com", "custom_body": ''}), "You must specify at least one stream for invitees to join.") for address in ("noatsign.com", "outsideyourdomain@example.net"): self.assert_json_error( self.invite(address, ["Denmark"]), "Some emails did not validate, so we didn't send any invitations.") self.check_sent_emails([]) self.assert_json_error( self.invite("", ["Denmark"]), "You must specify at least one email address.") self.check_sent_emails([]) def test_invalid_stream(self): # type: () -> None """ Tests inviting to a non-existent stream. """ self.login("hamlet@zulip.com") self.assert_json_error(self.invite("iago-test@zulip.com", ["NotARealStream"]), "Stream does not exist: NotARealStream. No invites were sent.") self.check_sent_emails([]) def test_invite_existing_user(self): # type: () -> None """ If you invite an address already using Zulip, no invitation is sent. """ self.login("hamlet@zulip.com") self.assert_json_error( self.client_post("/json/invite_users", {"invitee_emails": "hamlet@zulip.com", "stream": ["Denmark"], "custom_body": ''}), "We weren't able to invite anyone.") self.assertRaises(PreregistrationUser.DoesNotExist, lambda: PreregistrationUser.objects.get( email="hamlet@zulip.com")) self.check_sent_emails([]) def test_invite_some_existing_some_new(self): # type: () -> None """ If you invite a mix of already existing and new users, invitations are only sent to the new users. """ self.login("hamlet@zulip.com") existing = ["hamlet@zulip.com", "othello@zulip.com"] new = ["foo-test@zulip.com", "bar-test@zulip.com"] result = self.client_post("/json/invite_users", {"invitee_emails": "\n".join(existing + new), "stream": ["Denmark"], "custom_body": ''}) self.assert_json_error(result, "Some of those addresses are already using Zulip, \ so we didn't send them an invitation. We did send invitations to everyone else!") # We only created accounts for the new users. for email in existing: self.assertRaises(PreregistrationUser.DoesNotExist, lambda: PreregistrationUser.objects.get( email=email)) for email in new: self.assertTrue(PreregistrationUser.objects.get(email=email)) # We only sent emails to the new users. self.check_sent_emails(new) prereg_user = get_prereg_user_by_email('foo-test@zulip.com') self.assertEqual(prereg_user.email, 'foo-test@zulip.com') def test_invite_outside_domain_in_closed_realm(self): # type: () -> None """ In a realm with `restricted_to_domain = True`, you can't invite people with a different domain from that of the realm or your e-mail address. """ zulip_realm = get_realm("zulip") zulip_realm.restricted_to_domain = True zulip_realm.save() self.login("hamlet@zulip.com") external_address = "foo@example.com" self.assert_json_error( self.invite(external_address, ["Denmark"]), "Some emails did not validate, so we didn't send any invitations.") def test_invite_outside_domain_in_open_realm(self): # type: () -> None """ In a realm with `restricted_to_domain = False`, you can invite people with a different domain from that of the realm or your e-mail address. """ zulip_realm = get_realm("zulip") zulip_realm.restricted_to_domain = False zulip_realm.save() self.login("hamlet@zulip.com") external_address = "foo@example.com" self.assert_json_success(self.invite(external_address, ["Denmark"])) self.check_sent_emails([external_address]) def test_invite_outside_domain_before_closing(self): # type: () -> None """ If you invite someone with a different domain from that of the realm when `restricted_to_domain = False`, but `restricted_to_domain` later changes to true, the invitation should succeed but the invitee's signup attempt should fail. """ zulip_realm = get_realm("zulip") zulip_realm.restricted_to_domain = False zulip_realm.save() self.login("hamlet@zulip.com") external_address = "foo@example.com" self.assert_json_success(self.invite(external_address, ["Denmark"])) self.check_sent_emails([external_address]) zulip_realm.restricted_to_domain = True zulip_realm.save() result = self.submit_reg_form_for_user("foo@example.com", "password") self.assertEqual(result.status_code, 200) self.assert_in_response("only allows users with e-mail", result) def test_invite_with_non_ascii_streams(self): # type: () -> None """ Inviting someone to streams with non-ASCII characters succeeds. """ self.login("hamlet@zulip.com") invitee = "alice-test@zulip.com" stream_name = u"hümbüǵ" # Make sure we're subscribed before inviting someone. self.subscribe_to_stream("hamlet@zulip.com", stream_name) self.assert_json_success(self.invite(invitee, [stream_name])) def test_refer_friend(self): # type: () -> None self.login("hamlet@zulip.com") user = get_user_profile_by_email('hamlet@zulip.com') user.invites_granted = 1 user.invites_used = 0 user.save() invitee = "alice-test@zulip.com" result = self.client_post('/json/refer_friend', dict(email=invitee)) self.assert_json_success(result) # verify this works Referral.objects.get(user_profile=user, email=invitee) user = get_user_profile_by_email('hamlet@zulip.com') self.assertEqual(user.invites_used, 1) def test_refer_friend_no_email(self): # type: () -> None self.login("hamlet@zulip.com") user = get_user_profile_by_email('hamlet@zulip.com') user.invites_granted = 1 user.invites_used = 0 user.save() self.assert_json_error( self.client_post('/json/refer_friend', dict(email='')), "No email address specified") user = get_user_profile_by_email('hamlet@zulip.com') self.assertEqual(user.invites_used, 0) def test_refer_friend_no_invites(self): # type: () -> None self.login("hamlet@zulip.com") user = get_user_profile_by_email('hamlet@zulip.com') user.invites_granted = 1 user.invites_used = 1 user.save() invitee = "alice-test@zulip.com" self.assert_json_error( self.client_post('/json/refer_friend', dict(email=invitee)), "Insufficient invites") user = get_user_profile_by_email('hamlet@zulip.com') self.assertEqual(user.invites_used, 1) def test_invitation_reminder_email(self): # type: () -> None from django.core.mail import outbox current_user_email = "hamlet@zulip.com" self.login(current_user_email) invitee = "alice-test@zulip.com" self.assert_json_success(self.invite(invitee, ["Denmark"])) self.assertTrue(find_key_by_email(invitee)) self.check_sent_emails([invitee]) data = {"email": invitee, "referrer_email": current_user_email} invitee = get_prereg_user_by_email(data["email"]) referrer = get_user_profile_by_email(data["referrer_email"]) link = Confirmation.objects.get_link_for_object(invitee, host=referrer.realm.host) context = common_context(referrer) context.update({ 'activate_url': link, 'referrer': referrer, 'verbose_support_offers': settings.VERBOSE_SUPPORT_OFFERS, 'support_email': settings.ZULIP_ADMINISTRATOR }) with self.settings(EMAIL_BACKEND='django.core.mail.backends.console.EmailBackend'): send_local_email_template_with_delay( [{'email': data["email"], 'name': ""}], "zerver/emails/invitation/invitation_reminder_email", context, datetime.timedelta(days=0), tags=["invitation-reminders"], sender={'email': settings.ZULIP_ADMINISTRATOR, 'name': 'Zulip'}) email_jobs_to_deliver = ScheduledJob.objects.filter( type=ScheduledJob.EMAIL, scheduled_timestamp__lte=timezone.now()) self.assertEqual(len(email_jobs_to_deliver), 1) email_count = len(outbox) for job in email_jobs_to_deliver: self.assertTrue(send_email_job(job)) self.assertEqual(len(outbox), email_count + 1) class InviteeEmailsParserTests(TestCase): def setUp(self): # type: () -> None self.email1 = "email1@zulip.com" self.email2 = "email2@zulip.com" self.email3 = "email3@zulip.com" def test_if_emails_separated_by_commas_are_parsed_and_striped_correctly(self): # type: () -> None emails_raw = "{} ,{}, {}".format(self.email1, self.email2, self.email3) expected_set = {self.email1, self.email2, self.email3} self.assertEqual(get_invitee_emails_set(emails_raw), expected_set) def test_if_emails_separated_by_newlines_are_parsed_and_striped_correctly(self): # type: () -> None emails_raw = "{}\n {}\n {} ".format(self.email1, self.email2, self.email3) expected_set = {self.email1, self.email2, self.email3} self.assertEqual(get_invitee_emails_set(emails_raw), expected_set) def test_if_emails_from_email_client_separated_by_newlines_are_parsed_correctly(self): # type: () -> None emails_raw = "Email One <{}>\nEmailTwo<{}>\nEmail Three<{}>".format(self.email1, self.email2, self.email3) expected_set = {self.email1, self.email2, self.email3} self.assertEqual(get_invitee_emails_set(emails_raw), expected_set) def test_if_emails_in_mixed_style_are_parsed_correctly(self): # type: () -> None emails_raw = "Email One <{}>,EmailTwo<{}>\n{}".format(self.email1, self.email2, self.email3) expected_set = {self.email1, self.email2, self.email3} self.assertEqual(get_invitee_emails_set(emails_raw), expected_set) class EmailUnsubscribeTests(ZulipTestCase): def test_error_unsubscribe(self): # type: () -> None # An invalid insubscribe token "test123" produces an error. result = self.client_get('/accounts/unsubscribe/missed_messages/test123') self.assert_in_response('Unknown email unsubscribe request', result) # An unknown message type "fake" produces an error. user_profile = get_user_profile_by_email("hamlet@zulip.com") unsubscribe_link = one_click_unsubscribe_link(user_profile, "fake") result = self.client_get(urllib.parse.urlparse(unsubscribe_link).path) self.assert_in_response('Unknown email unsubscribe request', result) def test_missedmessage_unsubscribe(self): # type: () -> None """ We provide one-click unsubscribe links in missed message e-mails that you can click even when logged out to update your email notification settings. """ user_profile = get_user_profile_by_email("hamlet@zulip.com") user_profile.enable_offline_email_notifications = True user_profile.save() unsubscribe_link = one_click_unsubscribe_link(user_profile, "missed_messages") result = self.client_get(urllib.parse.urlparse(unsubscribe_link).path) self.assertEqual(result.status_code, 200) # Circumvent user_profile caching. user_profile = UserProfile.objects.get(email="hamlet@zulip.com") self.assertFalse(user_profile.enable_offline_email_notifications) def test_welcome_unsubscribe(self): # type: () -> None """ We provide one-click unsubscribe links in welcome e-mails that you can click even when logged out to stop receiving them. """ email = "hamlet@zulip.com" user_profile = get_user_profile_by_email("hamlet@zulip.com") # Simulate a new user signing up, which enqueues 2 welcome e-mails. enqueue_welcome_emails(email, "King Hamlet") self.assertEqual(2, len(ScheduledJob.objects.filter( type=ScheduledJob.EMAIL, filter_string__iexact=email))) # Simulate unsubscribing from the welcome e-mails. unsubscribe_link = one_click_unsubscribe_link(user_profile, "welcome") result = self.client_get(urllib.parse.urlparse(unsubscribe_link).path) # The welcome email jobs are no longer scheduled. self.assertEqual(result.status_code, 200) self.assertEqual(0, len(ScheduledJob.objects.filter( type=ScheduledJob.EMAIL, filter_string__iexact=email))) def test_digest_unsubscribe(self): # type: () -> None """ We provide one-click unsubscribe links in digest e-mails that you can click even when logged out to stop receiving them. Unsubscribing from these emails also dequeues any digest email jobs that have been queued. """ email = "hamlet@zulip.com" user_profile = get_user_profile_by_email("hamlet@zulip.com") self.assertTrue(user_profile.enable_digest_emails) # Enqueue a fake digest email. send_digest_email(user_profile, "", "", "") self.assertEqual(1, len(ScheduledJob.objects.filter( type=ScheduledJob.EMAIL, filter_string__iexact=email))) # Simulate unsubscribing from digest e-mails. unsubscribe_link = one_click_unsubscribe_link(user_profile, "digest") result = self.client_get(urllib.parse.urlparse(unsubscribe_link).path) # The setting is toggled off, and scheduled jobs have been removed. self.assertEqual(result.status_code, 200) # Circumvent user_profile caching. user_profile = UserProfile.objects.get(email="hamlet@zulip.com") self.assertFalse(user_profile.enable_digest_emails) self.assertEqual(0, len(ScheduledJob.objects.filter( type=ScheduledJob.EMAIL, filter_string__iexact=email))) class RealmCreationTest(ZulipTestCase): def test_create_realm(self): # type: () -> None password = "test" string_id = "zuliptest" email = "user1@test.com" realm = get_realm('test') # Make sure the realm does not exist self.assertIsNone(realm) with self.settings(OPEN_REALM_CREATION=True): # Create new realm with the email result = self.client_post('/create_realm/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. confirmation_url = self.get_confirmation_url_from_outbox(email) result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) result = self.submit_reg_form_for_user(email, password, realm_subdomain=string_id) self.assertEqual(result.status_code, 302) # Make sure the realm is created realm = get_realm(string_id) self.assertIsNotNone(realm) self.assertEqual(realm.string_id, string_id) self.assertEqual(get_user_profile_by_email(email).realm, realm) # Check defaults self.assertEqual(realm.org_type, Realm.COMMUNITY) self.assertEqual(realm.restricted_to_domain, False) self.assertEqual(realm.invite_required, True) self.assertTrue(result["Location"].endswith("/")) def test_create_realm_existing_email(self): # type: () -> None """ Trying to create a realm with an existing email should just redirect to a login page. """ with self.settings(OPEN_REALM_CREATION=True): email = 'hamlet@zulip.com' result = self.client_post('/create_realm/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertIn('login', result['Location']) def test_create_realm_no_creation_key(self): # type: () -> None """ Trying to create a realm without a creation_key should fail when OPEN_REALM_CREATION is false. """ email = "user1@test.com" realm = get_realm('test') # Make sure the realm does not exist self.assertIsNone(realm) with self.settings(OPEN_REALM_CREATION=False): # Create new realm with the email, but no creation key. result = self.client_post('/create_realm/', {'email': email}) self.assertEqual(result.status_code, 200) self.assert_in_response('New organization creation disabled.', result) def test_create_realm_with_subdomain(self): # type: () -> None password = "test" string_id = "zuliptest" email = "user1@test.com" realm_name = "Test" # Make sure the realm does not exist self.assertIsNone(get_realm('test')) with self.settings(REALMS_HAVE_SUBDOMAINS=True), self.settings(OPEN_REALM_CREATION=True): # Create new realm with the email result = self.client_post('/create_realm/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. confirmation_url = self.get_confirmation_url_from_outbox(email) result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) result = self.submit_reg_form_for_user(email, password, realm_subdomain = string_id, realm_name=realm_name, # Pass HTTP_HOST for the target subdomain HTTP_HOST=string_id + ".testserver") self.assertEqual(result.status_code, 302) # Make sure the realm is created realm = get_realm(string_id) self.assertIsNotNone(realm) self.assertEqual(realm.string_id, string_id) self.assertEqual(get_user_profile_by_email(email).realm, realm) self.assertEqual(realm.name, realm_name) self.assertEqual(realm.subdomain, string_id) def test_mailinator_signup(self): # type: () -> None with self.settings(OPEN_REALM_CREATION=True): result = self.client_post('/create_realm/', {'email': "hi@mailinator.com"}) self.assert_in_response('Please use your real email address.', result) def test_subdomain_restrictions(self): # type: () -> None password = "test" email = "user1@test.com" realm_name = "Test" with self.settings(REALMS_HAVE_SUBDOMAINS=False), self.settings(OPEN_REALM_CREATION=True): result = self.client_post('/create_realm/', {'email': email}) self.client_get(result["Location"]) confirmation_url = self.get_confirmation_url_from_outbox(email) self.client_get(confirmation_url) errors = {'id': "at least 3 characters", '-id': "cannot start or end with a", 'string-ID': "lowercase letters", 'string_id': "lowercase letters", 'stream': "unavailable", 'streams': "unavailable", 'about': "unavailable", 'abouts': "unavailable", 'zephyr': "unavailable"} for string_id, error_msg in errors.items(): result = self.submit_reg_form_for_user(email, password, realm_subdomain = string_id, realm_name = realm_name) self.assert_in_response(error_msg, result) # test valid subdomain result = self.submit_reg_form_for_user(email, password, realm_subdomain = 'a-0', realm_name = realm_name) self.assertEqual(result.status_code, 302) class UserSignUpTest(ZulipTestCase): def test_user_default_language(self): # type: () -> None """ Check if the default language of new user is the default language of the realm. """ email = "newguy@zulip.com" password = "newpassword" realm = get_realm('zulip') do_set_realm_property(realm, 'default_language', u"de") result = self.client_post('/accounts/home/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. confirmation_url = self.get_confirmation_url_from_outbox(email) result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) # Pick a password and agree to the ToS. result = self.submit_reg_form_for_user(email, password) self.assertEqual(result.status_code, 302) user_profile = get_user_profile_by_email(email) self.assertEqual(user_profile.default_language, realm.default_language) from django.core.mail import outbox outbox.pop() def test_signup_already_active(self): # type: () -> None """ Check if signing up with an active email redirects to a login page. """ email = 'hamlet@zulip.com' result = self.client_post('/accounts/home/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertIn('login', result['Location']) def test_signup_invalid_name(self): # type: () -> None """ Check if an invalid name during signup is handled properly. """ email = "newguy@zulip.com" password = "newpassword" result = self.client_post('/accounts/home/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. confirmation_url = self.get_confirmation_url_from_outbox(email) result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) # Pick a password and agree to the ToS. result = self.submit_reg_form_for_user(email, password, full_name="<invalid>") self.assert_in_success_response(["Invalid characters in name!"], result) def test_signup_without_password(self): # type: () -> None """ Check if signing up without a password works properly when password_auth_enabled is False. """ email = "newuser@zulip.com" result = self.client_post('/accounts/home/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. confirmation_url = self.get_confirmation_url_from_outbox(email) result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) with patch('zerver.views.registration.password_auth_enabled', return_value=False): result = self.client_post( '/accounts/register/', {'full_name': 'New User', 'realm_name': 'Zulip Test', 'realm_subdomain': 'zuliptest', 'key': find_key_by_email(email), 'realm_org_type': Realm.COMMUNITY, 'terms': True}) # User should now be logged in. self.assertEqual(result.status_code, 302) user_profile = get_user_profile_by_email(email) self.assertEqual(get_session_dict_user(self.client.session), user_profile.id) def test_signup_without_full_name(self): # type: () -> None """ Check if signing up without a full name redirects to a registration form. """ email = "newguy@zulip.com" password = "newpassword" result = self.client_post('/accounts/home/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. confirmation_url = self.get_confirmation_url_from_outbox(email) result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) result = self.client_post( '/accounts/register/', {'password': password, 'realm_name': 'Zulip Test', 'realm_subdomain': 'zuliptest', 'key': find_key_by_email(email), 'realm_org_type': Realm.COMMUNITY, 'terms': True, 'from_confirmation': '1'}) self.assert_in_success_response(["You're almost there."], result) def test_signup_invalid_subdomain(self): # type: () -> None """ Check if attempting to authenticate to the wrong subdomain logs an error and redirects. """ email = "newuser@zulip.com" password = "newpassword" result = self.client_post('/accounts/home/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. confirmation_url = self.get_confirmation_url_from_outbox(email) result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) def invalid_subdomain(**kwargs): # type: (**Any) -> Any return_data = kwargs.get('return_data', {}) return_data['invalid_subdomain'] = True with patch('zerver.views.registration.authenticate', side_effect=invalid_subdomain): with patch('logging.error') as mock_error: result = self.client_post( '/accounts/register/', {'password': password, 'full_name': 'New User', 'realm_name': 'Zulip Test', 'realm_subdomain': 'zuliptest', 'key': find_key_by_email(email), 'realm_org_type': Realm.COMMUNITY, 'terms': True}) mock_error.assert_called_once() self.assertEqual(result.status_code, 302) def test_unique_completely_open_domain(self): # type: () -> None password = "test" email = "user1@acme.com" subdomain = "zulip" realm_name = "Zulip" realm = get_realm('zulip') realm.restricted_to_domain = False realm.invite_required = False realm.save() for string_id in ('simple', 'zephyr'): realm = get_realm(string_id) do_deactivate_realm(realm) realm.save() result = self.client_post('/register/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. from django.core.mail import outbox for message in reversed(outbox): if email in message.to: confirmation_link_pattern = re.compile(settings.EXTERNAL_HOST + "(\S+)>") confirmation_url = confirmation_link_pattern.search( message.body).groups()[0] break else: raise AssertionError("Couldn't find a confirmation email.") result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) result = self.submit_reg_form_for_user(email, password, realm_name=realm_name, realm_subdomain=subdomain, # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assert_in_success_response(["You're almost there."], result) def test_completely_open_domain_success(self): # type: () -> None password = "test" email = "user1@acme.com" subdomain = "zulip" realm_name = "Zulip" realm = get_realm('zulip') realm.restricted_to_domain = False realm.invite_required = False realm.save() result = self.client_post('/register/zulip/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. from django.core.mail import outbox for message in reversed(outbox): if email in message.to: confirmation_link_pattern = re.compile(settings.EXTERNAL_HOST + "(\S+)>") confirmation_url = confirmation_link_pattern.search( message.body).groups()[0] break else: raise AssertionError("Couldn't find a confirmation email.") result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) result = self.submit_reg_form_for_user(email, password, realm_name=realm_name, realm_subdomain=subdomain, # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assert_in_success_response(["You're almost there."], result) def test_failed_signup_with_realm_str(self): # type: () -> None """ Signing up with the special accounts_home_with_realm_str endpoint should fail (i.e. redirect to the standard accounts_home) if settings.REALMS_HAVE_SUBDOMAINS is true, or if the realm is not completely open. """ realm = get_realm('zulip') realm.restricted_to_domain = False realm.invite_required = False realm.save() with self.settings(REALMS_HAVE_SUBDOMAINS=True): email = 'user1@acme.com' result = self.client_post('/register/zulip/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertIn('accounts/home', result['Location']) realm = get_realm('zulip') realm.invite_required = True realm.save() with self.settings(REALMS_HAVE_SUBDOMAINS=False): email = 'user1@acme.com' result = self.client_post('/register/zulip/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertIn('accounts/home', result['Location']) def test_failed_signup_due_to_restricted_domain(self): # type: () -> None realm = get_realm('zulip') realm.invite_required = False realm.save() with self.settings(REALMS_HAVE_SUBDOMAINS = True): request = HostRequestMock(host = realm.host) request.session = {} # type: ignore form = HomepageForm({'email': 'user@acme.com'}, realm=realm) self.assertIn("trying to join, zulip, only allows users with e-mail", form.errors['email'][0]) def test_failed_signup_due_to_invite_required(self): # type: () -> None realm = get_realm('zulip') realm.invite_required = True realm.save() request = HostRequestMock(host = realm.host) request.session = {} # type: ignore form = HomepageForm({'email': 'user@zulip.com'}, realm=realm) self.assertIn("Please request an invite from", form.errors['email'][0]) def test_failed_signup_due_to_nonexistent_realm(self): # type: () -> None with self.settings(REALMS_HAVE_SUBDOMAINS = True): request = HostRequestMock(host = 'acme.' + settings.EXTERNAL_HOST) request.session = {} # type: ignore form = HomepageForm({'email': 'user@acme.com'}, realm=None) self.assertIn("organization you are trying to join does not exist", form.errors['email'][0]) def test_registration_through_ldap(self): # type: () -> None password = "testing" email = "newuser@zulip.com" subdomain = "zulip" realm_name = "Zulip" ldap_user_attr_map = {'full_name': 'fn', 'short_name': 'sn'} ldap_patcher = patch('django_auth_ldap.config.ldap.initialize') mock_initialize = ldap_patcher.start() mock_ldap = MockLDAP() mock_initialize.return_value = mock_ldap mock_ldap.directory = { 'uid=newuser,ou=users,dc=zulip,dc=com': { 'userPassword': 'testing', 'fn': ['New User Name'] } } with patch('zerver.views.registration.get_subdomain', return_value=subdomain): result = self.client_post('/register/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. from django.core.mail import outbox for message in reversed(outbox): if email in message.to: confirmation_link_pattern = re.compile(settings.EXTERNAL_HOST + "(\S+)>") confirmation_url = confirmation_link_pattern.search( message.body).groups()[0] break else: raise AssertionError("Couldn't find a confirmation email.") with self.settings( POPULATE_PROFILE_VIA_LDAP=True, LDAP_APPEND_DOMAIN='zulip.com', AUTH_LDAP_BIND_PASSWORD='', AUTH_LDAP_USER_ATTR_MAP=ldap_user_attr_map, AUTHENTICATION_BACKENDS=('zproject.backends.ZulipLDAPAuthBackend',), AUTH_LDAP_USER_DN_TEMPLATE='uid=%(user)s,ou=users,dc=zulip,dc=com'): result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) # The full_name should not be overriden by the value from LDAP if # request.session['authenticated_full_name'] has not been set yet. with patch('zerver.views.registration.name_changes_disabled', return_value=True): result = self.submit_reg_form_for_user(email, password, full_name="Non LDAP Full Name", realm_name=realm_name, realm_subdomain=subdomain, # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assert_in_success_response(["You're almost there.", "Non LDAP Full Name", "newuser@zulip.com"], result) # Submitting the registration form with from_confirmation='1' sets # the value of request.session['authenticated_full_name'] from LDAP. result = self.submit_reg_form_for_user(email, password, realm_name=realm_name, realm_subdomain=subdomain, from_confirmation='1', # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assert_in_success_response(["You're almost there.", "New User Name", "newuser@zulip.com"], result) # The full name be populated from the value of # request.session['authenticated_full_name'] from LDAP in the case # where from_confirmation and name_changes_disabled are both False. with patch('zerver.views.registration.name_changes_disabled', return_value=True): result = self.submit_reg_form_for_user(email, password, full_name="Non LDAP Full Name", realm_name=realm_name, realm_subdomain=subdomain, # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assert_in_success_response(["You're almost there.", "New User Name", "newuser@zulip.com"], result) # Test the TypeError exception handler mock_ldap.directory = { 'uid=newuser,ou=users,dc=zulip,dc=com': { 'userPassword': 'testing', 'fn': None # This will raise TypeError } } result = self.submit_reg_form_for_user(email, password, realm_name=realm_name, realm_subdomain=subdomain, from_confirmation='1', # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assert_in_success_response(["You're almost there.", "newuser@zulip.com"], result) mock_ldap.reset() mock_initialize.stop() @patch('DNS.dnslookup', return_value=[['sipbtest:*:20922:101:Fred Sipb,,,:/mit/sipbtest:/bin/athena/tcsh']]) def test_registration_of_mirror_dummy_user(self, ignored): # type: (Any) -> None password = "test" email = "sipbtest@mit.edu" subdomain = "sipb" realm_name = "MIT" user_profile = get_user_profile_by_email(email) user_profile.is_mirror_dummy = True user_profile.is_active = False user_profile.save() result = self.client_post('/register/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"].endswith( "/accounts/send_confirm/%s" % (email,))) result = self.client_get(result["Location"]) self.assert_in_response("Check your email so we can get started.", result) # Visit the confirmation link. from django.core.mail import outbox for message in reversed(outbox): if email in message.to: confirmation_link_pattern = re.compile(settings.EXTERNAL_HOST + "(\S+)>") confirmation_url = confirmation_link_pattern.search( message.body).groups()[0] break else: raise AssertionError("Couldn't find a confirmation email.") result = self.client_get(confirmation_url) self.assertEqual(result.status_code, 200) # If the mirror dummy user is already active, attempting to submit the # registration form should just redirect to a login page. user_profile.is_active = True user_profile.save() result = self.submit_reg_form_for_user(email, password, realm_name=realm_name, realm_subdomain=subdomain, from_confirmation='1', # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assertEqual(result.status_code, 302) self.assertIn('login', result['Location']) user_profile.is_active = False user_profile.save() result = self.submit_reg_form_for_user(email, password, realm_name=realm_name, realm_subdomain=subdomain, from_confirmation='1', # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assertEqual(result.status_code, 200) result = self.submit_reg_form_for_user(email, password, realm_name=realm_name, realm_subdomain=subdomain, # Pass HTTP_HOST for the target subdomain HTTP_HOST=subdomain + ".testserver") self.assertEqual(result.status_code, 302) self.assertEqual(get_session_dict_user(self.client.session), user_profile.id) def test_registration_of_active_mirror_dummy_user(self): # type: (Any) -> None """ Trying to activate an already-active mirror dummy user should just redirect to a login page. """ email = "sipbtest@mit.edu" user_profile = get_user_profile_by_email(email) user_profile.is_mirror_dummy = True user_profile.is_active = True user_profile.save() result = self.client_post('/register/', {'email': email}) self.assertEqual(result.status_code, 302) self.assertIn('login', result['Location']) class TestOpenRealms(ZulipTestCase): def test_open_realm_logic(self): # type: () -> None realm = get_realm('simple') do_deactivate_realm(realm) mit_realm = get_realm("zephyr") self.assertEqual(get_unique_open_realm(), None) mit_realm.restricted_to_domain = False mit_realm.save() self.assertTrue(completely_open(mit_realm)) self.assertEqual(get_unique_open_realm(), None) with self.settings(SYSTEM_ONLY_REALMS={"zulip"}): self.assertEqual(get_unique_open_realm(), mit_realm) mit_realm.restricted_to_domain = True mit_realm.save() class DeactivateUserTest(ZulipTestCase): def test_deactivate_user(self): # type: () -> None email = 'hamlet@zulip.com' self.login(email) user = get_user_profile_by_email('hamlet@zulip.com') self.assertTrue(user.is_active) result = self.client_delete('/json/users/me') self.assert_json_success(result) user = get_user_profile_by_email('hamlet@zulip.com') self.assertFalse(user.is_active) self.login(email, fails=True) def test_do_not_deactivate_final_admin(self): # type: () -> None email = 'iago@zulip.com' self.login(email) user = get_user_profile_by_email('iago@zulip.com') self.assertTrue(user.is_active) result = self.client_delete('/json/users/me') self.assert_json_error(result, "Cannot deactivate the only organization administrator") user = get_user_profile_by_email('iago@zulip.com') self.assertTrue(user.is_active) self.assertTrue(user.is_realm_admin) email = 'hamlet@zulip.com' user_2 = get_user_profile_by_email('hamlet@zulip.com') do_change_is_admin(user_2, True) self.assertTrue(user_2.is_realm_admin) result = self.client_delete('/json/users/me') self.assert_json_success(result) do_change_is_admin(user, True) class TestLoginPage(ZulipTestCase): def test_login_page_wrong_subdomain_error(self): # type: () -> None result = self.client_get("/login/?subdomain=1") self.assertIn(WRONG_SUBDOMAIN_ERROR, result.content.decode('utf8')) @patch('django.http.HttpRequest.get_host') def test_login_page_redirects_for_root_alias(self, mock_get_host): # type: (MagicMock) -> None mock_get_host.return_value = 'www.testserver' with self.settings(REALMS_HAVE_SUBDOMAINS=True, ROOT_SUBDOMAIN_ALIASES=['www']): result = self.client_get("/en/login/") self.assertEqual(result.status_code, 302) self.assertEqual(result.url, '/find_my_team/') @patch('django.http.HttpRequest.get_host') def test_login_page_redirects_for_root_domain(self, mock_get_host): # type: (MagicMock) -> None mock_get_host.return_value = 'testserver' with self.settings(REALMS_HAVE_SUBDOMAINS=True, ROOT_SUBDOMAIN_ALIASES=['www']): result = self.client_get("/en/login/") self.assertEqual(result.status_code, 302) self.assertEqual(result.url, '/find_my_team/') mock_get_host.return_value = 'www.testserver.com' with self.settings(REALMS_HAVE_SUBDOMAINS=True, EXTERNAL_HOST='www.testserver.com', ROOT_SUBDOMAIN_ALIASES=['test']): result = self.client_get("/en/login/") self.assertEqual(result.status_code, 302) self.assertEqual(result.url, '/find_my_team/') @patch('django.http.HttpRequest.get_host') def test_login_page_works_without_subdomains(self, mock_get_host): # type: (MagicMock) -> None mock_get_host.return_value = 'www.testserver' with self.settings(ROOT_SUBDOMAIN_ALIASES=['www']): result = self.client_get("/en/login/") self.assertEqual(result.status_code, 200) mock_get_host.return_value = 'testserver' with self.settings(ROOT_SUBDOMAIN_ALIASES=['www']): result = self.client_get("/en/login/") self.assertEqual(result.status_code, 200) class TestFindMyTeam(ZulipTestCase): def test_template(self): # type: () -> None result = self.client_get('/find_my_team/') self.assertIn("Find your team", result.content.decode('utf8')) def test_result(self): # type: () -> None url = '/find_my_team/?emails=iago@zulip.com,cordelia@zulip.com' result = self.client_get(url) content = result.content.decode('utf8') self.assertIn("Emails sent! You will only receive emails", content) self.assertIn("iago@zulip.com", content) self.assertIn("cordelia@zulip.com", content) def test_find_team_ignore_invalid_email(self): # type: () -> None url = '/find_my_team/?emails=iago@zulip.com,invalid_email' result = self.client_get(url) content = result.content.decode('utf8') self.assertIn("Emails sent! You will only receive emails", content) self.assertIn("iago@zulip.com", content) self.assertNotIn("invalid_email", content) def test_find_team_zero_emails(self): # type: () -> None data = {'emails': ''} result = self.client_post('/find_my_team/', data) self.assertIn('This field is required', result.content.decode('utf8')) self.assertEqual(result.status_code, 200) def test_find_team_one_email(self): # type: () -> None data = {'emails': 'hamlet@zulip.com'} result = self.client_post('/find_my_team/', data) self.assertEqual(result.status_code, 302) self.assertEqual(result.url, '/find_my_team/?emails=hamlet%40zulip.com') def test_find_team_multiple_emails(self): # type: () -> None data = {'emails': 'hamlet@zulip.com,iago@zulip.com'} result = self.client_post('/find_my_team/', data) self.assertEqual(result.status_code, 302) expected = '/find_my_team/?emails=hamlet%40zulip.com%2Ciago%40zulip.com' self.assertEqual(result.url, expected) def test_find_team_more_than_ten_emails(self): # type: () -> None data = {'emails': ','.join(['hamlet-{}@zulip.com'.format(i) for i in range(11)])} result = self.client_post('/find_my_team/', data) self.assertEqual(result.status_code, 200) self.assertIn("Please enter at most 10", result.content.decode('utf8')) class ConfirmationKeyTest(ZulipTestCase): def test_confirmation_key(self): # type: () -> None request = MagicMock() request.session = { 'confirmation_key': {'confirmation_key': 'xyzzy'} } result = confirmation_key(request) self.assert_json_success(result) self.assert_in_response('xyzzy', result)
{ "content_hash": "60923e77069a4c7b4ffece1ae48c9f1f", "timestamp": "", "source": "github", "line_count": 1614, "max_line_length": 114, "avg_line_length": 43.013011152416354, "alnum_prop": 0.5822998141826196, "repo_name": "jainayush975/zulip", "id": "49f32fbe5bba8cbaf03af9c6a9e603be94cfd356", "size": "69459", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "zerver/tests/test_signup.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "312492" }, { "name": "Emacs Lisp", "bytes": "158" }, { "name": "Groovy", "bytes": "5509" }, { "name": "HTML", "bytes": "554118" }, { "name": "JavaScript", "bytes": "1667223" }, { "name": "Nginx", "bytes": "1280" }, { "name": "Pascal", "bytes": "1113" }, { "name": "Perl", "bytes": "401825" }, { "name": "Puppet", "bytes": "86990" }, { "name": "Python", "bytes": "3601270" }, { "name": "Ruby", "bytes": "249744" }, { "name": "Shell", "bytes": "37821" } ], "symlink_target": "" }
__license__ = """ GoLismero 2.0 - The web knife - Copyright (C) 2011-2014 Golismero project site: https://github.com/golismero Golismero project mail: contact@golismero-project.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ import re import os.path import csv try: import cPickle as pickle except ImportError: import pickle as pickle from golismero.api.config import Config from golismero.api.data.resource.url import FolderURL from golismero.api.data.information.html import HTML from golismero.api.data import discard_data from golismero.api.data.vulnerability.infrastructure.outdated_software import OutdatedSoftware from golismero.api.text.wordlist import WordListLoader from golismero.api.text.matching_analyzer import get_diff_ratio from golismero.api.net.web_utils import urljoin, download, get_error_page from golismero.api.net.http import HTTP from golismero.api.logger import Logger from golismero.api.plugin import TestingPlugin #------------------------------------------------------------------------------ # Plecost plugin extra files. base_dir = os.path.split(os.path.abspath(__file__))[0] plecost_dir = os.path.join(base_dir, "plecost_plugin") plecost_plugin_list = os.path.join(plecost_dir, "plugin_list_500.txt") plecost_cve_data = os.path.join(plecost_dir, "cve.dat") del base_dir # # This code was taken from: # # http://stackoverflow.com/a/1714536 # def version_cmp(version1, version2): """ Compare two software versions. :param version1: string with version number. :type version1: str :param version2: string with version number. :type version2: str :return: 1 if version 1 is greater. -1 if version2 if greater. :rtype: int """ tup = lambda x: [int(y) for y in (x+'.0.0.0.0').split('.')][:4] return cmp(tup(version1),tup(version2)) #------------------------------------------------------------------------------ class PlecostPlugin(TestingPlugin): #-------------------------------------------------------------------------- def check_params(self): plugin_list = Config.plugin_args.get("plugin_list", "") if plugin_list == "": plugin_list = plecost_plugin_list # Plugin list file exits? if not os.path.exists(plugin_list): raise IOError("Plugin list file not exits: '%s'" % plugin_list) #-------------------------------------------------------------------------- def get_accepted_types(self): return [FolderURL] #-------------------------------------------------------------------------- def run(self, info): if not isinstance(info, FolderURL): return plugin_list = Config.plugin_args.get("plugin_list", "") if plugin_list == "": plugin_list = plecost_plugin_list find_vulns = Config.plugin_args.get("find_vulns", "") if find_vulns == "": find_vulns = True wordpress_urls = Config.plugin_args.get("wordpress_urls", "") if wordpress_urls == "": wordpress_urls = "golismero/wordpress_detector.txt" url = info.url results = [] # # Try to detect if there is installed a WordPress # wordpress_found = self.__detect_wordpress_installation(url, wordpress_urls) Logger.log_verbose("%s WordPress instalation found in '%s'." % ("No" if wordpress_found is False else "", url)) if wordpress_found is False: return # # Get WordPress version # current_version, last_verstion = self.__get_wordpress_version(url) Logger.log("WordPress installation version found: %s (latest: %s)" % (current_version, last_verstion)) # Outdated version of WordPress? if current_version != "unknown": if version_cmp(current_version, last_verstion) == -1: s = OutdatedSoftware(info, "cpe:/a:wordpress:wordpress:%s" % current_version, title="Outdated version of WordPress (%s)" % current_version, description="Outdated version of wordpress found. Installed version found: %s. Latest version available: %s" % (current_version, last_verstion)) results.append(s) # # Get WordPress version # if find_vulns: # Load CVE descriptions try: CVE_info = pickle.load(open(plecost_cve_data, "rb")) except pickle.PickleError: CVE_info = {} Logger.log("Looking for installed and outdated plugins.") url_parsed = info.parsed_url url = "%s://%s%s" % (url_parsed.scheme, url_parsed.host, url_parsed.directory) installed_plugins = self.__find_plugins(url, plugin_list, self.update_status) for plugin in installed_plugins: plugin_name = plugin[0] plugin_URL = plugin[1] plugin_installed_version = plugin[2] plugin_last_version = plugin[3] plugin_CVEs = plugin[4] # Check for outdated plugins if plugin_installed_version != "unknown": if version_cmp(plugin_installed_version, plugin_last_version) == -1: # CVE info cve_descriptions = [] for cve in plugin_CVEs: try: cve_descriptions.append("%s description: %s" % (cve, CVE_info[cve])) except KeyError: Logger.log_error_more_verbose( "CVE '%s' not found in database. Maybe you must update your plecost plugin" % cve) s = OutdatedSoftware( info, "cpe:/a:wordpress:wordpress:-", title="Outdated version of WordPress plugin '%s'" % plugin_name, description="Outdated version of wordpress found in URL: \n'%s'.\n\n%s" % (plugin_URL, "\n".join(cve_descriptions))) results.append(s) return results #-------------------------------------------------------------------------- def __find_plugins(self, url, plugins_wordlist, update_func): """ Try to find available plugins :param url: base URL to test. :type url: str :param plugins_wordlist: path to wordlist with plugins lists. :type plugins_wordlist: str :param update_func: function to update plugin status. :type update_func: function :return: list of lists as format: list([PLUGIN_NAME, PLUGIN_URL, PLUGIN_INSTALLED_VERSION, PLUGIN_LAST_VERSION, [CVE1, CVE2...]]) :type: list(list()) """ results = [] urls_to_test = { "readme.txt": r"(Stable tag:[\svV]*)([0-9\.]+)", "README.txt": r"(Stable tag:[\svV]*)([0-9\.]+)", } # Generates the error page error_response = get_error_page(url).raw_data # Load plugins info plugins = [] plugins_append = plugins.append with open(plugins_wordlist, "rU") as f: for x in f: plugins_append(x.replace("\n", "")) # Calculate sizes total_plugins = len(plugins) # Load CSV info csv_info = csv.reader(plugins) # Process the URLs for i, plugin_row in enumerate(csv_info): # Plugin properties plugin_URI = plugin_row[0] plugin_name = plugin_row[1] plugin_last_version = plugin_row[2] plugin_CVEs = [] if plugin_row[3] == "" else plugin_row[3].split("|") # Update status update_func((float(i) * 100.0) / float(total_plugins)) # Make plugin URL partial_plugin_url = "%s/%s" % (url, "wp-content/plugins/%s" % plugin_URI) # Test each URL with possible plugin version info for target, regex in urls_to_test.iteritems(): plugin_url = "%s/%s" % (partial_plugin_url, target) # Try to get plugin p = None try: p = HTTP.get_url(plugin_url, use_cache=False) if p: discard_data(p) except Exception, e: Logger.log_error_more_verbose("Error while download: '%s': %s" % (plugin_url, str(e))) continue plugin_installed_version = None if p.status == "403": # Installed, but inaccesible plugin_installed_version = "Unknown" elif p.status == "200": # Check if page is and non-generic not found page with 404 code if get_diff_ratio(error_response, p.raw_response) < 0.52: # Find the version tmp_version = re.search(regex, p.raw_response) if tmp_version is not None: plugin_installed_version = tmp_version.group(2) # Store info if plugin_installed_version is not None: Logger.log("Discovered plugin: '%s (installed version: %s)' (latest version: %s)" % (plugin_name, plugin_installed_version, plugin_last_version)) results.append([ plugin_name, plugin_url, plugin_installed_version, plugin_last_version, plugin_CVEs ]) # Plugin found -> not more URL test for this plugin break return results #-------------------------------------------------------------------------- def __detect_wordpress_installation(self, url, wordpress_urls): """ Try to detect a wordpress instalation in the current path. :param url: URL where try to find the WordPress installation. :type url: str :param wordpress_urls: string with wordlist name with WordPress URLs. :type wordpress_urls: str :return: True if wordpress installation found. False otherwise. :rtype: bool """ Logger.log_more_verbose("Detecting Wordpress instalation in URI: '%s'." % url) total_urls = 0 urls_found = 0 error_page = get_error_page(url).raw_data for u in WordListLoader.get_wordlist_as_list(wordpress_urls): total_urls += 1 tmp_url = urljoin(url, u) r = HTTP.get_url(tmp_url, use_cache=False) if r.status == "200": # Try to detect non-default error pages ratio = get_diff_ratio(r.raw_response, error_page) if ratio < 0.35: urls_found += 1 discard_data(r) # If Oks > 85% continue if (urls_found / float(total_urls)) < 0.85: # If all fails, make another last test url_wp_admin = urljoin(url, "wp-admin/") try: p = HTTP.get_url(url_wp_admin, use_cache=False, allow_redirects=False) if p: discard_data(p) except Exception, e: return False if p.status == "302" and "wp-login.php?redirect_to=" in p.headers.get("Location", ""): return True else: return False else: return True #-------------------------------------------------------------------------- def __get_wordpress_version(self, url): """ This function get the current version of wordpress and the last version available for download. :param url: URL fo target. :type url: str. :return: a tuple with (CURRENT_VERSION, LAST_AVAILABLE_VERSION) :type: tuple(str, str) """ url_version = { # Generic "wp-login.php": r"(;ver=)([0-9\.]+)([\-a-z]*)", # For WordPress 3.8 "wp-admin/css/wp-admin-rtl.css": r"(Version[\s]+)([0-9\.]+)", "wp-admin/css/wp-admin.css": r"(Version[\s]+)([0-9\.]+)" } # # Get current version # # URL to find wordpress version url_current_version = urljoin(url, "readme.html") current_version_content_1 = download(url_current_version) if isinstance(current_version_content_1, HTML): current_version_method1 = re.search(r"(<br/>[\s]*[vV]ersion[\s]*)([0-9\.]*)", current_version_content_1.raw_data) if current_version_method1 is None: current_version_method1 = None else: if len(current_version_method1.groups()) != 2: current_version_method1 = None else: current_version_method1 = current_version_method1.group(2) else: current_version_method1 = None # Try to find the version into HTML meta value # Get content of main page current_version_content_2 = download(url) # Try to find the info current_version_method2 = re.search(r"(<meta name=\"generator\" content=\"WordPress[\s]+)([0-9\.]+)", current_version_content_2.raw_data) if current_version_method2 is None: current_version_method2 = None else: if len(current_version_method2.groups()) != 2: current_version_method2 = None else: current_version_method2 = current_version_method2.group(2) # Match versions of the diffentents methods current_version = "unknown" if current_version_method1 is None and current_version_method2 is None: current_version = "unknown" elif current_version_method1 is None and current_version_method2 is not None: current_version = current_version_method2 elif current_version_method1 is not None and current_version_method2 is None: current_version = current_version_method1 elif current_version_method1 is not None and current_version_method2 is not None: if current_version_method1 != current_version_method2: current_version = current_version_method2 else: current_version = current_version_method1 else: current_version = "unknown" # If Current version not found if current_version == "unknown": for url_pre, regex in url_version.iteritems(): # URL to find wordpress version url_current_version = urljoin(url, url_pre) current_version_content = download(url_current_version) discard_data(current_version_content) # Find the version tmp_version = re.search(regex, current_version_content.raw_data) if tmp_version is not None: current_version = tmp_version.group(2) break # Found -> stop search # # Get last version # # URL to get last version of WordPress available url_last_version = "http://wordpress.org/download/" last_version_content = download(url_last_version, allow_out_of_scope=True) if isinstance(last_version_content, HTML): last_version = re.search("(WordPress&nbsp;)([0-9\.]*)", last_version_content.raw_data) if last_version is None: last_version = "unknown" else: if len(last_version.groups()) != 2: last_version = "unknown" else: last_version = last_version.group(2) else: last_version = "unknown" # Discard unused data discard_data(current_version_content_2) discard_data(current_version_content_1) discard_data(last_version_content) return current_version, last_version
{ "content_hash": "03912b0b089058cc31e88a4ce09b8474", "timestamp": "", "source": "github", "line_count": 465, "max_line_length": 145, "avg_line_length": 36.74623655913979, "alnum_prop": 0.5377772575642301, "repo_name": "JeyZeta/Dangerous", "id": "e9ef550c3af7bfa5385ba788a6a71ab971c588e8", "size": "17134", "binary": false, "copies": "8", "ref": "refs/heads/master", "path": "Dangerous/Golismero/plugins/testing/scan/plecost.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "13260" }, { "name": "C", "bytes": "12851" }, { "name": "C++", "bytes": "3174" }, { "name": "CSS", "bytes": "267451" }, { "name": "HTML", "bytes": "2686153" }, { "name": "JavaScript", "bytes": "1356956" }, { "name": "Lua", "bytes": "14436" }, { "name": "Makefile", "bytes": "11190" }, { "name": "Objective-C", "bytes": "998" }, { "name": "PHP", "bytes": "619" }, { "name": "PLpgSQL", "bytes": "536" }, { "name": "Perl", "bytes": "263365" }, { "name": "Python", "bytes": "16669102" }, { "name": "Roff", "bytes": "9828" }, { "name": "Ruby", "bytes": "503" }, { "name": "Shell", "bytes": "6691" } ], "symlink_target": "" }
""" Wrapper for the ssh program. Provides get_ssh, ssh_command, and scp functions. """ import sys, os from pycopia import proctools from pycopia import expect SSH = proctools.which("ssh") SCP = proctools.which("scp") KEYGEN = proctools.which("ssh-keygen") KEYSCAN = proctools.which("ssh-keyscan") class SSHRetry(RuntimeError): pass # |01234567890123456789 TESTED_VERSIONS = ["OpenSSH_3.4p1, SSH protocols 1.5/2.0, OpenSSL 0x0090605f", "OpenSSH_3.5p1, SSH protocols 1.5/2.0, OpenSSL 0x0090701f", "OpenSSH_3.6.1p2, SSH protocols 1.5/2.0, OpenSSL 0x0090701f", "OpenSSH_3.8.1p1, OpenSSL 0.9.7d 17 Mar 2004", "OpenSSH_4.5p1, OpenSSL 0.9.8a 11 Oct 2005", "OpenSSH_4.3p2" ] SSH_OPTIONS = '-F %s' % os.path.join("/", "etc", "pycopia", "ssh_config") class SSHExpect(expect.Expect): def sshexit(self): self.send("\r~.\r") def login(self, password=None): """login([password]) Supplies a password for the SSH session. Net necessarily any subsequent login prompts. """ if password is None: import getpass password = getpass.getpass("Password: ") while True: mo = self.expect(["WARNING:", "assword:", "try again"], timeout=20) if mo: i = self.expectindex if i == 0: raise SSHRetry("SSHExpect.sshlogin: try again, bad host key.") elif i == 1: self._fo.write(password+"\r") break elif i == 2: continue else: raise RuntimeError("SSHExpect.sshlogin: unknown response.") def death_callback(self, deadssh): if self._log: self._log.write("ssh exited: %s" % (deadssh.exitstatus)) self.close() def _build_commandline(host, **kwargs): #user=None, password=None, prompt=None, callback=None, logfile=None, extraoptions="" if kwargs["user"] is None: cmd = "%s %s %s" %(SSH, host, command) else: cmd = "%s %s@%s %s" %(SSH, user, host, command) def ssh_command(host, command, user=None, password=None, prompt=None, logfile=None): """ssh_command(host, command, [user], [password], [prompt], [logfile]) Runs the command on the given host via SSH, and return the result. """ pm = proctools.get_procmanager() if user is None: cmd = "%s %s %s" %(SSH, host, command) else: cmd = "%s %s@%s %s" %(SSH, user, host, command) sshproc = pm.spawnpty(cmd) ssh = SSHExpect(sshproc) sshproc.set_callback(ssh.death_callback) ssh.set_prompt(prompt or "$") ssh.setlog(logfile) if password is not None: ssh.login(password) rv = ssh.read() return rv def get_ssh(host, user=None, password=None, prompt=None, callback=None, logfile=None, extraoptions="", cmd=None, async=False): """get_ssh(host, [user], [password], [prompt], [callback], [logfile]) Uses ssh to get a shell on the given host, and automatically authenticate by password if a password is given. Returns an SSHExpect object. The logfile parameter should be a file-like object (has a 'write' method). """ pm = proctools.get_procmanager() hostuser = "%s@%s" % (user, host) if user else host command = "%s %s %s %s %s" % (SSH, SSH_OPTIONS, extraoptions, hostuser, cmd or "") sshproc = pm.spawnpty(command, logfile=logfile, async=async) ssh = SSHExpect(sshproc) sshproc.set_callback(callback or ssh.death_callback) ssh.set_prompt(prompt or "$") if password is not None: ssh.login(password) return ssh def get_ssh_unsafe(host, *args, **kwargs): """get_ssh_unsafe(host, ...) Like get_ssh(), but automatically removes any stale known_hosts entry, if required.""" try: return get_ssh(host, *args, **kwargs) except SSHRetry: remove_known_host(host) return get_ssh(host, *args, **kwargs) def scp(srchost=None, srcpath=None, dsthost=None, dstpath=None, user=None, password=None, prompt=None, callback=None, logfile=None): """scp(source, destination, [password]) Copies the file from source to destination. these parameters are strings that are passed directly to the scp command, and should follow the syntax for this command. """ opts = "-q" src = location(srchost, user, srcpath) dst = location(dsthost, user, dstpath) CMD = "%s %s %s '%s' '%s'" % (SCP, SSH_OPTIONS, opts, src, dst) if logfile: logfile.write(CMD+"\n") scp = proctools.spawnpty(CMD, logfile=logfile) if password is not None: escp = SSHExpect(scp) scp.set_callback(callback or escp.death_callback) escp.login(password) discard = escp.read() else: discard = scp.read() es = scp.wait() return es def location(host=None, user=None, path=None, forssh=False): """Construct an appropriate ssh/scp path spec based on the combination of parameters. Supply host, user, and path.""" sep = "" if forssh else ":" if host is None: if user is None: if path is None: raise ValueError("must supply at least one of host, or user.") else: return path else: if path is None: raise ValueError("user without host?") else: return path # ignore user in this case else: if user is None: if path is None: return "%s%s" % (host, sep) else: return "%s:%s" % (host, path) else: if path is None: return "%s@%s%s" % (user, host, sep) else: return "%s@%s:%s" % (user, host, path) def ssh_version(): """ssh_version() Return the version string for the ssh command on this system.""" ssh = proctools.spawnpipe("ssh -TV") ver = ssh.read() return ver def check_version(): """Checks that the installed ssh program is the same as this module was tested with (and written for).""" ver = ssh_version()[:13] for vs in TESTED_VERSIONS: if ver == vs[:13]: return 1 return 0 def get_procs(): """get_ssh_list() Returns list of managed ssh processes.""" pm = proctools.get_procmanager() return pm.getbyname("ssh") # Support objects follow. # Mostly, these are for creating or modifying various ssh related files. class KnownHostsFile(object): def __init__(self): self._fname = os.path.join(os.environ["HOME"], ".ssh", "known_hosts") self._lines = None self.open() def __del__(self): self.close() def __str__(self): return "".join(self._lines) def open(self): try: fo = open(self._fname, "r") except OSError: self._lines = [] else: self._lines = fo.readlines() fo.close() self._dirty = 0 def close(self): if self._dirty: fo = open(self._fname, "w+") fo.writelines(self._lines) fo.close() self._dirty = 0 def add(self, hostname, publickey, comment=None): if comment: line = "%s %s %s\n" % (hostname, publickey, comment) else: line = "%s %s\n" % (hostname, publickey) self._lines.append(line) self._dirty = 1 def remove(self, hostname): from pycopia import ipv4 try: ip = str(ipv4.IPv4(hostname)) except: ip = None new = [] for line in self._lines: if line.startswith(hostname): self._dirty = 1 continue elif ip and line.startswith(ip): self._dirty = 1 continue else: new.append(line) self._lines = new def get_known_hosts(): return KnownHostsFile() def get_userdir(): return os.path.join(os.environ["HOME"], ".ssh") def remove_known_host(hostname): khf = KnownHostsFile() khf.remove(hostname) khf.close() def keygen(keytype="dsa", bits=1024, comment="", filename=None, passphrase=None, logfile=None, async=0, safe=1): """Generate a new ssh user key of the specified keytype.""" assert keytype in KEYTYPES, "keytype must be one of: %s" % (KEYTYPES,) pm = proctools.get_procmanager() fn = filename or os.path.join(os.environ["HOME"], ".ssh", "id_%s" % (keytype,)) ph = passphrase or "" if os.path.exists(fn): if safe: raise SSHRetry("key file %s already exists." % (fn,)) else: os.unlink(fn) command = '%s -q -N "%s" -t %s -b %s -C "%s" -f %s' % \ (KEYGEN, ph, keytype, bits, comment, filename) kgproc = pm.spawnpty(command, logfile=logfile, async=async) kgproc.read() kgproc.wait() return kgproc.exitstatus def keyscan(host, keytype="dsa", logfile=None, async=0): """Run ssh-keyscan. Return key, and program exit status.""" assert keytype in KEYTYPES, "keytype must be one of: %s" % (KEYTYPES,) pm = proctools.get_procmanager() command = '%s -t %s %s' % (KEYSCAN, keytype, host) ksproc = pm.spawnpty(command, logfile=logfile, async=async) res = ksproc.read() ksproc.wait() lines = res.split("\n") [host, text] = lines[1].split(None, 1) if text.startswith("hostkey"): return None, ksproc.exitstatus if text[0] in "0123456789": rv = _parse_rsa1_pub(text) else: rv = _parse_rsa_dsa_pub(text) return rv, ksproc.exitstatus ##### key and keyfile objects. class SSHKey(object): def parse(self, text): raise NotImplementedError class SSHKeyRSA1(SSHKey): pass class SSHKeyRSA1pub(SSHKey): def __init__(self, bits, exponent, modulus, comment=""): self.bits = int(bits) self.exponent = int(exponent) self.modulus = long(modulus) self.comment = str(comment) def __eq__(self, other): try: return self.exponent == other.exponent and self.modulus == other.modulus except AttributeError: return NotImplemented def __ne__(self, other): try: return self.exponent != other.exponent or self.modulus != other.modulus except AttributeError: return NotImplemented def __str__(self): if self.comment: return "%d %d %ld %s" % (self.bits, self.exponent, self.modulus, self.comment) else: return "%d %d %ld" % (self.bits, self.exponent, self.modulus) # this is really only for RSA/DSA public keys class SSHKeyPublic(SSHKey): def __init__(self, key, comment=""): self.key = str(key) # key is base64 encoded self.comment = str(comment) def __eq__(self, other): try: return self.key == other.key except AttributeError: return NotImplemented def __ne__(self, other): try: return self.key != other.key except AttributeError: return NotImplemented def __str__(self): return "%s %s %s" % (self.keytype, self.key, self.comment) class SSHKeyRSA(SSHKey): pass class SSHKeyRSApub(SSHKeyPublic): keytype = "ssh-rsa" class SSHKeyDSA(SSHKey): pass class SSHKeyDSApub(SSHKeyPublic): keytype = "ssh-dss" class AuthorizedKeys(SSHKey): pass # parser figures out the type, as well. Just pass a key file name, ruturn # object of correct type with initialized values. Works something like a # recursive-decent parser, except that it is not recursive. ;-) def parse_key(filename): base, ext = os.path.splitext(filename) if ext and ext == ".pub": return parse_public(filename) else: return parse_private(filename) def parse_public(filename): fo = open(filename) text = fo.read().strip() fo.close() if text[0] in "0123456789": return _parse_rsa1_pub(text) else: return _parse_rsa_dsa_pub(text) def _parse_rsa1_pub(text): parts = text.split() [bits, exponent, modulus] = parts[:3] if len(parts) >= 4: # comments are optional comment = parts[3] else: comment = "" return SSHKeyRSA1pub(bits, exponent, modulus, comment) def _parse_rsa_dsa_pub(text): parts = text.split() assert len(parts) >= 2, "parse_rsa_dsa: need at least 2 parts." if len(parts) >= 3: comment = parts[2] else: comment = "" [keytype, key] = parts[:2] assert keytype in KEYTYPES, "keytype (%r) not valid." % (keytype,) keycls_priv, keycls_pub = _CLSMAP[keytype] return keycls_pub(key, comment) def parse_private(filename): raise NotImplementedError def new_key(keytype="dsa", bits=1024, comment="", filename=None, passphrase=None): pass # map to tuple of private key, public key classes _CLSMAP = {"ssh-dss": (SSHKeyDSA, SSHKeyDSApub), "ssh-rsa": (SSHKeyRSA, SSHKeyRSApub), "rsa1": (SSHKeyRSA1, SSHKeyRSA1pub), "rsa": (SSHKeyRSA, SSHKeyRSApub), "dsa": (SSHKeyDSA, SSHKeyDSApub), } KEYTYPES = _CLSMAP.keys()
{ "content_hash": "dec1127003cb39a9e23e81cd9f193ddf", "timestamp": "", "source": "github", "line_count": 427, "max_line_length": 112, "avg_line_length": 31.070257611241217, "alnum_prop": 0.5869450516318685, "repo_name": "kdart/pycopia", "id": "91ded8469ebc2c35e195d9df68a3e92605c15236", "size": "13904", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "process/pycopia/sshlib.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "423794" }, { "name": "CSS", "bytes": "19522" }, { "name": "JavaScript", "bytes": "91759" }, { "name": "Makefile", "bytes": "6958" }, { "name": "Perl", "bytes": "271" }, { "name": "Python", "bytes": "6098633" }, { "name": "Roff", "bytes": "7289" }, { "name": "Shell", "bytes": "12778" }, { "name": "Vim script", "bytes": "50421" } ], "symlink_target": "" }
"""autogenerated by genpy from mapping_dlut/Grid.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class Grid(genpy.Message): _md5sum = "d1e632170b3f559b23311a8f8cc60632" _type = "mapping_dlut/Grid" _has_header = False #flag to mark the presence of a Header object _full_text = """#Header header #maximum elevation in this grid; #float32 fMaxElevation #minimum elevation in this grid; #float32 fMinElevation #average elevation in this grid; #float32 fAvgElevation #points falling in this grid; #int32 nPointCount #up point falling in this grid; #int32 nUpCount #down point falling in this grid; #int32 nDownCount #average elevation in this grid; float32 fAvgElevation #proability int8 proability #texture int8 texture """ __slots__ = ['fAvgElevation','proability','texture'] _slot_types = ['float32','int8','int8'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: fAvgElevation,proability,texture :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(Grid, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.fAvgElevation is None: self.fAvgElevation = 0. if self.proability is None: self.proability = 0 if self.texture is None: self.texture = 0 else: self.fAvgElevation = 0. self.proability = 0 self.texture = 0 def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_struct_f2b.pack(_x.fAvgElevation, _x.proability, _x.texture)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 _x = self start = end end += 6 (_x.fAvgElevation, _x.proability, _x.texture,) = _struct_f2b.unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_struct_f2b.pack(_x.fAvgElevation, _x.proability, _x.texture)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(_x)))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(_x)))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 _x = self start = end end += 6 (_x.fAvgElevation, _x.proability, _x.texture,) = _struct_f2b.unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I _struct_f2b = struct.Struct("<f2b")
{ "content_hash": "06718c6c1c3256ef399482457b9a54ea", "timestamp": "", "source": "github", "line_count": 128, "max_line_length": 123, "avg_line_length": 31.484375, "alnum_prop": 0.6610421836228287, "repo_name": "WuNL/mylaptop", "id": "e805ba2e3c95de25d9b27ee809e83c66174914e4", "size": "4030", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "install/lib/python2.7/dist-packages/mapping_dlut/msg/_Grid.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C++", "bytes": "189211" }, { "name": "Common Lisp", "bytes": "153266" }, { "name": "Python", "bytes": "98976" }, { "name": "Shell", "bytes": "14892" } ], "symlink_target": "" }
""" TutorialWorld - basic objects - Griatch 2011 This module holds all "dead" object definitions for the tutorial world. Object-commands and -cmdsets are also defined here, together with the object. Objects: TutorialObject Readable Climbable Obelisk LightSource CrumblingWall Weapon WeaponRack """ from future.utils import listvalues import random from evennia import DefaultObject, DefaultExit, Command, CmdSet from evennia import utils from evennia.utils import search from evennia.utils.spawner import spawn # ------------------------------------------------------------- # # TutorialObject # # The TutorialObject is the base class for all items # in the tutorial. They have an attribute "tutorial_info" # on them that the global tutorial command can use to extract # interesting behind-the scenes information about the object. # # TutorialObjects may also be "reset". What the reset means # is up to the object. It can be the resetting of the world # itself, or the removal of an inventory item from a # character's inventory when leaving the tutorial, for example. # # ------------------------------------------------------------- class TutorialObject(DefaultObject): """ This is the baseclass for all objects in the tutorial. """ def at_object_creation(self): """Called when the object is first created.""" super(TutorialObject, self).at_object_creation() self.db.tutorial_info = "No tutorial info is available for this object." def reset(self): """Resets the object, whatever that may mean.""" self.location = self.home # ------------------------------------------------------------- # # Readable - an object that can be "read" # # ------------------------------------------------------------- # # Read command # class CmdRead(Command): """ Usage: read [obj] Read some text of a readable object. """ key = "read" locks = "cmd:all()" help_category = "TutorialWorld" def func(self): """ Implements the read command. This simply looks for an Attribute "readable_text" on the object and displays that. """ if self.args: obj = self.caller.search(self.args.strip()) else: obj = self.obj if not obj: return # we want an attribute read_text to be defined. readtext = obj.db.readable_text if readtext: string = "You read |C%s|n:\n %s" % (obj.key, readtext) else: string = "There is nothing to read on %s." % obj.key self.caller.msg(string) class CmdSetReadable(CmdSet): """ A CmdSet for readables. """ def at_cmdset_creation(self): """ Called when the cmdset is created. """ self.add(CmdRead()) class Readable(TutorialObject): """ This simple object defines some attributes and """ def at_object_creation(self): """ Called when object is created. We make sure to set the needed Attribute and add the readable cmdset. """ super(Readable, self).at_object_creation() self.db.tutorial_info = "This is an object with a 'read' command defined in a command set on itself." self.db.readable_text = "There is no text written on %s." % self.key # define a command on the object. self.cmdset.add_default(CmdSetReadable, permanent=True) # ------------------------------------------------------------- # # Climbable object # # The climbable object works so that once climbed, it sets # a flag on the climber to show that it was climbed. A simple # command 'climb' handles the actual climbing. The memory # of what was last climbed is used in a simple puzzle in the # tutorial. # # ------------------------------------------------------------- class CmdClimb(Command): """ Climb an object Usage: climb <object> This allows you to climb. """ key = "climb" locks = "cmd:all()" help_category = "TutorialWorld" def func(self): """Implements function""" if not self.args: self.caller.msg("What do you want to climb?") return obj = self.caller.search(self.args.strip()) if not obj: return if obj != self.obj: self.caller.msg("Try as you might, you cannot climb that.") return ostring = self.obj.db.climb_text if not ostring: ostring = "You climb %s. Having looked around, you climb down again." % self.obj.name self.caller.msg(ostring) # set a tag on the caller to remember that we climbed. self.caller.tags.add("tutorial_climbed_tree", category="tutorial_world") class CmdSetClimbable(CmdSet): """Climbing cmdset""" def at_cmdset_creation(self): """populate set""" self.add(CmdClimb()) class Climbable(TutorialObject): """ A climbable object. All that is special about it is that it has the "climb" command available on it. """ def at_object_creation(self): """Called at initial creation only""" self.cmdset.add_default(CmdSetClimbable, permanent=True) # ------------------------------------------------------------- # # Obelisk - a unique item # # The Obelisk is an object with a modified return_appearance method # that causes it to look slightly different every time one looks at it. # Since what you actually see is a part of a game puzzle, the act of # looking also stores a key attribute on the looking object (different # depending on which text you saw) for later reference. # # ------------------------------------------------------------- class Obelisk(TutorialObject): """ This object changes its description randomly, and which is shown determines which order "clue id" is stored on the Character for future puzzles. Important Attribute: puzzle_descs (list): list of descriptions. One of these is picked randomly when this object is looked at and its index in the list is used as a key for to solve the puzzle. """ def at_object_creation(self): """Called when object is created.""" super(Obelisk, self).at_object_creation() self.db.tutorial_info = "This object changes its desc randomly, and makes sure to remember which one you saw." self.db.puzzle_descs = ["You see a normal stone slab"] # make sure this can never be picked up self.locks.add("get:false()") def return_appearance(self, caller): """ This hook is called by the look command to get the description of the object. We overload it with our own version. """ # randomly get the index for one of the descriptions descs = self.db.puzzle_descs clueindex = random.randint(0, len(descs) - 1) # set this description, with the random extra string = "The surface of the obelisk seem to waver, shift and writhe under your gaze, with " \ "different scenes and structures appearing whenever you look at it. " self.db.desc = string + descs[clueindex] # remember that this was the clue we got. The Puzzle room will # look for this later to determine if you should be teleported # or not. caller.db.puzzle_clue = clueindex # call the parent function as normal (this will use # the new desc Attribute we just set) return super(Obelisk, self).return_appearance(caller) # ------------------------------------------------------------- # # LightSource # # This object emits light. Once it has been turned on it # cannot be turned off. When it burns out it will delete # itself. # # This could be implemented using a single-repeat Script or by # registering with the TickerHandler. We do it simpler by # using the delay() utility function. This is very simple # to use but does not survive a server @reload. Because of # where the light matters (in the Dark Room where you can # find new light sources easily), this is okay here. # # ------------------------------------------------------------- class CmdLight(Command): """ Creates light where there was none. Something to burn. """ key = "on" aliases = ["light", "burn"] # only allow this command if command.obj is carried by caller. locks = "cmd:holds()" help_category = "TutorialWorld" def func(self): """ Implements the light command. Since this command is designed to sit on a "lightable" object, we operate only on self.obj. """ if self.obj.light(): self.caller.msg("You light %s." % self.obj.key) self.caller.location.msg_contents("%s lights %s!" % (self.caller, self.obj.key), exclude=[self.caller]) else: self.caller.msg("%s is already burning." % self.obj.key) class CmdSetLight(CmdSet): """CmdSet for the lightsource commands""" key = "lightsource_cmdset" # this is higher than the dark cmdset - important! priority = 3 def at_cmdset_creation(self): """called at cmdset creation""" self.add(CmdLight()) class LightSource(TutorialObject): """ This implements a light source object. When burned out, the object will be deleted. """ def at_init(self): """ If this is called with the Attribute is_giving_light already set, we know that the timer got killed by a server reload/reboot before it had time to finish. So we kill it here instead. This is the price we pay for the simplicity of the non-persistent delay() method. """ if self.db.is_giving_light: self.delete() def at_object_creation(self): """Called when object is first created.""" super(LightSource, self).at_object_creation() self.db.tutorial_info = "This object can be lit to create light. It has a timeout for how long it burns." self.db.is_giving_light = False self.db.burntime = 60 * 3 # 3 minutes # this is the default desc, it can of course be customized # when created. self.db.desc = "A splinter of wood with remnants of resin on it, enough for burning." # add the Light command self.cmdset.add_default(CmdSetLight, permanent=True) def _burnout(self): """ This is called when this light source burns out. We make no use of the return value. """ # delete ourselves from the database self.db.is_giving_light = False try: self.location.location.msg_contents("%s's %s flickers and dies." % (self.location, self.key), exclude=self.location) self.location.msg("Your %s flickers and dies." % self.key) self.location.location.check_light_state() except AttributeError: try: self.location.msg_contents("A %s on the floor flickers and dies." % self.key) self.location.location.check_light_state() except AttributeError: # Mainly happens if we happen to be in a None location pass self.delete() def light(self): """ Light this object - this is called by Light command. """ if self.db.is_giving_light: return False # burn for 3 minutes before calling _burnout self.db.is_giving_light = True # if we are in a dark room, trigger its light check try: self.location.location.check_light_state() except AttributeError: try: # maybe we are directly in the room self.location.check_light_state() except AttributeError: # we are in a None location pass finally: # start the burn timer. When it runs out, self._burnout # will be called. We store the deferred so it can be # killed in unittesting. self.deferred = utils.delay(60 * 3, self._burnout) return True # ------------------------------------------------------------- # # Crumbling wall - unique exit # # This implements a simple puzzle exit that needs to be # accessed with commands before one can get to traverse it. # # The puzzle-part is simply to move roots (that have # presumably covered the wall) aside until a button for a # secret door is revealed. The original position of the # roots blocks the button, so they have to be moved to a certain # position - when they have, the "press button" command # is made available and the Exit is made traversable. # # ------------------------------------------------------------- # There are four roots - two horizontal and two vertically # running roots. Each can have three positions: top/middle/bottom # and left/middle/right respectively. There can be any number of # roots hanging through the middle position, but only one each # along the sides. The goal is to make the center position clear. # (yes, it's really as simple as it sounds, just move the roots # to each side to "win". This is just a tutorial, remember?) # # The ShiftRoot command depends on the root object having an # Attribute root_pos (a dictionary) to describe the current # position of the roots. class CmdShiftRoot(Command): """ Shifts roots around. Usage: shift blue root left/right shift red root left/right shift yellow root up/down shift green root up/down """ key = "shift" aliases = ["shiftroot", "push", "pull", "move"] # we only allow to use this command while the # room is properly lit, so we lock it to the # setting of Attribute "is_lit" on our location. locks = "cmd:locattr(is_lit)" help_category = "TutorialWorld" def parse(self): """ Custom parser; split input by spaces for simplicity. """ self.arglist = self.args.strip().split() def func(self): """ Implement the command. blue/red - vertical roots yellow/green - horizontal roots """ if not self.arglist: self.caller.msg("What do you want to move, and in what direction?") return if "root" in self.arglist: # we clean out the use of the word "root" self.arglist.remove("root") # we accept arguments on the form <color> <direction> if not len(self.arglist) > 1: self.caller.msg("You must define which colour of root you want to move, and in which direction.") return color = self.arglist[0].lower() direction = self.arglist[1].lower() # get current root positions dict root_pos = self.obj.db.root_pos if color not in root_pos: self.caller.msg("No such root to move.") return # first, vertical roots (red/blue) - can be moved left/right if color == "red": if direction == "left": root_pos[color] = max(-1, root_pos[color] - 1) self.caller.msg("You shift the reddish root to the left.") if root_pos[color] != 0 and root_pos[color] == root_pos["blue"]: root_pos["blue"] += 1 self.caller.msg("The root with blue flowers gets in the way and is pushed to the right.") elif direction == "right": root_pos[color] = min(1, root_pos[color] + 1) self.caller.msg("You shove the reddish root to the right.") if root_pos[color] != 0 and root_pos[color] == root_pos["blue"]: root_pos["blue"] -= 1 self.caller.msg("The root with blue flowers gets in the way and is pushed to the left.") else: self.caller.msg("You cannot move the root in that direction.") elif color == "blue": if direction == "left": root_pos[color] = max(-1, root_pos[color] - 1) self.caller.msg("You shift the root with small blue flowers to the left.") if root_pos[color] != 0 and root_pos[color] == root_pos["red"]: root_pos["red"] += 1 self.caller.msg("The reddish root is to big to fit as well, so that one falls away to the left.") elif direction == "right": root_pos[color] = min(1, root_pos[color] + 1) self.caller.msg("You shove the root adorned with small blue flowers to the right.") if root_pos[color] != 0 and root_pos[color] == root_pos["red"]: root_pos["red"] -= 1 self.caller.msg("The thick reddish root gets in the way and is pushed back to the left.") else: self.caller.msg("You cannot move the root in that direction.") # now the horizontal roots (yellow/green). They can be moved up/down elif color == "yellow": if direction == "up": root_pos[color] = max(-1, root_pos[color] - 1) self.caller.msg("You shift the root with small yellow flowers upwards.") if root_pos[color] != 0 and root_pos[color] == root_pos["green"]: root_pos["green"] += 1 self.caller.msg("The green weedy root falls down.") elif direction == "down": root_pos[color] = min(1, root_pos[color] + 1) self.caller.msg("You shove the root adorned with small yellow flowers downwards.") if root_pos[color] != 0 and root_pos[color] == root_pos["green"]: root_pos["green"] -= 1 self.caller.msg("The weedy green root is shifted upwards to make room.") else: self.caller.msg("You cannot move the root in that direction.") elif color == "green": if direction == "up": root_pos[color] = max(-1, root_pos[color] - 1) self.caller.msg("You shift the weedy green root upwards.") if root_pos[color] != 0 and root_pos[color] == root_pos["yellow"]: root_pos["yellow"] += 1 self.caller.msg("The root with yellow flowers falls down.") elif direction == "down": root_pos[color] = min(1, root_pos[color] + 1) self.caller.msg("You shove the weedy green root downwards.") if root_pos[color] != 0 and root_pos[color] == root_pos["yellow"]: root_pos["yellow"] -= 1 self.caller.msg("The root with yellow flowers gets in the way and is pushed upwards.") else: self.caller.msg("You cannot move the root in that direction.") # we have moved the root. Store new position self.obj.db.root_pos = root_pos # Check victory condition if listvalues(root_pos).count(0) == 0: # no roots in middle position # This will affect the cmd: lock of CmdPressButton self.obj.db.button_exposed = True self.caller.msg("Holding aside the root you think you notice something behind it ...") class CmdPressButton(Command): """ Presses a button. """ key = "press" aliases = ["press button", "button", "push button"] # only accessible if the button was found and there is light. This checks # the Attribute button_exposed on the Wall object so that # you can only push the button when the puzzle is solved. It also # checks the is_lit Attribute on the location. locks = "cmd:objattr(button_exposed) and objlocattr(is_lit)" help_category = "TutorialWorld" def func(self): """Implements the command""" if self.caller.db.crumbling_wall_found_exit: # we already pushed the button self.caller.msg("The button folded away when the secret passage opened. You cannot push it again.") return # pushing the button string = "You move your fingers over the suspicious depression, then gives it a " \ "decisive push. First nothing happens, then there is a rumble and a hidden " \ "|wpassage|n opens, dust and pebbles rumbling as part of the wall moves aside." self.caller.msg(string) string = "%s moves their fingers over the suspicious depression, then gives it a " \ "decisive push. First nothing happens, then there is a rumble and a hidden " \ "|wpassage|n opens, dust and pebbles rumbling as part of the wall moves aside." self.caller.location.msg_contents(string % self.caller.key, exclude=self.caller) self.obj.open_wall() class CmdSetCrumblingWall(CmdSet): """Group the commands for crumblingWall""" key = "crumblingwall_cmdset" priority = 2 def at_cmdset_creation(self): """called when object is first created.""" self.add(CmdShiftRoot()) self.add(CmdPressButton()) class CrumblingWall(TutorialObject, DefaultExit): """ This is a custom Exit. The CrumblingWall can be examined in various ways, but only if a lit light source is in the room. The traversal itself is blocked by a traverse: lock on the exit that only allows passage if a certain attribute is set on the trying account. Important attribute destination - this property must be set to make this a valid exit whenever the button is pushed (this hides it as an exit until it actually is) """ def at_init(self): """ Called when object is recalled from cache. """ self.reset() def at_object_creation(self): """called when the object is first created.""" super(CrumblingWall, self).at_object_creation() self.aliases.add(["secret passage", "passage", "crack", "opening", "secret door"]) # starting root positions. H1/H2 are the horizontally hanging roots, # V1/V2 the vertically hanging ones. Each can have three positions: # (-1, 0, 1) where 0 means the middle position. yellow/green are # horizontal roots and red/blue vertical, all may have value 0, but n # ever any other identical value. self.db.root_pos = {"yellow": 0, "green": 0, "red": 0, "blue": 0} # flags controlling the puzzle victory conditions self.db.button_exposed = False self.db.exit_open = False # this is not even an Exit until it has a proper destination, and we won't assign # that until it is actually open. Until then we store the destination here. This # should be given a reasonable value at creation! self.db.destination = "#2" # we lock this Exit so that one can only execute commands on it # if its location is lit and only traverse it once the Attribute # exit_open is set to True. self.locks.add("cmd:locattr(is_lit);traverse:objattr(exit_open)") # set cmdset self.cmdset.add(CmdSetCrumblingWall, permanent=True) def open_wall(self): """ This method is called by the push button command once the puzzle is solved. It opens the wall and sets a timer for it to reset itself. """ # this will make it into a proper exit (this returns a list) eloc = search.search_object(self.db.destination) if not eloc: self.caller.msg("The exit leads nowhere, there's just more stone behind it ...") else: self.destination = eloc[0] self.db.exit_open = True # start a 45 second timer before closing again. We store the deferred so it can be # killed in unittesting. self.deferred = utils.delay(45, self.reset) def _translate_position(self, root, ipos): """Translates the position into words""" rootnames = {"red": "The |rreddish|n vertical-hanging root ", "blue": "The thick vertical root with |bblue|n flowers ", "yellow": "The thin horizontal-hanging root with |yyellow|n flowers ", "green": "The weedy |ggreen|n horizontal root "} vpos = {-1: "hangs far to the |wleft|n on the wall.", 0: "hangs straight down the |wmiddle|n of the wall.", 1: "hangs far to the |wright|n of the wall."} hpos = {-1: "covers the |wupper|n part of the wall.", 0: "passes right over the |wmiddle|n of the wall.", 1: "nearly touches the floor, near the |wbottom|n of the wall."} if root in ("yellow", "green"): string = rootnames[root] + hpos[ipos] else: string = rootnames[root] + vpos[ipos] return string def return_appearance(self, caller): """ This is called when someone looks at the wall. We need to echo the current root positions. """ if self.db.button_exposed: # we found the button by moving the roots result = ["Having moved all the roots aside, you find that the center of the wall, " "previously hidden by the vegetation, hid a curious square depression. It was maybe once " "concealed and made to look a part of the wall, but with the crumbling of stone around it," "it's now easily identifiable as some sort of button."] elif self.db.exit_open: # we pressed the button; the exit is open result = ["With the button pressed, a crack has opened in the root-covered wall, just wide enough " "to squeeze through. A cold draft is coming from the hole and you get the feeling the " "opening may close again soon."] else: # puzzle not solved yet. result = ["The wall is old and covered with roots that here and there have permeated the stone. " "The roots (or whatever they are - some of them are covered in small nondescript flowers) " "crisscross the wall, making it hard to clearly see its stony surface. Maybe you could " "try to |wshift|n or |wmove|n them.\n"] # display the root positions to help with the puzzle for key, pos in self.db.root_pos.items(): result.append("\n" + self._translate_position(key, pos)) self.db.desc = "".join(result) # call the parent to continue execution (will use the desc we just set) return super(CrumblingWall, self).return_appearance(caller) def at_after_traverse(self, traverser, source_location): """ This is called after we traversed this exit. Cleans up and resets the puzzle. """ del traverser.db.crumbling_wall_found_buttothe del traverser.db.crumbling_wall_found_exit self.reset() def at_failed_traverse(self, traverser): """This is called if the account fails to pass the Exit.""" traverser.msg("No matter how you try, you cannot force yourself through %s." % self.key) def reset(self): """ Called by tutorial world runner, or whenever someone successfully traversed the Exit. """ self.location.msg_contents("The secret door closes abruptly, roots falling back into place.") # reset the flags and remove the exit destination self.db.button_exposed = False self.db.exit_open = False self.destination = None # Reset the roots with some random starting positions for the roots: start_pos = [{"yellow": 1, "green": 0, "red": 0, "blue": 0}, {"yellow": 0, "green": 0, "red": 0, "blue": 0}, {"yellow": 0, "green": 1, "red": -1, "blue": 0}, {"yellow": 1, "green": 0, "red": 0, "blue": 0}, {"yellow": 0, "green": 0, "red": 0, "blue": 1}] self.db.root_pos = random.choice(start_pos) # ------------------------------------------------------------- # # Weapon - object type # # A weapon is necessary in order to fight in the tutorial # world. A weapon (which here is assumed to be a bladed # melee weapon for close combat) has three commands, # stab, slash and defend. Weapons also have a property "magic" # to determine if they are usable against certain enemies. # # Since Characters don't have special skills in the tutorial, # we let the weapon itself determine how easy/hard it is # to hit with it, and how much damage it can do. # # ------------------------------------------------------------- class CmdAttack(Command): """ Attack the enemy. Commands: stab <enemy> slash <enemy> parry stab - (thrust) makes a lot of damage but is harder to hit with. slash - is easier to land, but does not make as much damage. parry - forgoes your attack but will make you harder to hit on next enemy attack. """ # this is an example of implementing many commands as a single # command class, using the given command alias to separate between them. key = "attack" aliases = ["hit", "kill", "fight", "thrust", "pierce", "stab", "slash", "chop", "parry", "defend"] locks = "cmd:all()" help_category = "TutorialWorld" def func(self): """Implements the stab""" cmdstring = self.cmdstring if cmdstring in ("attack", "fight"): string = "How do you want to fight? Choose one of 'stab', 'slash' or 'defend'." self.caller.msg(string) return # parry mode if cmdstring in ("parry", "defend"): string = "You raise your weapon in a defensive pose, ready to block the next enemy attack." self.caller.msg(string) self.caller.db.combat_parry_mode = True self.caller.location.msg_contents("%s takes a defensive stance" % self.caller, exclude=[self.caller]) return if not self.args: self.caller.msg("Who do you attack?") return target = self.caller.search(self.args.strip()) if not target: return if cmdstring in ("thrust", "pierce", "stab"): hit = float(self.obj.db.hit) * 0.7 # modified due to stab damage = self.obj.db.damage * 2 # modified due to stab string = "You stab with %s. " % self.obj.key tstring = "%s stabs at you with %s. " % (self.caller.key, self.obj.key) ostring = "%s stabs at %s with %s. " % (self.caller.key, target.key, self.obj.key) self.caller.db.combat_parry_mode = False elif cmdstring in ("slash", "chop"): hit = float(self.obj.db.hit) # un modified due to slash damage = self.obj.db.damage # un modified due to slash string = "You slash with %s. " % self.obj.key tstring = "%s slash at you with %s. " % (self.caller.key, self.obj.key) ostring = "%s slash at %s with %s. " % (self.caller.key, target.key, self.obj.key) self.caller.db.combat_parry_mode = False else: self.caller.msg("You fumble with your weapon, unsure of whether to stab, slash or parry ...") self.caller.location.msg_contents("%s fumbles with their weapon." % self.caller, exclude=self.caller) self.caller.db.combat_parry_mode = False return if target.db.combat_parry_mode: # target is defensive; even harder to hit! target.msg("|GYou defend, trying to avoid the attack.|n") hit *= 0.5 if random.random() <= hit: self.caller.msg(string + "|gIt's a hit!|n") target.msg(tstring + "|rIt's a hit!|n") self.caller.location.msg_contents(ostring + "It's a hit!", exclude=[target, self.caller]) # call enemy hook if hasattr(target, "at_hit"): # should return True if target is defeated, False otherwise. target.at_hit(self.obj, self.caller, damage) return elif target.db.health: target.db.health -= damage else: # sorry, impossible to fight this enemy ... self.caller.msg("The enemy seems unaffected.") return else: self.caller.msg(string + "|rYou miss.|n") target.msg(tstring + "|gThey miss you.|n") self.caller.location.msg_contents(ostring + "They miss.", exclude=[target, self.caller]) class CmdSetWeapon(CmdSet): """Holds the attack command.""" def at_cmdset_creation(self): """called at first object creation.""" self.add(CmdAttack()) class Weapon(TutorialObject): """ This defines a bladed weapon. Important attributes (set at creation): hit - chance to hit (0-1) parry - chance to parry (0-1) damage - base damage given (modified by hit success and type of attack) (0-10) """ def at_object_creation(self): """Called at first creation of the object""" super(Weapon, self).at_object_creation() self.db.hit = 0.4 # hit chance self.db.parry = 0.8 # parry chance self.db.damage = 1.0 self.db.magic = False self.cmdset.add_default(CmdSetWeapon, permanent=True) def reset(self): """ When reset, the weapon is simply deleted, unless it has a place to return to. """ if self.location.has_account and self.home == self.location: self.location.msg_contents("%s suddenly and magically fades into nothingness, as if it was never there ..." % self.key) self.delete() else: self.location = self.home # ------------------------------------------------------------- # # Weapon rack - spawns weapons # # This is a spawner mechanism that creates custom weapons from a # spawner prototype dictionary. Note that we only create a single typeclass # (Weapon) yet customize all these different weapons using the spawner. # The spawner dictionaries could easily sit in separate modules and be # used to create unique and interesting variations of typeclassed # objects. # # ------------------------------------------------------------- WEAPON_PROTOTYPES = { "weapon": { "typeclass": "evennia.contrib.tutorial_world.objects.Weapon", "key": "Weapon", "hit": 0.2, "parry": 0.2, "damage": 1.0, "magic": False, "desc": "A generic blade."}, "knife": { "prototype": "weapon", "aliases": "sword", "key": "Kitchen knife", "desc": "A rusty kitchen knife. Better than nothing.", "damage": 3}, "dagger": { "prototype": "knife", "key": "Rusty dagger", "aliases": ["knife", "dagger"], "desc": "A double-edged dagger with a nicked edge and a wooden handle.", "hit": 0.25}, "sword": { "prototype": "weapon", "key": "Rusty sword", "aliases": ["sword"], "desc": "A rusty shortsword. It has a leather-wrapped handle covered i food grease.", "hit": 0.3, "damage": 5, "parry": 0.5}, "club": { "prototype": "weapon", "key": "Club", "desc": "A heavy wooden club, little more than a heavy branch.", "hit": 0.4, "damage": 6, "parry": 0.2}, "axe": { "prototype": "weapon", "key": "Axe", "desc": "A woodcutter's axe with a keen edge.", "hit": 0.4, "damage": 6, "parry": 0.2}, "ornate longsword": { "prototype": "sword", "key": "Ornate longsword", "desc": "A fine longsword with some swirling patterns on the handle.", "hit": 0.5, "magic": True, "damage": 5}, "warhammer": { "prototype": "club", "key": "Silver Warhammer", "aliases": ["hammer", "warhammer", "war"], "desc": "A heavy war hammer with silver ornaments. This huge weapon causes massive damage - if you can hit.", "hit": 0.4, "magic": True, "damage": 8}, "rune axe": { "prototype": "axe", "key": "Runeaxe", "aliases": ["axe"], "hit": 0.4, "magic": True, "damage": 6}, "thruning": { "prototype": "ornate longsword", "key": "Broadsword named Thruning", "desc": "This heavy bladed weapon is marked with the name 'Thruning'. It is very powerful in skilled hands.", "hit": 0.6, "parry": 0.6, "damage": 7}, "slayer waraxe": { "prototype": "rune axe", "key": "Slayer waraxe", "aliases": ["waraxe", "war", "slayer"], "desc": "A huge double-bladed axe marked with the runes for 'Slayer'." " It has more runic inscriptions on its head, which you cannot decipher.", "hit": 0.7, "damage": 8}, "ghostblade": { "prototype": "ornate longsword", "key": "The Ghostblade", "aliases": ["blade", "ghost"], "desc": "This massive sword is large as you are tall, yet seems to weigh almost nothing." " It's almost like it's not really there.", "hit": 0.9, "parry": 0.8, "damage": 10}, "hawkblade": { "prototype": "ghostblade", "key": "The Hawkblade", "aliases": ["hawk", "blade"], "desc": "The weapon of a long-dead heroine and a more civilized age," " the hawk-shaped hilt of this blade almost has a life of its own.", "hit": 0.85, "parry": 0.7, "damage": 11} } class CmdGetWeapon(Command): """ Usage: get weapon This will try to obtain a weapon from the container. """ key = "get weapon" aliases = "get weapon" locks = "cmd:all()" help_category = "TutorialWorld" def func(self): """ Get a weapon from the container. It will itself handle all messages. """ self.obj.produce_weapon(self.caller) class CmdSetWeaponRack(CmdSet): """ The cmdset for the rack. """ key = "weaponrack_cmdset" def at_cmdset_creation(self): """Called at first creation of cmdset""" self.add(CmdGetWeapon()) class WeaponRack(TutorialObject): """ This object represents a weapon store. When people use the "get weapon" command on this rack, it will produce one random weapon from among those registered to exist on it. This will also set a property on the character to make sure they can't get more than one at a time. Attributes to set on this object: available_weapons: list of prototype-keys from WEAPON_PROTOTYPES, the weapons available in this rack. no_more_weapons_msg - error message to return to accounts who already got one weapon from the rack and tries to grab another one. """ def at_object_creation(self): """ called at creation """ self.cmdset.add_default(CmdSetWeaponRack, permanent=True) self.db.rack_id = "weaponrack_1" # these are prototype names from the prototype # dictionary above. self.db.get_weapon_msg = "You find |c%s|n." self.db.no_more_weapons_msg = "you find nothing else of use." self.db.available_weapons = ["knife", "dagger", "sword", "club"] def produce_weapon(self, caller): """ This will produce a new weapon from the rack, assuming the caller hasn't already gotten one. When doing so, the caller will get Tagged with the id of this rack, to make sure they cannot keep pulling weapons from it indefinitely. """ rack_id = self.db.rack_id if caller.tags.get(rack_id, category="tutorial_world"): caller.msg(self.db.no_more_weapons_msg) else: prototype = random.choice(self.db.available_weapons) # use the spawner to create a new Weapon from the # spawner dictionary, tag the caller wpn = spawn(WEAPON_PROTOTYPES[prototype], prototype_parents=WEAPON_PROTOTYPES)[0] caller.tags.add(rack_id, category="tutorial_world") wpn.location = caller caller.msg(self.db.get_weapon_msg % wpn.key)
{ "content_hash": "161b13d9f3c369a722025ccd5f0fed42", "timestamp": "", "source": "github", "line_count": 1079, "max_line_length": 119, "avg_line_length": 37.76367006487489, "alnum_prop": 0.5837239551378015, "repo_name": "feend78/evennia", "id": "3859de7d2d0d318426c68ba2129620f299224bcc", "size": "40747", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "evennia/contrib/tutorial_world/objects.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "42859" }, { "name": "Emacs Lisp", "bytes": "2734" }, { "name": "HTML", "bytes": "20118" }, { "name": "JavaScript", "bytes": "32388" }, { "name": "Python", "bytes": "2734770" }, { "name": "Shell", "bytes": "4237" } ], "symlink_target": "" }
from __future__ import unicode_literals import datetime from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('wagtailcore', '0029_unicode_slugfield_dj19'), ('events', '0017_auto_20160922_2000'), ] operations = [ migrations.CreateModel( name='EventsArchivePage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.AlterField( model_name='eventpage', name='finish', field=models.DateTimeField(default=datetime.datetime(2016, 9, 22, 21, 59, 53, 179554, tzinfo=utc)), ), migrations.AlterField( model_name='eventpage', name='signup_close', field=models.DateTimeField(default=datetime.datetime(2016, 9, 22, 21, 59, 53, 179630, tzinfo=utc)), ), ]
{ "content_hash": "74fd0c4eeef27b7b00d1a7b00b6b1c38", "timestamp": "", "source": "github", "line_count": 37, "max_line_length": 191, "avg_line_length": 33.21621621621622, "alnum_prop": 0.5947925142392189, "repo_name": "davidjrichardson/uwcs-zarya", "id": "1bb7987d29636b51901706a7ddc82ec1fd77b71d", "size": "1302", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "events/migrations/0018_auto_20160922_2059.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "77041" }, { "name": "Python", "bytes": "162015" }, { "name": "SCSS", "bytes": "54876" } ], "symlink_target": "" }
import os from jetee.base.config_factory import AnsiblePreTaskConfigFactory from jetee.runtime.configuration import project_configuration class PipRequirementsAnsiblePreTaskConfigFactory(AnsiblePreTaskConfigFactory): template = { u'name': u'Install PIP requirements', u'pip': { u'chdir': u'', u'requirements': u'', } } def get_config(self, parent): project = parent template = self.template.copy() template[u'pip'][u'chdir'] = os.path.join(project.location, project_configuration.get_project_name()) template[u'pip'][u'requirements'] = project.requirements return [template]
{ "content_hash": "fff44cf7d18573d7bca94476d7919b0a", "timestamp": "", "source": "github", "line_count": 21, "max_line_length": 109, "avg_line_length": 32.285714285714285, "alnum_prop": 0.6651917404129793, "repo_name": "WhackoJacko/Jetee", "id": "bbd86c0b42a209e82d25656737871553087e1cc3", "size": "678", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "jetee/common/config_factories/project/pip.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "82508" } ], "symlink_target": "" }
""" This document contain the responsible methods to write and parse the GrAF files. The parser use the ContentHandler from SAX Xml module. """ from __future__ import absolute_import, unicode_literals import abc import codecs import os from xml.etree.ElementTree import tostring from xml.dom import minidom import graf # GrAF ID's separator GRAFSEPARATOR = ".." (TEXT, AUDIO, VIDEO, NONE) = ("text", "audio", "video", "none") class Tier: """A list of tiers. The name is the tier unique identification. """ __slots__ = ['name', 'annotation_space'] def __init__(self, name, annotation_space=None): self.name = name self.annotation_space = annotation_space class Annotation: """A list of annotations. The id is the annotation identification, the value the annotation value and the features are a dict type of values containing the annotation features. """ __slots__ = ['id', 'value', 'features'] def __init__(self, id, value, features=None): self.value = value self.id = id self.features = features class NodeId: """A list of nodes using a specific format. The prefix is the node type and the index the identification number. """ __slots__ = ['prefix', 'index'] def __init__(self, prefix, index): self.prefix = prefix self.index = str(index) def to_str(self): return "{0}{1}n{2}".format(self.prefix, GRAFSEPARATOR, self.index) def str_edge(self): return "e{0}".format(self.index) def str_region(self): return "{0}{1}r{2}".format(self.prefix, GRAFSEPARATOR, self.index) class PrimaryData: """This class represents the primary data of an AnnotationGraph object. """ def __init__(self): self.type = None self.external_link = None self.filename = None self.content = None class BaseParser(object): """This class is a base class to the parser classes in order to create GrAF objects. This class contains some methods that must be implemented other wise it will be raise a exception error. Although the methods that should be implemented with properly code are the get_root_tiers, get_child_tiers_for_tier and get_annotations_for_tier. The method tier_has_regions and region_for_annotation could simply return None or pass. Raises ------ NotImplementedError Method must be implemented. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def get_root_tiers(self): """Method to get the root tiers. The root tiers are defined by the parser when the method is implemented. Returns ------- list : array-like List of tiers type. """ raise NotImplementedError("Method must be implemented") @abc.abstractmethod def get_child_tiers_for_tier(self, tier): """Method that get the child tiers of a specific tier. Parameters ---------- tier : object Tier object. Returns ------- list : array-like List of tiers type. See also -------- Tier """ raise NotImplementedError("Method must be implemented") @abc.abstractmethod def get_annotations_for_tier(self, tier, annotation_parent=None): """Method that get all the annotations for a specific tier. The annotations can be filtered using an annotation parent. Parameters ---------- tier : object Tier object. annotation_parent : object Annotation object. Returns ------- list : array-like List of annotations type. See also -------- Tier, Annotation """ raise NotImplementedError("Method must be implemented") @abc.abstractmethod def tier_has_regions(self, tier): """Method to verify if a tier has regions. Parameters ---------- tier : object Tier object. Returns ------- has_region : bool A true or false variable. See also -------- Tier """ raise NotImplementedError("Method must be implemented") @abc.abstractmethod def region_for_annotation(self, annotation): """Method to get the regions values of a specific annotation. Parameters ---------- annotation : object Annotation object. Returns ------- regions : tuple A tuple with the two regions. See also -------- Annotation """ raise NotImplementedError("Method must be implemented") @abc.abstractmethod def get_primary_data(self): """Method to get the primary data of the GrAF file. Returns ------- primaryData : object Object type of PrimaryData class. See also -------- PrimaryData """ raise NotImplementedError("Method must be implemented") class BaseWriter(object): """This class is a base class to the writer classes in order to create files from GrAF objects. This class contains some methods that must be implemented other wise it will be raise a exception error. Raises ------ NotImplementedError Method must be implemented. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def write(self, outputfile, converter): """Method that will write the GrAF object into a specific format. Parameters ---------- outputfile : str The filename of the output file. The filename should be the header file for GrAF with the extension ".hdr". converter : Converter or AnnotationGraph A converter object. The converter object containes the data that will be use for output. All writers need at least a GrAF graph and the tier hierarchy, some will also need the primary data object. """ raise NotImplementedError("Method must be implemented") class GrAFConverter: """This class handles the conversion of different file formats into GrAF objects and back again. It uses a sub-class of BaseParser to get the annotations and the tier hierarchies. A sub-class of BaseWriter is used to write back the files. Please be aware that meta-data might get lost if you write to a file format from another one. This depends on whether the output file format can store all meta-data from the input file format. In any case all the data and annotation will be stored. """ def __init__(self, parser, writer=None): self.parser = parser self.writer = writer self.graf = graf.Graph() self.tier_hierarchies = [] self.meta_information = None self.primary_data = None self.original_file = None def write(self, outputfile): if self.writer: self.writer.write(outputfile, self) def parse(self): """This method will be the responsible to transform the parser into a GrAF object. This method also retrieves the tiers hierarchies. """ self._tiers_parent_list = [] self.root_tiers = [] tiers_hierarchy_map = {} for tier in self.parser.get_root_tiers(): self.root_tiers.append(tier.name) self._convert_tier(tier, None, None) i = 0 for t in self._tiers_parent_list: if t[1] is None: i += 1 tiers_hierarchy_map[str(i)] = [t[0]] else: self._append_tier_to_hierarchy(tiers_hierarchy_map[str(i)], t[1], t[0]) for i, hierarchy in tiers_hierarchy_map.items(): self.tier_hierarchies.append(hierarchy) if hasattr(self.parser, 'meta_information'): self.meta_information = self.parser.meta_information self.primary_data = self.parser.get_primary_data() if hasattr(self.parser, 'filepath') and \ isinstance(self.parser.filepath, str): self.original_file = os.path.abspath(self.parser.filepath) def _convert_tier(self, tier, parent_node, parent_annotation, parent_prefix=None): child_tiers = self.parser.get_child_tiers_for_tier(tier) if tier.annotation_space is None: prefix = tier.name annotation_name = prefix else: annotation_name = tier.annotation_space.replace(' ', '_') prefix = "{0}{1}{2}".format(annotation_name, GRAFSEPARATOR, tier.name) has_regions = False if self.parser.tier_has_regions(tier): has_regions = True self._add_tier_in_hierarchy_list(prefix, parent_prefix) annotations = self.parser.get_annotations_for_tier(tier, parent_annotation) for annotation in annotations: regions = None if has_regions: regions = self.parser.region_for_annotation(annotation) node_id = NodeId(prefix, annotation.id) self._add_node(node_id, annotation, annotation_name, regions, parent_node) self._add_root_nodes(prefix, node_id) if child_tiers: for t in child_tiers: self._convert_tier(t, node_id, annotation, prefix) if annotations == [] and child_tiers: for t in child_tiers: self._convert_tier(t, None, None, prefix) def _add_tier_in_hierarchy_list(self, prefix, parent_prefix): if not (prefix, parent_prefix) in self._tiers_parent_list: self._tiers_parent_list.append((prefix, parent_prefix)) def _append_tier_to_hierarchy(self, tiers_list, parent_tier, tier): for t in tiers_list: if isinstance(t, list): self._append_tier_to_hierarchy(t, parent_tier, tier) else: if t == parent_tier: tiers_list.append([tier]) def _add_node(self, node_id, annotation, annotation_name, regions, from_node_id): self._add_node_to_graph(node_id, regions, from_node_id) self._add_graf_annotation(annotation_name, annotation.id, node_id, annotation.value, annotation.features) def _add_root_nodes(self, prefix, node_id): if prefix in self.root_tiers: self.graf.header.roots.append(node_id.to_str()) def _add_graf_annotation(self, annotation_name, annotation_id, annotation_ref, annotation_value, annotation_features=None): annotation = graf.Annotation(annotation_name, annotation_features, annotation_id) if annotation_value is not None: annotation.features['annotation_value'] = annotation_value self.graf.nodes[annotation_ref.to_str()].annotations.add(annotation) if annotation_name in self.graf.annotation_spaces: #if annotation not in self.graf.annotation_spaces[annotation_name]: self.graf.annotation_spaces[annotation_name].add(annotation) else: annotation_space = graf.AnnotationSpace(annotation_name) annotation_space.add(annotation) self.graf.annotation_spaces.add(annotation_space) def _add_node_to_graph(self, node_id, regions=None, from_node_id=None): node = graf.Node(node_id.to_str()) if from_node_id is not None: edge_id = node_id.str_edge() self.graf.create_edge(self.graf.nodes[from_node_id.to_str()], node, edge_id) if regions is not None: region_id = node_id.str_region() region = graf.Region(region_id, *regions) node.add_region(region) self.graf.regions.add(region) self.graf.nodes.add(node) class Writer(BaseWriter): def __init__(self, **kwargs): self.tier_hierarchies = None self.meta_information = None self.standoffheader = graf.StandoffHeader(**kwargs) def _flatten_hierarchy_elements(self, elements): """Flat the elements appended to a new list of elements. Parameters ---------- elements : array_like An array of string values. Returns ------- flat_elements : array_like An array of flattened `elements`. """ flat_elements = [] for e in elements: if type(e) is list: flat_elements.extend(self._flatten_hierarchy_elements(e)) else: flat_elements.append(e) return flat_elements def write(self, outputfile, ag): """Writes an AnnotationGraph object as GrAF files. Parameters ---------- outputfile : str The filename of the output file. The filename should be the header file for GrAF with the extension ".hdr". ag : poioapi.annotationgraph.AnnotationGraph An AnnotationGraph object. The AG object containes the data that will be use for output. """ (basedirname, _) = os.path.splitext(outputfile) self._get_parents(ag.tier_hierarchies) standoffrenderer = graf.StandoffHeaderRenderer("{0}.hdr".format( basedirname)) for tier_name in self._flatten_hierarchy_elements( ag.tier_hierarchies): annotation_space = tier_name.split(GRAFSEPARATOR)[0] out_graf = graf.Graph() renderer = graf.GrafRenderer("{0}-{1}.xml".format( basedirname, annotation_space )) out_graf.nodes = [n for n in ag.graf.nodes if n.id.startswith(tier_name)] out_graf.edges = [e for e in ag.graf.edges if e.to_node.id.startswith(tier_name)] out_graf.regions = [r for r in ag.graf.regions if r.id.startswith(tier_name)] out_graf.annotation_spaces.add(graf.AnnotationSpace( annotation_space)) out_graf.header.add_dependency(self._parent[tier_name]) out_graf = self._add_root_nodes(ag.graf, annotation_space, out_graf) renderer.render(out_graf) basename = os.path.basename(basedirname) self.standoffheader.datadesc.add_annotation( "{0}-{1}.xml".format(basename, annotation_space), annotation_space) self._add_primary_data(ag.primary_data, basedirname) standoffrenderer.render(self.standoffheader) self._generate_metafile(basedirname, ag.meta_information) def _add_root_nodes(self, graph, annotation_space, out_graf): for root in graph.header.roots: if annotation_space in root: out_graf.header.roots.append(root) return out_graf def _get_parents(self, tier_hierarchies): self._parent = {} for h in tier_hierarchies: self._get_hierarchy_parents(h, None) def _get_hierarchy_parents(self, hierarchy, parent): for i, h in enumerate(hierarchy): if isinstance(h, list): self._get_hierarchy_parents(h, parent) else: self._parent[h] = parent if i is 0: parent = h.split(GRAFSEPARATOR)[0] def _add_primary_data(self, primary_data, basedirname): if primary_data.external_link: loc = primary_data.external_link elif primary_data.content: loc = self._create_raw_txt_file(primary_data.content, basedirname) elif primary_data.filename: loc = primary_data.filename self.standoffheader.datadesc.primaryData = {'loc': loc, 'f.id': primary_data.type} def _create_raw_txt_file(self, content, basedirname): filename = "{0}.txt".format(os.path.splitext(basedirname)[0]) file = os.path.abspath(filename) f = codecs.open(file, 'w', 'utf-8') f.write(content) f.close() return os.path.basename(filename) def _generate_metafile(self, basedirname, meta_information=None): """Generate a metafile with all the extra information extracted from a file when it is parsed. Parameters ---------- basedirname : str Base name of the inpufile. meta_information: ElementTree ElementTree with the extra information. """ if meta_information is not None: out = open("{0}-extinfo.xml".format(basedirname), "wb") doc = minidom.parseString(tostring(meta_information, encoding="utf-8")) out.write(doc.toprettyxml(encoding='utf-8')) out.close()
{ "content_hash": "5c80901227ccb27bdf6b050a25d242cf", "timestamp": "", "source": "github", "line_count": 577, "max_line_length": 80, "avg_line_length": 30.85095320623917, "alnum_prop": 0.5675523846974889, "repo_name": "cidles/poio-api", "id": "c1167c7d4a924ca9006ec14d6bb82e5d81b8090d", "size": "18028", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/poioapi/io/graf.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "292243" }, { "name": "TeX", "bytes": "4281" } ], "symlink_target": "" }
from __future__ import print_function import time from copy import deepcopy from pymanopt.solvers.linesearch import LineSearchBackTracking from pymanopt.solvers.solver import Solver class SteepestDescent(Solver): """ Steepest descent (gradient descent) algorithm based on steepestdescent.m from the manopt MATLAB package. """ def __init__(self, linesearch=LineSearchBackTracking(), *args, **kwargs): super(SteepestDescent, self).__init__(*args, **kwargs) if linesearch is None: self._linesearch = LineSearchBackTracking() else: self._linesearch = linesearch self.linesearch = None # Function to solve optimisation problem using steepest descent. def solve(self, problem, x=None, reuselinesearch=False): """ Perform optimization using gradient descent with linesearch. This method first computes the gradient (derivative) of obj w.r.t. arg, and then optimizes by moving in the direction of steepest descent (which is the opposite direction to the gradient). Arguments: - problem Pymanopt problem setup using the Problem class, this must have a .manifold attribute specifying the manifold to optimize over, as well as a cost and enough information to compute the gradient of that cost. - x=None Optional parameter. Starting point on the manifold. If none then a starting point will be randomly generated. - reuselinesearch=False Whether to reuse the previous linesearch object. Allows to use information from a previous solve run. Returns: - x Local minimum of obj, or if algorithm terminated before convergence x will be the point at which it terminated. """ man = problem.manifold verbosity = problem.verbosity objective = problem.cost gradient = problem.grad if not reuselinesearch or self.linesearch is None: self.linesearch = deepcopy(self._linesearch) linesearch = self.linesearch # If no starting point is specified, generate one at random. if x is None: x = man.rand() # Initialize iteration counter and timer iter = 0 time0 = time.time() if verbosity >= 2: print(" iter\t\t cost val\t grad. norm") self._start_optlog(extraiterfields=['gradnorm'], solverparams={'linesearcher': linesearch}) while True: # Calculate new cost, grad and gradnorm cost = objective(x) grad = gradient(x) gradnorm = man.norm(x, grad) iter = iter + 1 if verbosity >= 2: print("%5d\t%+.16e\t%.8e" % (iter, cost, gradnorm)) if self._logverbosity >= 2: self._append_optlog(iter, x, cost, gradnorm=gradnorm) # Descent direction is minus the gradient desc_dir = -grad # Perform line-search stepsize, x = linesearch.search(objective, man, x, desc_dir, cost, -gradnorm**2) stop_reason = self._check_stopping_criterion( time0, stepsize=stepsize, gradnorm=gradnorm, iter=iter) if stop_reason: if verbosity >= 1: print(stop_reason) print('') break if self._logverbosity <= 0: return x else: self._stop_optlog(x, objective(x), stop_reason, time0, stepsize=stepsize, gradnorm=gradnorm, iter=iter) return x, self._optlog
{ "content_hash": "c1f43195b35584292e7ed690854ecf80", "timestamp": "", "source": "github", "line_count": 107, "max_line_length": 78, "avg_line_length": 36.242990654205606, "alnum_prop": 0.574780814853017, "repo_name": "j-towns/pymanopt", "id": "b8732db070e732ab76c22832ca7a73a461843824", "size": "3878", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pymanopt/solvers/steepest_descent.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "210957" } ], "symlink_target": "" }
from pylab import plot,grid,title,subplot,xlabel,ylabel,text,subplots_adjust,fill_between,mean,connect,show import shogun as sg import util util.set_title('ROC example') util.DISTANCE=0.5 subplots_adjust(hspace=0.3) pos=util.get_realdata(True) neg=util.get_realdata(False) features=util.get_realfeatures(pos, neg) labels=util.get_labels() # classifiers gk = sg.GaussianKernel(features, features, 1.0) svm = sg.LibSVM(1000.0, gk, labels) svm.train() lda = sg.LDA(1,features,labels) lda.train() ## plot points subplot(211) plot(pos[0,:], pos[1,:], "r.") plot(neg[0,:], neg[1,:], "b.") grid(True) title('Data',size=10) # plot ROC for SVM subplot(223) ROC_evaluation = sg.ROCEvaluation() ROC_evaluation.evaluate(svm.apply(),labels) roc = ROC_evaluation.get_ROC() print roc plot(roc[0], roc[1]) fill_between(roc[0],roc[1],0,alpha=0.1) text(mean(roc[0])/2,mean(roc[1])/2,'auROC = %.5f' % ROC_evaluation.get_auROC()) grid(True) xlabel('FPR') ylabel('TPR') title('LibSVM (Gaussian kernel, C=%.3f) ROC curve' % svm.get_C1(),size=10) # plot ROC for LDA subplot(224) ROC_evaluation.evaluate(lda.apply(),labels) roc = ROC_evaluation.get_ROC() plot(roc[0], roc[1]) fill_between(roc[0],roc[1],0,alpha=0.1) text(mean(roc[0])/2,mean(roc[1])/2,'auROC = %.5f' % ROC_evaluation.get_auROC()) grid(True) xlabel('FPR') ylabel('TPR') title('LDA (gamma=%.3f) ROC curve' % lda.get_gamma(),size=10) connect('key_press_event', util.quit) show()
{ "content_hash": "b59e5e6e93f4c2a66bee7a9f045027ed", "timestamp": "", "source": "github", "line_count": 56, "max_line_length": 107, "avg_line_length": 25.464285714285715, "alnum_prop": 0.7005610098176718, "repo_name": "shogun-toolbox/shogun", "id": "be3bf06e0e73a83372756a346f5dc5a59452be9a", "size": "1426", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "examples/undocumented/python/graphical/roc.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Assembly", "bytes": "64" }, { "name": "Batchfile", "bytes": "615" }, { "name": "C", "bytes": "12178" }, { "name": "C++", "bytes": "10278013" }, { "name": "CMake", "bytes": "196539" }, { "name": "Dockerfile", "bytes": "2046" }, { "name": "GDB", "bytes": "89" }, { "name": "HTML", "bytes": "2060" }, { "name": "MATLAB", "bytes": "8755" }, { "name": "Makefile", "bytes": "244" }, { "name": "Python", "bytes": "286749" }, { "name": "SWIG", "bytes": "386485" }, { "name": "Shell", "bytes": "7267" } ], "symlink_target": "" }
import sys from autosar.parser.parser_base import ElementParser import autosar.datatype class DataTypeParser(ElementParser): def __init__(self,version=3.0): super().__init__(version) if self.version >= 3.0 and self.version < 4.0: self.switcher = {'ARRAY-TYPE': self.parseArrayType, 'BOOLEAN-TYPE': self.parseBooleanType, 'INTEGER-TYPE': self.parseIntegerType, 'REAL-TYPE': self.parseRealType, 'RECORD-TYPE': self.parseRecordType, 'STRING-TYPE': self.parseStringType} elif self.version >= 4.0: self.switcher = { 'DATA-CONSTR': self.parseDataConstraint, 'IMPLEMENTATION-DATA-TYPE': self.parseImplementationDataType, 'SW-BASE-TYPE': self.parseSwBaseType, 'DATA-TYPE-MAPPING-SET': self.parseDataTypeMappingSet, 'APPLICATION-PRIMITIVE-DATA-TYPE': self.parseApplicationPrimitiveDataType, 'APPLICATION-ARRAY-DATA-TYPE' : self.parseApplicationArrayDataType, 'APPLICATION-RECORD-DATA-TYPE': self.parseApplicationRecordDataTypeXML, } def getSupportedTags(self): return self.switcher.keys() def parseElement(self, xmlElement, parent = None): parseFunc = self.switcher.get(xmlElement.tag) if parseFunc is not None: return parseFunc(xmlElement,parent) else: return None def parseIntegerType(self,root,parent=None): if self.version>=3.0: name=root.find("./SHORT-NAME").text minval = int(root.find("./LOWER-LIMIT").text) maxval = int(root.find("./UPPER-LIMIT").text) dataDefXML = root.find('./SW-DATA-DEF-PROPS') dataType = autosar.datatype.IntegerDataType(name,minval,maxval) self.parseDesc(root,dataType) if dataDefXML is not None: for elem in dataDefXML.findall('./*'): if elem.tag=='COMPU-METHOD-REF': dataType.compuMethodRef=self.parseTextNode(elem) else: raise NotImplementedError(elem.tag) return dataType def parseRecordType(self,root,parent=None): if self.version>=3.0: elements = [] name=root.find("./SHORT-NAME").text for elem in root.findall('./ELEMENTS/RECORD-ELEMENT'): elemName = self.parseTextNode(elem.find("./SHORT-NAME")) elemTypeRef = self.parseTextNode(elem.find("./TYPE-TREF")) elements.append(autosar.datatype.RecordTypeElement(elemName, elemTypeRef)) dataType=autosar.datatype.RecordDataType(name,elements); self.parseDesc(root,dataType) return dataType def parseArrayType(self,root,parent=None): if self.version>=3.0: name=root.find("./SHORT-NAME").text length=int(root.find('ELEMENT/MAX-NUMBER-OF-ELEMENTS').text) typeRef=root.find('ELEMENT/TYPE-TREF').text dataType=autosar.datatype.ArrayDataType(name,typeRef,length) self.parseDesc(root,dataType) return dataType; def parseBooleanType(self,root,parent=None): if self.version>=3: name=root.find("./SHORT-NAME").text dataType=autosar.datatype.BooleanDataType(name) self.parseDesc(root,dataType) return dataType def parseStringType(self,root,parent=None): if self.version>=3.0: name=root.find("./SHORT-NAME").text length=int(root.find('MAX-NUMBER-OF-CHARS').text) encoding=root.find('ENCODING').text dataType=autosar.datatype.StringDataType(name,length,encoding) self.parseDesc(root,dataType) return dataType def parseRealType(self,root,parent=None): if self.version>=3.0: name=root.find("./SHORT-NAME").text elem = root.find("./LOWER-LIMIT") if elem is not None: minval = elem.text minvalType = elem.attrib['INTERVAL-TYPE'] elem = root.find("./UPPER-LIMIT") if elem is not None: maxval = elem.text maxvalType = elem.attrib['INTERVAL-TYPE'] hasNaNText = self.parseTextNode(root.find("./ALLOW-NAN")) hasNaN = True if (hasNaNText is not None and hasNaNText == 'true') else False encoding = self.parseTextNode(root.find("./ENCODING")) dataType=autosar.datatype.RealDataType(name,minval,maxval,minvalType,maxvalType,hasNaN,encoding) self.parseDesc(root,dataType) return dataType def parseDataConstraint(self, xmlRoot, parent=None): assert (xmlRoot.tag == 'DATA-CONSTR') rules=[] constraintLevel = None self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'DATA-CONSTR-RULES': for xmlChildElem in xmlElem.findall('./DATA-CONSTR-RULE/*'): if xmlChildElem.tag == 'INTERNAL-CONSTRS': rules.append(self._parseDataConstraintRule(xmlChildElem, 'internalConstraint')) elif xmlChildElem.tag == 'PHYS-CONSTRS': rules.append(self._parseDataConstraintRule(xmlChildElem, 'physicalConstraint')) elif xmlChildElem.tag == 'CONSTR-LEVEL': constraintLevel = self.parseIntNode(xmlChildElem) else: raise NotImplementedError(xmlChildElem.tag) else: self.defaultHandler(xmlElem) elem = autosar.datatype.DataConstraint(self.name, rules, constraintLevel, parent, self.adminData) self.pop(elem) return elem def _parseDataConstraintRule(self, xmlElem, constraintType): lowerLimitXML = xmlElem.find('./LOWER-LIMIT') upperLimitXML = xmlElem.find('./UPPER-LIMIT') lowerLimit = None if lowerLimitXML is None else self.parseNumberNode(lowerLimitXML) upperLimit = None if upperLimitXML is None else self.parseNumberNode(upperLimitXML) lowerLimitType = 'CLOSED' upperLimitType = 'CLOSED' key = 'INTERVAL-TYPE' if lowerLimitXML is not None and key in lowerLimitXML.attrib and lowerLimitXML.attrib[key]=='OPEN': lowerLimitType='OPEN' if upperLimitXML is not None and key in upperLimitXML.attrib and upperLimitXML.attrib[key]=='OPEN': upperLimitType='OPEN' return { 'type': constraintType, 'lowerLimit': lowerLimit, 'upperLimit': upperLimit, 'lowerLimitType': lowerLimitType, 'upperLimitType': upperLimitType} def parseImplementationDataType(self, xmlRoot, parent=None): assert (xmlRoot.tag == 'IMPLEMENTATION-DATA-TYPE') variantProps, typeEmitter, parseTextNode, dynamicArraySizeProfile, subElementsXML, symbolProps = None, None, None, None, None, None self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'SW-DATA-DEF-PROPS': variantProps = self.parseSwDataDefProps(xmlElem) elif xmlElem.tag == 'TYPE-EMITTER': typeEmitter = self.parseTextNode(xmlElem) elif xmlElem.tag == 'DYNAMIC-ARRAY-SIZE-PROFILE': dynamicArraySizeProfile = self.parseTextNode(xmlElem) elif xmlElem.tag == 'SUB-ELEMENTS': subElementsXML = xmlElem elif xmlElem.tag == 'SYMBOL-PROPS': symbolProps = self.parseSymbolProps(xmlElem) else: self.defaultHandler(xmlElem) dataType = autosar.datatype.ImplementationDataType( self.name, variantProps = variantProps, dynamicArraySizeProfile = dynamicArraySizeProfile, typeEmitter = typeEmitter, category = self.category, parent = parent, adminData = self.adminData ) if subElementsXML is not None: dataType.subElements = self.parseImplementationDataTypeSubElements(subElementsXML, dataType) if symbolProps is not None: dataType.symbolProps = symbolProps self.pop(dataType) return dataType def parseImplementationDataTypeSubElements(self, xmlRoot, parent): assert (xmlRoot.tag == 'SUB-ELEMENTS') elements = [] for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'IMPLEMENTATION-DATA-TYPE-ELEMENT': elements.append(self.parseImplementationDataTypeElement(xmlElem, parent)) else: raise NotImplementedError(xmlElem.tag) return elements def parseImplementationDataTypeElement(self, xmlRoot, parent): assert (xmlRoot.tag == 'IMPLEMENTATION-DATA-TYPE-ELEMENT') (arraySize, arraySizeSemantics, variants) = (None, None, None) self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'SW-DATA-DEF-PROPS': variants = self.parseSwDataDefProps(xmlElem) elif xmlElem.tag == 'ARRAY-SIZE': arraySize = self.parseTextNode(xmlElem) elif xmlElem.tag == 'ARRAY-SIZE-SEMANTICS': arraySizeSemantics = self.parseTextNode(xmlElem) elif xmlElem.tag == 'SUB-ELEMENTS': pass #implement later else: self.defaultHandler(xmlElem) elem = autosar.datatype.ImplementationDataTypeElement(self.name, self.category, arraySize, arraySizeSemantics, variants, parent, self.adminData) self.pop(elem) return elem def parseSwBaseType(self, xmlRoot, parent = None): assert (xmlRoot.tag == 'SW-BASE-TYPE') baseTypeSize, baseTypeEncoding, nativeDeclaration = None, None, None self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'BASE-TYPE-SIZE': baseTypeSize = self.parseTextNode(xmlElem) elif xmlElem.tag == 'BASE-TYPE-ENCODING': baseTypeEncoding = self.parseTextNode(xmlElem) elif xmlElem.tag == 'NATIVE-DECLARATION': nativeDeclaration = self.parseTextNode(xmlElem) elif xmlElem.tag == 'MEM-ALIGNMENT': pass #implement later elif xmlElem.tag == 'BYTE-ORDER': pass #implement later else: self.defaultHandler(xmlElem) elem = autosar.datatype.SwBaseType(self.name, baseTypeSize, baseTypeEncoding, nativeDeclaration, self.category, parent, self.adminData) self.pop(elem) return elem def parseDataTypeMappingSet(self, xmlRoot, parent = None): assert (xmlRoot.tag == 'DATA-TYPE-MAPPING-SET') (name, dataTypeMaps, adminData) = (None, None, None) dataTypeMaps = [] modeRequestTypeMaps = [] for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'ADMIN-DATA': adminData=self.parseAdminDataNode(xmlElem) elif xmlElem.tag == 'SHORT-NAME': name = self.parseTextNode(xmlElem) elif xmlElem.tag == 'DATA-TYPE-MAPS': for xmlChild in xmlElem.findall('./*'): if xmlChild.tag == 'DATA-TYPE-MAP': dataTypeMap = self._parseDataTypeMapXML(xmlChild) assert(dataTypeMap is not None) dataTypeMaps.append(dataTypeMap) else: raise NotImplementedError(xmlElem.tag) elif xmlElem.tag == 'MODE-REQUEST-TYPE-MAPS': for xmlChild in xmlElem.findall('./*'): if xmlChild.tag == 'MODE-REQUEST-TYPE-MAP': modeRequestTypeMap = self._parseModeRequestTypeMapXML(xmlChild) assert(modeRequestTypeMap is not None) modeRequestTypeMaps.append(modeRequestTypeMap) else: raise NotImplementedError(xmlElem.tag) else: raise NotImplementedError(xmlElem.tag) if (name is None): raise RuntimeError('SHORT-NAME cannot be None') elem = autosar.datatype.DataTypeMappingSet(name, parent, adminData) for mapping in dataTypeMaps + modeRequestTypeMaps: elem.add(mapping) return elem def parseApplicationPrimitiveDataType(self, xmlRoot, parent = None): assert (xmlRoot.tag == 'APPLICATION-PRIMITIVE-DATA-TYPE') variantProps = None self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'SW-DATA-DEF-PROPS': variantProps = self.parseSwDataDefProps(xmlElem) else: self.defaultHandler(xmlElem) if (self.name is None): raise RuntimeError('SHORT-NAME cannot be None') elem = autosar.datatype.ApplicationPrimitiveDataType(self.name, variantProps, self.category, parent, self.adminData) self.pop(elem) return elem def parseApplicationArrayDataType(self, xmlRoot, parent = None): assert (xmlRoot.tag == 'APPLICATION-ARRAY-DATA-TYPE') element, variantProps = None, None self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'ELEMENT': element = self.parseApplicationArrayElement(xmlElem) elif xmlElem.tag == 'SW-DATA-DEF-PROPS': variantProps = self.parseSwDataDefProps(xmlElem) elif xmlElem.tag == 'DYNAMIC-ARRAY-SIZE-PROFILE': pass #implement later else: self.defaultHandler(xmlElem) if element is None: raise RuntimeError('No <ELEMENT> object found') elem = autosar.datatype.ApplicationArrayDataType(self.name, element, variantProps, self.category, parent, self.adminData) self.pop(elem) return elem def parseApplicationArrayElement(self, xmlRoot): assert (xmlRoot.tag == 'ELEMENT') (typeRef, arraySize, sizeHandling, sizeSemantics) = (None, None, None, None) self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'TYPE-TREF': typeRef = self.parseTextNode(xmlElem) elif xmlElem.tag == 'ARRAY-SIZE-HANDLING': sizeHandling = self.parseTextNode(xmlElem) elif xmlElem.tag == 'ARRAY-SIZE-SEMANTICS': sizeSemantics = self.parseTextNode(xmlElem) elif xmlElem.tag == 'MAX-NUMBER-OF-ELEMENTS': arraySize = self.parseTextNode(xmlElem) else: self.defaultHandler(xmlElem) elem = autosar.datatype.ApplicationArrayElement(self.name, typeRef, arraySize, sizeHandling, sizeSemantics, self.category, adminData = self.adminData) self.pop(elem) return elem def parseApplicationRecordDataTypeXML(self, xmlRoot, parent = None): assert (xmlRoot.tag == 'APPLICATION-RECORD-DATA-TYPE') elementsXML, variantProps = None, None self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'ELEMENTS': elementsXML = xmlElem elif xmlElem.tag == 'SW-DATA-DEF-PROPS': variantProps = self.parseSwDataDefProps(xmlElem) else: self.defaultHandler(xmlElem) elem = autosar.datatype.ApplicationRecordDataType(self.name, None, variantProps, self.category, parent, self.adminData) if elementsXML is not None: for xmlChild in elementsXML.findall('./'): if xmlChild.tag == 'APPLICATION-RECORD-ELEMENT': elem.elements.append(self._parseApplicationRecordElementXML(xmlChild, parent = elem)) else: raise NotImplementedError(xmlChild.tag) self.pop(elem) return elem def _parseApplicationRecordElementXML(self, xmlRoot, parent): assert (xmlRoot.tag == 'APPLICATION-RECORD-ELEMENT') typeRef, variantProps = None, None self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'TYPE-TREF': typeRef = self.parseTextNode(xmlElem) elif xmlElem.tag == 'SW-DATA-DEF-PROPS': variantProps = self.parseSwDataDefProps(xmlElem) else: self.defaultHandler(xmlElem) elem = autosar.datatype.ApplicationRecordElement(self.name, typeRef, self.category, parent, self.adminData) self.pop(elem) return elem def _parseDataTypeMapXML(self, xmlRoot): assert (xmlRoot.tag == 'DATA-TYPE-MAP') (applicationDataTypeRef, implementationDataTypeRef) = (None, None) for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'APPLICATION-DATA-TYPE-REF': applicationDataTypeRef = self.parseTextNode(xmlElem) elif xmlElem.tag == 'IMPLEMENTATION-DATA-TYPE-REF': implementationDataTypeRef = self.parseTextNode(xmlElem) else: raise NotImplementedError(xmlElem.tag) return autosar.datatype.DataTypeMap(applicationDataTypeRef, implementationDataTypeRef) def _parseModeRequestTypeMapXML(self, xmlRoot): assert (xmlRoot.tag == 'MODE-REQUEST-TYPE-MAP') (modeDeclarationGroupRef, implementationDataTypeRef) = (None, None) for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'MODE-GROUP-REF': modeDeclarationGroupRef = self.parseTextNode(xmlElem) elif xmlElem.tag == 'IMPLEMENTATION-DATA-TYPE-REF': implementationDataTypeRef = self.parseTextNode(xmlElem) else: raise NotImplementedError(xmlElem.tag) return autosar.datatype.ModeRequestTypeMap(modeDeclarationGroupRef, implementationDataTypeRef) class DataTypeSemanticsParser(ElementParser): def __init__(self,version=3.0): super().__init__(version) def getSupportedTags(self): return ['COMPU-METHOD'] def parseElement(self, xmlElement, parent = None): if xmlElement.tag == 'COMPU-METHOD': return self._parseCompuMethodXML(xmlElement, parent) else: return None def _parseCompuMethodXML(self, xmlRoot, parent=None): assert (xmlRoot.tag == 'COMPU-METHOD') compuInternalToPhys, compuPhysToInternal, unitRef = None, None, None self.push() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'COMPU-INTERNAL-TO-PHYS': compuInternalToPhys = self._parseComputationXML(xmlElem) assert(compuInternalToPhys is not None) elif xmlElem.tag == 'COMPU-PHYS-TO-INTERNAL': compuPhysToInternal = self._parseComputationXML(xmlElem) assert(compuPhysToInternal is not None) elif xmlElem.tag == 'UNIT-REF': unitRef = self.parseTextNode(xmlElem) else: self.defaultHandler(xmlElem) compuMethod = autosar.datatype.CompuMethod(self.name, False, False, unitRef, self.category, parent, self.adminData) self.pop(compuMethod) if compuInternalToPhys is not None: compuMethod.intToPhys = compuInternalToPhys if compuPhysToInternal is not None: compuMethod.physToInt = compuPhysToInternal return compuMethod def _parseComputationXML(self, xmlRoot): assert (xmlRoot.tag == 'COMPU-INTERNAL-TO-PHYS') or (xmlRoot.tag == 'COMPU-PHYS-TO-INTERNAL') computation = autosar.datatype.Computation() for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'COMPU-SCALES': for compuScaleXml in xmlElem.findall('COMPU-SCALE'): compuScale = self._parseCompuScaleXML(compuScaleXml) computation.elements.append(compuScale) elif xmlElem.tag == 'COMPU-DEFAULT-VALUE': for xmlChild in xmlElem.findall('./*'): if xmlChild.tag == 'V': computation.defaultValue = self.parseNumberNode(xmlChild) break elif xmlChild.tag == 'VT': computation.defaultValue = self.parseTextNode(xmlChild) break elif xmlChild.tag == 'VF': computation.defaultValue = self.parseNumberNode(xmlChild) break else: raise NotImplementedError(xmlChild.tag) else: raise NotImplementedError(xmlElem.tag) return computation def _parseCompuScaleXML(self, xmlRoot): assert(xmlRoot.tag == 'COMPU-SCALE') label, lowerLimit, upperLimit, lowerLimitType, upperLimitType, symbol, adminData = None, None, None, None, None, None, None offset, numerator, denominator, textValue, mask = None, None, None, None, None for xmlElem in xmlRoot.findall('./*'): if xmlElem.tag == 'DESC': pass #implement later elif xmlElem.tag == 'SHORT-LABEL': label = self.parseTextNode(xmlElem) elif xmlElem.tag == 'LOWER-LIMIT': lowerLimit = self.parseNumberNode(xmlElem) if (self.version >= 4.0) and 'INTERVAL-TYPE' in xmlElem.attrib: lowerLimitType = xmlElem.attrib['INTERVAL-TYPE'] elif xmlElem.tag == 'UPPER-LIMIT': upperLimit = self.parseNumberNode(xmlElem) if (self.version >= 4.0) and 'INTERVAL-TYPE' in xmlElem.attrib: upperLimitType = xmlElem.attrib['INTERVAL-TYPE'] elif xmlElem.tag == 'COMPU-RATIONAL-COEFFS': offset, numerator, denominator = self._parseCompuRationalXML(xmlElem) elif xmlElem.tag == 'SYMBOL': symbol = self.parseTextNode(xmlElem) elif xmlElem.tag == 'ADMIN-DATA': adminData = self.parseAdminDataNode(xmlElem) elif xmlElem.tag == 'COMPU-CONST': textValue = self.parseTextNode(xmlElem.find('./VT')) elif xmlElem.tag == 'MASK': mask = self.parseIntNode(xmlElem) else: raise NotImplementedError(xmlElem.tag) compuScale = autosar.datatype.CompuScaleElement(lowerLimit, upperLimit, lowerLimitType, upperLimitType, label, symbol, adminData) compuScale.offset = offset compuScale.numerator = numerator compuScale.denominator = denominator compuScale.textValue = textValue compuScale.mask = mask return compuScale def _parseCompuRationalXML(self, xmlRoot): assert(xmlRoot.tag == 'COMPU-RATIONAL-COEFFS') numXml = xmlRoot.findall('./COMPU-NUMERATOR/V') denXml = xmlRoot.findall('./COMPU-DENOMINATOR/V') assert(numXml is not None) assert(len(numXml) == 2) assert(denXml is not None) if self.parseTextNode(numXml[0]): offset = self.parseNumberNode(numXml[0]) else: offset = 0 if self.parseTextNode(numXml[1]): numerator = self.parseNumberNode(numXml[1]) else: numerator = 1 denominator = self.parseNumberNode(denXml[0]) return offset, numerator, denominator class DataTypeUnitsParser(ElementParser): def __init__(self,version=3.0): super().__init__(version) def getSupportedTags(self): return ['UNIT'] def parseElement(self, xmlElement, parent = None): if xmlElement.tag == 'UNIT': return self._parseUnit(xmlElement, parent) else: return None def _parseUnit(self, xmlRoot, parent=None): assert (xmlRoot.tag == 'UNIT') name = self.parseTextNode(xmlRoot.find("./SHORT-NAME")) displayName = self.parseTextNode(xmlRoot.find("./DISPLAY-NAME")) if self.version>=4.0: factor = self.parseTextNode(xmlRoot.find("./FACTOR-SI-TO-UNIT")) offset = self.parseTextNode(xmlRoot.find("./OFFSET-SI-TO-UNIT")) else: (factor,offset) = (None, None) return autosar.datatype.Unit(name, displayName, factor, offset, parent)
{ "content_hash": "2114729f6973bed964718f69c96e84ef", "timestamp": "", "source": "github", "line_count": 528, "max_line_length": 158, "avg_line_length": 47.58143939393939, "alnum_prop": 0.5892608366835171, "repo_name": "cogu/autosar", "id": "5e5b34726b56d28dd624fc828ec672fc765350df", "size": "25123", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "autosar/parser/datatype_parser.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "46" }, { "name": "Python", "bytes": "1039000" }, { "name": "Shell", "bytes": "445" } ], "symlink_target": "" }
from zeep import Client, xsd from zeep.plugins import HistoryPlugin from zeep.exceptions import Fault import zeep.cache import zeep.transports from .mappings import query_type_mapping, cvd_field_mapping, layer_field_mapping, collection_field_mapping, pending_device_field_mapping, policy_field_mapping, volume_field_mapping from .queries import _collect_query_results from collections import namedtuple class VmwareMirageClient(): def __init__(self, server, username, password, port=7443, cache=zeep.cache.InMemoryCache()): transport = zeep.transports.Transport(cache=cache) self.history = HistoryPlugin() self.client = Client("https://{}:{}/mirageapi/MitService.svc?singleWsdl".format(server, port), plugins=[self.history], transport=transport) self.username = username self.password = password login_response = self.client.service.Login(username=username, password=password) self.query_factory = self.client.type_factory('vmware.mirage.mit.query') self.type_factory = self.client.type_factory('vmware.mirage.mit.types') def reauth(function): def wrapper(self, *args, **kwargs): try: return function(self, *args, **kwargs) except Fault as e: if e.message == 'The session is not authenticated.': login_response = self.client.service.Login(username=self.username, password=self.password) return function(self, *args, **kwargs) else: raise(e) return wrapper @reauth def get_cvds(self, by='NAME', value='', query_type='BEGINS_WITH'): field = cvd_field_mapping[by] cvds = _collect_query_results( self, field=field, value=value, query_type=query_type, query_function=self.client.service.Cvd_Query ) return cvds @reauth def get_cvd(self, id): result = self.client.service.Cvd_Get(id=id) return result @reauth def get_collection_cvds(self, collection_id, by='NAME', value='', query_type='BEGINS_WITH'): field = cvd_field_mapping[by] cvds = _collect_query_results( self, field=field, value=value, query_type=query_type, query_function=self.client.service.CollectionCvd_Query, collectionId=collection_id ) return cvds @reauth def get_app_layers(self, by='NAME', value='', query_type='BEGINS_WITH'): field = layer_field_mapping[by] layers = _collect_query_results( self, field=field, value=value, query_type=query_type, query_function=self.client.service.AppLayer_Query ) return layers @reauth def get_base_layers(self, by='NAME', value='', query_type='BEGINS_WITH'): field = layer_field_mapping[by] layers = _collect_query_results( self, field=field, value=value, query_type=query_type, query_function=self.client.service.BaseLayer_Query ) return layers @reauth def get_collections(self, by='NAME', value='', query_type='BEGINS_WITH'): field = collection_field_mapping[by] collections = _collect_query_results( self, field=field, value=value, query_type=query_type, query_function=self.client.service.Collection_Query ) return collections @reauth def get_pending_devices(self, by='NAME', value='', query_type='BEGINS_WITH'): field = pending_device_field_mapping[by] pending_devices = _collect_query_results( self, field=field, value=value, query_type=query_type, query_function=self.client.service.PendingDevice_Query ) return pending_devices @reauth def get_policies(self, by='NAME', value='', query_type='BEGINS_WITH'): field = policy_field_mapping[by] policies = _collect_query_results( self, field=field, value=value, query_type=query_type, query_function=self.client.service.Policy_Query ) return policies @reauth def get_volumes(self, by='NAME', value='', query_type='BEGINS_WITH'): field = volume_field_mapping[by] volumes = _collect_query_results( self, field=field, value=value, query_type=query_type, query_function=self.client.service.Volume_Query ) return volumes @reauth def provision_pending_device(self, pending_device_id, policy, base_layer, app_layers, identity_info, volume_id, ignore_warnings=False): pending_device = self.type_factory.ArrayOfId([self.type_factory.Id(pending_device_id)]) _policy = self.type_factory.ImageId( self.type_factory.Id(policy.id), self.type_factory.ImageVersion(policy.major_version, policy.minor_version) ) _base_layer = self.type_factory.ImageId( self.type_factory.Id(base_layer.id), self.type_factory.ImageVersion(base_layer.major_version, base_layer.minor_version) ) app_layers_list = [ self.type_factory.ImageId( self.type_factory.Id(app.id), self.type_factory.ImageVersion(app.major_version, app.minor_version) ) for app in app_layers ] app_layers_array = self.type_factory.ArrayOfImageId(app_layers_list) _identity_info = self.type_factory.MachineIdentityInfo( DomainMember=identity_info.domain_member, DomainOrWorkgroupName=identity_info.domain_or_workgroup_name, MachineName=identity_info.new_machine_name, OU=identity_info.ou, Password=identity_info.password, User=identity_info.user ) _volume_id = self.type_factory.Id(volume_id) return self.client.service.PendingDevice_Provision( pendingDevices=pending_device, policyImageId=_policy, baseLayerImageId=_base_layer, appLayerImageIds=app_layers_array, identityInfo=_identity_info, volumeId=_volume_id, ignoreWarnings=ignore_warnings ) @reauth def delete_cvd(self, id): cvd_id = self.type_factory.Id(id) delete_array = self.type_factory.ArrayOfId([cvd_id]) result = self.client.service.Cvd_Delete(cvdIds=delete_array) return result Policy = namedtuple('Policy', ['id', 'major_version', 'minor_version']) AppLayer = namedtuple('AppLayer', ['id', 'major_version', 'minor_version']) BaseLayer = namedtuple('BaseLayer', ['id', 'major_version', 'minor_version']) IdentityInfo = namedtuple('IdentityInfo', ['domain_member', 'domain_or_workgroup_name', 'new_machine_name', 'ou', 'password', 'user'])
{ "content_hash": "4bb0e72038d40a657760589b4821028f", "timestamp": "", "source": "github", "line_count": 207, "max_line_length": 180, "avg_line_length": 35.47826086956522, "alnum_prop": 0.5879629629629629, "repo_name": "jay-tuckey/python-vmwaremirage", "id": "edc177d6755178663a767ee839202261d5d7fbd5", "size": "7344", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "vmwaremirage/core.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "22141" } ], "symlink_target": "" }
"""Support for RainMachine devices.""" import asyncio from datetime import timedelta from functools import partial from regenmaschine import Client from regenmaschine.controller import Controller from regenmaschine.errors import RainMachineError from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( ATTR_ATTRIBUTION, CONF_IP_ADDRESS, CONF_PASSWORD, CONF_PORT, CONF_SSL, ) from homeassistant.core import HomeAssistant, callback from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers import aiohttp_client, config_validation as cv from homeassistant.helpers.update_coordinator import ( CoordinatorEntity, DataUpdateCoordinator, UpdateFailed, ) from .const import ( CONF_ZONE_RUN_TIME, DATA_CONTROLLER, DATA_COORDINATOR, DATA_PROGRAMS, DATA_PROVISION_SETTINGS, DATA_RESTRICTIONS_CURRENT, DATA_RESTRICTIONS_UNIVERSAL, DATA_ZONES, DOMAIN, LOGGER, ) DATA_LISTENER = "listener" DEFAULT_ATTRIBUTION = "Data provided by Green Electronics LLC" DEFAULT_ICON = "mdi:water" DEFAULT_SSL = True DEFAULT_UPDATE_INTERVAL = timedelta(seconds=15) CONFIG_SCHEMA = cv.deprecated(DOMAIN) PLATFORMS = ["binary_sensor", "sensor", "switch"] async def async_update_programs_and_zones( hass: HomeAssistant, entry: ConfigEntry ) -> None: """Update program and zone DataUpdateCoordinators. Program and zone updates always go together because of how linked they are: programs affect zones and certain combinations of zones affect programs. """ await asyncio.gather( *[ hass.data[DOMAIN][DATA_COORDINATOR][entry.entry_id][ DATA_PROGRAMS ].async_refresh(), hass.data[DOMAIN][DATA_COORDINATOR][entry.entry_id][ DATA_ZONES ].async_refresh(), ] ) async def async_setup(hass: HomeAssistant, config: dict) -> bool: """Set up the RainMachine component.""" hass.data[DOMAIN] = {DATA_CONTROLLER: {}, DATA_COORDINATOR: {}, DATA_LISTENER: {}} return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up RainMachine as config entry.""" hass.data[DOMAIN][DATA_COORDINATOR][entry.entry_id] = {} entry_updates = {} if not entry.unique_id: # If the config entry doesn't already have a unique ID, set one: entry_updates["unique_id"] = entry.data[CONF_IP_ADDRESS] if CONF_ZONE_RUN_TIME in entry.data: # If a zone run time exists in the config entry's data, pop it and move it to # options: data = {**entry.data} entry_updates["data"] = data entry_updates["options"] = { **entry.options, CONF_ZONE_RUN_TIME: data.pop(CONF_ZONE_RUN_TIME), } if entry_updates: hass.config_entries.async_update_entry(entry, **entry_updates) websession = aiohttp_client.async_get_clientsession(hass) client = Client(session=websession) try: await client.load_local( entry.data[CONF_IP_ADDRESS], entry.data[CONF_PASSWORD], port=entry.data[CONF_PORT], ssl=entry.data.get(CONF_SSL, DEFAULT_SSL), ) except RainMachineError as err: LOGGER.error("An error occurred: %s", err) raise ConfigEntryNotReady from err # regenmaschine can load multiple controllers at once, but we only grab the one # we loaded above: controller = hass.data[DOMAIN][DATA_CONTROLLER][entry.entry_id] = next( iter(client.controllers.values()) ) async def async_update(api_category: str) -> dict: """Update the appropriate API data based on a category.""" try: if api_category == DATA_PROGRAMS: return await controller.programs.all(include_inactive=True) if api_category == DATA_PROVISION_SETTINGS: return await controller.provisioning.settings() if api_category == DATA_RESTRICTIONS_CURRENT: return await controller.restrictions.current() if api_category == DATA_RESTRICTIONS_UNIVERSAL: return await controller.restrictions.universal() return await controller.zones.all(details=True, include_inactive=True) except RainMachineError as err: raise UpdateFailed(err) from err controller_init_tasks = [] for api_category in [ DATA_PROGRAMS, DATA_PROVISION_SETTINGS, DATA_RESTRICTIONS_CURRENT, DATA_RESTRICTIONS_UNIVERSAL, DATA_ZONES, ]: coordinator = hass.data[DOMAIN][DATA_COORDINATOR][entry.entry_id][ api_category ] = DataUpdateCoordinator( hass, LOGGER, name=f'{controller.name} ("{api_category}")', update_interval=DEFAULT_UPDATE_INTERVAL, update_method=partial(async_update, api_category), ) controller_init_tasks.append(coordinator.async_refresh()) await asyncio.gather(*controller_init_tasks) for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) hass.data[DOMAIN][DATA_LISTENER] = entry.add_update_listener(async_reload_entry) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload an RainMachine config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ] ) ) if unload_ok: hass.data[DOMAIN][DATA_COORDINATOR].pop(entry.entry_id) cancel_listener = hass.data[DOMAIN][DATA_LISTENER].pop(entry.entry_id) cancel_listener() return unload_ok async def async_reload_entry(hass: HomeAssistant, entry: ConfigEntry) -> None: """Handle an options update.""" await hass.config_entries.async_reload(entry.entry_id) class RainMachineEntity(CoordinatorEntity): """Define a generic RainMachine entity.""" def __init__( self, coordinator: DataUpdateCoordinator, controller: Controller ) -> None: """Initialize.""" super().__init__(coordinator) self._attrs = {ATTR_ATTRIBUTION: DEFAULT_ATTRIBUTION} self._controller = controller self._device_class = None # The colons are removed from the device MAC simply because that value # (unnecessarily) makes up the existing unique ID formula and we want to avoid # a breaking change: self._unique_id = controller.mac.replace(":", "") self._name = None @property def device_class(self) -> str: """Return the device class.""" return self._device_class @property def device_info(self) -> dict: """Return device registry information for this entity.""" return { "identifiers": {(DOMAIN, self._controller.mac)}, "name": self._controller.name, "manufacturer": "RainMachine", "model": ( f"Version {self._controller.hardware_version} " f"(API: {self._controller.api_version})" ), "sw_version": self._controller.software_version, } @property def device_state_attributes(self) -> dict: """Return the state attributes.""" return self._attrs @property def name(self) -> str: """Return the name of the entity.""" return self._name @callback def _handle_coordinator_update(self): """Respond to a DataUpdateCoordinator update.""" self.update_from_latest_data() self.async_write_ha_state() async def async_added_to_hass(self): """Handle entity which will be added.""" await super().async_added_to_hass() self.update_from_latest_data() @callback def update_from_latest_data(self) -> None: """Update the state.""" raise NotImplementedError
{ "content_hash": "0a7ee7466a85865d2e61aa56d6d8718d", "timestamp": "", "source": "github", "line_count": 251, "max_line_length": 86, "avg_line_length": 32.366533864541836, "alnum_prop": 0.6392171344165436, "repo_name": "turbokongen/home-assistant", "id": "98fbdbcf4015e9f42dfcc2e55bd0b10066ea025b", "size": "8124", "binary": false, "copies": "2", "ref": "refs/heads/dev", "path": "homeassistant/components/rainmachine/__init__.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Dockerfile", "bytes": "1720" }, { "name": "Python", "bytes": "30405146" }, { "name": "Shell", "bytes": "4832" } ], "symlink_target": "" }
import weakref import Gaffer import GafferUI from GafferUI.PlugValueWidget import sole from Qt import QtCore class ColorPlugValueWidget( GafferUI.PlugValueWidget ) : def __init__( self, plugs, **kw ) : self.__column = GafferUI.ListContainer( GafferUI.ListContainer.Orientation.Vertical, spacing = 4 ) GafferUI.PlugValueWidget.__init__( self, self.__column, plugs, **kw ) with self.__column : with GafferUI.ListContainer( GafferUI.ListContainer.Orientation.Horizontal, spacing = 4 ) : self.__compoundNumericWidget = GafferUI.CompoundNumericPlugValueWidget( plugs ) self.__swatch = GafferUI.ColorSwatchPlugValueWidget( plugs, parenting = { "expand" : True } ) self.__swatch.buttonReleaseSignal().connect( Gaffer.WeakMethod( self.__swatchButtonRelease ), scoped = False ) self.__chooserButton = GafferUI.Button( image = "colorPlugValueWidgetSlidersOff.png", hasFrame = False ) self.__chooserButton.clickedSignal().connect( Gaffer.WeakMethod( self.__chooserButtonClicked ), scoped = False ) self.__colorChooser = GafferUI.ColorChooserPlugValueWidget( plugs ) self.setColorChooserVisible( sole( Gaffer.Metadata.value( plug, "colorPlugValueWidget:colorChooserVisible" ) for plug in self.getPlugs() ) ) self.__blinkBehaviour = None def setColorChooserVisible( self, visible ) : self.__colorChooser.setVisible( visible ) self.__chooserButton.setImage( "colorPlugValueWidgetSliders{}.png".format( "On" if visible else "Off" ) ) def getColorChooserVisible( self ) : return self.__colorChooser.getVisible() def setPlugs( self, plugs ) : GafferUI.PlugValueWidget.setPlugs( self, plugs ) self.__compoundNumericWidget.setPlugs( plugs ) self.__colorChooser.setPlugs( plugs ) self.__swatch.setPlugs( plugs ) def setHighlighted( self, highlighted ) : GafferUI.PlugValueWidget.setHighlighted( self, highlighted ) self.__compoundNumericWidget.setHighlighted( highlighted ) def setReadOnly( self, readOnly ) : if readOnly == self.getReadOnly() : return GafferUI.PlugValueWidget.setReadOnly( self, readOnly ) self.__compoundNumericWidget.setReadOnly( readOnly ) self.__swatch.setReadOnly( readOnly ) def childPlugValueWidget( self, childPlug ) : return self.__compoundNumericWidget.childPlugValueWidget( childPlug ) def __swatchButtonRelease( self, widget, event ) : if not self._editable() : # The swatch will have been unable to display a colour chooser, so we # draw the user's attention to the components which are preventing that. if self.__blinkBehaviour is not None : self.__blinkBehaviour.stop() widgets = [ self.__compoundNumericWidget.childPlugValueWidget( p ) for p in Gaffer.Plug.Range( next( iter( self.getPlugs() ) ) ) ] widgets = [ w for w in widgets if not w._editable() ] self.__blinkBehaviour = _BlinkBehaviour( widgets ) self.__blinkBehaviour.start() return False def __chooserButtonClicked( self, widget ) : visible = not self.getColorChooserVisible() self.setColorChooserVisible( visible ) # Remember the user's choice so we can match it next time # we construct a widget for one of these plugs. for plug in self.getPlugs() : Gaffer.Metadata.registerValue( plug, "colorPlugValueWidget:colorChooserVisible", visible, persistent = False ) GafferUI.PlugValueWidget.registerType( Gaffer.Color3fPlug, ColorPlugValueWidget ) GafferUI.PlugValueWidget.registerType( Gaffer.Color4fPlug, ColorPlugValueWidget ) ## \todo Consider if this is something that might be useful elsewhere, if # there are other such things, and what a Behaviour base class for them # might look like. class _BlinkBehaviour( object ) : def __init__( self, targetWidgets, blinks = 2 ) : self.__targetWidgets = [ weakref.ref( w ) for w in targetWidgets ] self.__initialStates = [ w.getHighlighted() for w in targetWidgets ] self.__blinks = blinks self.__toggleCount = 0 self.__timer = QtCore.QTimer() self.__timer.timeout.connect( self.__blink ) def start( self ) : self.__toggleCount = 0 self.__blink() self.__timer.start( 250 ) def stop( self ) : self.__timer.stop() for widget, initialState in zip( self.__targetWidgets, self.__initialStates ) : widget = widget() if widget : widget.setHighlighted( initialState ) def __blink( self ) : self.__toggleCount += 1 for widget, initialState in zip( self.__targetWidgets, self.__initialStates ) : widget = widget() if widget : widget.setHighlighted( bool( ( int( initialState ) + self.__toggleCount ) % 2 ) ) if self.__toggleCount >= self.__blinks * 2 : self.__timer.stop()
{ "content_hash": "14f4a27ab12a261bfbd845eb155c338e", "timestamp": "", "source": "github", "line_count": 146, "max_line_length": 116, "avg_line_length": 31.69178082191781, "alnum_prop": 0.7220661335638643, "repo_name": "hradec/gaffer", "id": "6e4ac3e25d1629de22b5c5ed28bc031c77be53ce", "size": "6497", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "python/GafferUI/ColorPlugValueWidget.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "54696" }, { "name": "C++", "bytes": "8682649" }, { "name": "CMake", "bytes": "85201" }, { "name": "GLSL", "bytes": "6208" }, { "name": "Python", "bytes": "9458935" }, { "name": "Ruby", "bytes": "419" }, { "name": "Shell", "bytes": "14299" } ], "symlink_target": "" }
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('topics', '0095_auto_20200603_2208'), ] operations = [ migrations.AddField( model_name='programmingchallenge', name='testing_examples', field=models.TextField(default=''), ), ]
{ "content_hash": "a42ccd98f7128a15f2c7ff7559efc1fe", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 47, "avg_line_length": 22.1875, "alnum_prop": 0.5859154929577465, "repo_name": "uccser/cs-unplugged", "id": "9da0a9145b4271066eebd69066d964c66f584eef", "size": "405", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "csunplugged/topics/migrations/0096_programmingchallenge_testing_examples.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "7927" }, { "name": "HTML", "bytes": "432891" }, { "name": "JavaScript", "bytes": "104806" }, { "name": "Python", "bytes": "1257568" }, { "name": "SCSS", "bytes": "67560" }, { "name": "Shell", "bytes": "12461" } ], "symlink_target": "" }
import core.social.Objects.User from ..Mongo import Mongo import facebook # from .User import User from .Comment import Comment from .Likes import Likes from ..configurations import Config import re import json import ast class Post: def __init__(self, **kwargs): post_fields = ["created_time", "_id", "id", "updated_time", "likes", "message", "status_type", "comments"] for key, value in kwargs.iteritems(): if key in post_fields: setattr(self, key, value) def __repr__(self): return str(self.__dict__) @property def id(self): return self._id @property def likes(self): return self.likes @likes.setter def likes(self, value): self.likes = value def get_all_likes(self): likes = [] if type(self.likes) is dict: for x in self.likes['data']: likes.append(Likes(id=x['id'], user_name=x['name'])) else : for x in ast.literal_eval(self.likes)['data']: likes.append(Likes(id=x['id'], user_name=x['name'])) return likes def get_comments(self): comments = [] if 'comments' in self.__dict__: for x in ast.literal_eval(self.comments)['data']: comments.append(Comment(id= x['id'], user=x['from'], like_count=x['like_count'], created_time=x['created_time'], message=x['message'], user_likes=x['user_likes'])) return comments @staticmethod def demo(**kwargs): for key, value in kwargs.iteritems(): print (str(key) + "---------->" + str(value)) @staticmethod def load_from_db(id): post = Mongo.getPostCollection().find_one({'_id': id}) # print ast.literal_eval(str(post)) return Post(**post) @staticmethod def load_from_facebook(id): graph = facebook.GraphAPI( access_token=Config.api_key, version='2.2') post = graph.get_object(id) # print post return Post(**post) def json(self): json_res = {} for key, value in self.__dict__.items(): if value: try: json_res[key] = str(value) except : json_res[key] = str(value.encode('ascii', 'ignore')) if "id" in json_res.keys(): id = json_res.pop("id") json_res['_id'] = id return json_res def load_user(self): return User.load_user(self.user) def save(self): json_res = self.json() Mongo.getPostCollection().insert(json_res) @classmethod def load_from_json(cls, values): return cls(**values) @staticmethod def load_post(id): record = Mongo.getPostCollection().find_one({'_id': id}) print (record) if not record: return None return Post.load_from_json(record)
{ "content_hash": "49248d9c14cfaf8e18225a7c4e92dc36", "timestamp": "", "source": "github", "line_count": 106, "max_line_length": 128, "avg_line_length": 28.00943396226415, "alnum_prop": 0.5405860559110812, "repo_name": "euronmetaliaj/MarketAnalyzer", "id": "de04d435e5d8fce9c7687725ee7802ea0f941a12", "size": "2969", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "core/social/Objects/Mini.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "447174" }, { "name": "HTML", "bytes": "52235" }, { "name": "JavaScript", "bytes": "1628285" }, { "name": "Python", "bytes": "57579" } ], "symlink_target": "" }
from django.core.files import File from django.core.management.base import BaseCommand from django.shortcuts import get_list_or_404 from employees.models import Employee class Command(BaseCommand): help = 'Set default avatar image for all employees, suggested use on development environments' def get_employee_list(self): default_image = File(open('sample_data/default_avatar.png', 'rb')) employees = get_list_or_404(Employee) for employee in employees: employee.avatar.save('default.png', default_image) def handle(self, *args, **options): self.get_employee_list()
{ "content_hash": "e66b48fa14637f7490bb830afe0c590c", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 98, "avg_line_length": 34.833333333333336, "alnum_prop": 0.7145135566188198, "repo_name": "belatrix/BackendAllStars", "id": "2ac9702b2294af1b7054bea06f439393c0df4a76", "size": "627", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "employees/management/commands/setdefaultavatar.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "198882" } ], "symlink_target": "" }
from kivy.uix.boxlayout import BoxLayout from kivy.properties import Property from gravur.common.labelbox import LabelBox # NOQA from gravur.utils import load_widget @load_widget class TransactionPreview(BoxLayout): txid = Property(None) timestamp = Property("loading") delta = Property("loading") def on_txid(self, instance, value): instance.timestamp = '2015-07-01 16:41' # TODO get from txid instance.delta = '0.0012BTC' # TODO get from txid
{ "content_hash": "84a8172872b341a35a8f63c243455275", "timestamp": "", "source": "github", "line_count": 16, "max_line_length": 69, "avg_line_length": 30.25, "alnum_prop": 0.71900826446281, "repo_name": "F483/gravur", "id": "141d3b22d1d8707b9d86b0ad077e838e491df4c8", "size": "599", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "gravur/wallet/transactionpreview.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "1254" }, { "name": "Python", "bytes": "30027" } ], "symlink_target": "" }
import collections import functools def filter_and_text_type_assertions(func): """Decorates all functions with the filter and text signature to confirm the types of """ @functools.wraps(func) def decorator(*args, **kwargs): try: args = list(args) filters = args[0] assert args[0] is not None or args[1] is not None, "Arguments must not be empty" assert isinstance(args[0], collections.Iterable) and isinstance(args[1], collections.Iterable), "Filters and objects to filter must be iterable." except IndexError: filters = kwargs.get('filter') assert kwargs.get('filter') is not None or kwargs.get('text') is not None, "Arguments or Key Word Arguments must not be empty" assert isinstance(kwargs.get('filter'), collections.Iterable) and isinstance(kwargs.get('text'), collections.Iterable), "Filters and objects to filter must be iterable." if isinstance(filters, str): try: delimiter = args[2] except IndexError: delimiter = kwargs.get('delimiter', ',') args[0] = filters.split(delimiter) return func(*args, **kwargs) return decorator
{ "content_hash": "44ea648ebca1740a811bc203ee920853", "timestamp": "", "source": "github", "line_count": 27, "max_line_length": 181, "avg_line_length": 45.851851851851855, "alnum_prop": 0.635702746365105, "repo_name": "52inc/python-naughty-words", "id": "97cef6e90e427be3bdc099e86f0d5cd5ca6ec46e", "size": "1238", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "naughty_words/utils/decorators.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "132685" } ], "symlink_target": "" }
import sys, os try: import sphinx_rtd_theme except ImportError: _RTD_THEME = False pass else: _RTD_THEME = True # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../../bitmath')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.mathjax'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'bitmath' copyright = u'2014-2016, Tim Bielawa' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.3.1' # The full version, including alpha/beta/rc tags. release = '1.3.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [ 'appendices/mixed_math.rst', 'appendices/*', 'example_block_devices.rst', 'query_device_capacity_warning.rst' ] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. if _RTD_THEME: html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] else: html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%Y-%m-%d - %H:%M:%S %Z' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. html_show_sphinx = False # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'bitmathdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'bitmath.tex', u'bitmath Documentation', u'Tim Bielawa', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'bitmath', u'bitmath Documentation', [u'Tim Bielawa'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'bitmath', u'bitmath Documentation', u'Tim Bielawa', 'bitmath', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
{ "content_hash": "4c8807fe0d22912fbd177fcaf0981d0c", "timestamp": "", "source": "github", "line_count": 245, "max_line_length": 122, "avg_line_length": 31.812244897959182, "alnum_prop": 0.6986143187066974, "repo_name": "pombredanne/bitmath", "id": "fd082bb251fe56728a407d7073080e85b8762f4b", "size": "8212", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "docsite/source/conf.py", "mode": "33188", "license": "mit", "language": [ { "name": "Groff", "bytes": "2344" }, { "name": "Makefile", "bytes": "15620" }, { "name": "Python", "bytes": "181055" }, { "name": "Shell", "bytes": "311" } ], "symlink_target": "" }
from pytos.securechange.xml_objects.restapi.step.initialize import * from pytos.securechange.xml_objects.restapi.step.access_request.designer import DesignerResult from pytos.securechange.xml_objects.restapi.step.step import Binding, SlimRuleWithMetadata, SlimRule logger = logging.getLogger(XML_LOGGER_NAME) class Rule_decommission_Generator: """This class is used to generate a SecureChange RuleDecommission from tuple.""" def __init__(self, revision_id, device_id, bindings, action): self.revision_id = revision_id self.device_id = device_id self.bindings = bindings self.action = action @classmethod def from_dict(cls, rule_decommission_dict): """Constructor :param rule_decommission_dict: A dict, which consists of (device_id,revision_id,bindings,action). device_id is an int revision_id is an int bindings is a dict: Keys are the bind uid(string) and the values are lists of rules(list of strings) action is a string, which can be one of the following: 1. Disable 2. Remove :type rule_decommission_dict: tuple(int, int, dict{[str]:list[str]}, str) """ device_id = rule_decommission_dict['device_id'] revision_id = rule_decommission_dict['revision_id'] bindings = rule_decommission_dict['bindings'] action = rule_decommission_dict['action'] return cls(revision_id, device_id, bindings, action) def create_devices_bindings(self): """Create the Device object for the Rule Decommission ticket. :return: The generated Devices list object. :rtype: XML_List of devices """ device_bindings = [] for bind_uid, rules in self.bindings.items(): bind_rules = [] for rule_uid in rules: bind_rules.append(SlimRule(uid=rule_uid)) bind_rules = XML_List(Elements.RULES, bind_rules) device_bindings.append(RuleDecommissionBinding(binding_uid=bind_uid, rules=bind_rules)) device_bindings = XML_List(Elements.BINDINGS, device_bindings) devices = XML_List(Elements.DEVICES, [RuleDecommissionDevice(revision_id=self.revision_id, management_id=self.device_id, bindings=device_bindings)]) return devices class Step_Field_Rule_Decommission(Step_Field_Base): def __init__(self, num_id, name, read_only=None, action=None, devices=None, verifier_result=None, designer_result=None): self.action = action self.devices = devices self.verifier_result = verifier_result self.designer_result = designer_result super().__init__(num_id, name, read_only) self.set_attrib(Attributes.XSI_TYPE, Attributes.FIELD_TYPE_RULE_DECOMMISSION) @classmethod def from_xml_node(cls, xml_node): """ Initialize the object from a XML node. :param xml_node: The XML node from which all necessary parameters will be parsed. :type xml_node: xml.etree.Element """ num_id = get_xml_int_value(xml_node, Elements.ID) name = get_xml_text_value(xml_node, Elements.NAME) read_only = get_xml_text_value(xml_node, Elements.READ_ONLY) action = get_xml_text_value(xml_node, Elements.ACTION) verifier_node = get_xml_node(xml_node, Elements.VERIFIER_RESULT, True) if verifier_node is not None: verifier_result = RDVerifier.from_xml_node(verifier_node) else: verifier_result = None designer_node = get_xml_node(xml_node, Elements.DESIGNER_RESULT, True) if designer_node is not None: designer_result = DesignerResult.from_xml_node(designer_node) else: designer_result = None devices = XML_List.from_xml_node_by_tags(xml_node, Elements.DEVICES, Elements.DEVICE, RuleDecommissionDevice, True) return cls(num_id, name, read_only, action, devices, verifier_result, designer_result) def remove_verifier_result(self): """ Remove verifier result from a rule decommission for a task. Need to use it when trying to put rule decommission task with verifier result """ self.verifier_result = None def remove_designer_result(self): """ Remove designer result from a rule decommission for a task. Need to use it when trying to put rule decommission task with designer result """ self.designer_result = None def sanitize_results(self): """ Remove both designer and verifier result from a rule decommission for a task. Need to use it when trying to put rule decommission task with designer result and verifier results """ self.remove_designer_result() self.remove_verifier_result() def to_pretty_str(self): action_str = "Action: {}".format(self.action) devices_str = '\n'.join(device.to_pretty_str() for device in self.devices) return '\n\n'.join((action_str, devices_str)) class RuleDecommissionDevice(XML_Object_Base): """This class represents the RuleDecommissionDeviceDTO used in rule decommission field""" def __init__(self, revision_id, management_id, bindings, management_ip=None, revision_number=None, number_of_rules=None, administrator=None, management_name=None): self.revision_id = revision_id self.management_id = management_id self.bindings = bindings self.management_ip = management_ip self.revision_number = revision_number self.number_of_rules = number_of_rules self.administrator = administrator self.management_name = management_name super().__init__(Elements.DEVICE) @classmethod def from_xml_node(cls, xml_node): """ Initialize the object from a XML node. :param xml_node: The XML node from which all necessary parameters will be parsed. :type xml_node: xml.etree.Element """ revision_id = get_xml_text_value(xml_node, Elements.REVISION_ID) management_id = get_xml_int_value(xml_node, Elements.MANAGEMENT_ID) bindings = XML_List.from_xml_node_by_tags(xml_node, Elements.BINDINGS, Elements.BINDING, RuleDecommissionBinding) management_ip = get_xml_text_value(xml_node, Elements.MANAGEMENT_IP) revision_number = get_xml_int_value(xml_node, Elements.REVISION_NUMBER) number_of_rules = get_xml_int_value(xml_node, Elements.NUMBER_OF_RULES) administrator = get_xml_text_value(xml_node, Elements.ADMINISTRATOR) management_name = get_xml_text_value(xml_node, Elements.MANAGEMENT_NAME) return cls(revision_id, management_id, bindings, management_ip, revision_number, number_of_rules, administrator, management_name) def to_pretty_str(self): bindings_info = "\n".join(binding.to_pretty_str() for binding in self.bindings) return "Device name: {}\n{}".format(self.management_name, bindings_info) class RDVerifier(XML_Object_Base): """This class represents the RDVerifier used in rule decommission field""" def __init__(self, result, reason, message, status): self.result = result self.reason = reason self.message = message self.status = status super().__init__(Elements.VERIFIER_RESULT) @classmethod def from_xml_node(cls, xml_node): """ Initialize the object from a XML node. :param xml_node: The XML node from which all necessary parameters will be parsed. :type xml_node: xml.etree.Element """ status = get_xml_text_value(xml_node, Elements.STATUS) reason = get_xml_text_value(xml_node, Elements.REASON) message = get_xml_text_value(xml_node, Elements.MESSAGE) result = get_xml_node(xml_node, Elements.RESULT, True) if result is not None: result = ReferenceURL.from_xml_node(result) return cls(result, reason, message, status) class RuleDecommissionBinding(XML_Object_Base): """This class represents the RuleDecommissionBindingDTO used in rule decommission field""" def __init__(self, binding_uid, rules, binding=None): self.binding_uid = binding_uid self.rules = rules if binding is not None: self.binding = binding super().__init__(Elements.BINDING) @classmethod def from_xml_node(cls, xml_node): """ Initialize the object from a XML node. :param xml_node: The XML node from which all necessary parameters will be parsed. :type xml_node: xml.etree.Element """ binding_uid = get_xml_text_value(xml_node, Elements.BINDING_UID) rules = XML_List.from_xml_node_by_tags(xml_node, Elements.RULES, Elements.RULE, SlimRuleWithMetadata) binding_node = get_xml_node(xml_node, Elements.BINDING, True) if binding_node is not None: binding = Binding.from_xml_node(binding_node) else: binding = None return cls(binding_uid, rules, binding) def to_pretty_str(self): return '\n'.join(rule.to_pretty_str() for rule in self.rules)
{ "content_hash": "c71b31b6abb4b91c86dd7ae19cb7a4e2", "timestamp": "", "source": "github", "line_count": 214, "max_line_length": 120, "avg_line_length": 44.308411214953274, "alnum_prop": 0.6396329888209239, "repo_name": "Tufin/pytos", "id": "e7a38fce3a36f06bd87bf21b5496191749e5497a", "size": "9482", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "pytos/securechange/xml_objects/restapi/step/rule_decommission/rule_decommission.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "HTML", "bytes": "11180" }, { "name": "Python", "bytes": "1073816" } ], "symlink_target": "" }
from __future__ import unicode_literals from django.conf import settings from django.db import models from django.utils.translation import ugettext_lazy as _ from filer.utils.compatibility import python_2_unicode_compatible from . import filemodels @python_2_unicode_compatible class Clipboard(models.Model): user = models.ForeignKey(getattr(settings, 'AUTH_USER_MODEL', 'auth.User'), verbose_name=_( 'user'), related_name="media_clipboards") files = models.ManyToManyField( 'media.File', verbose_name=_('files'), related_name="in_clipboards", through='ClipboardItem') def append_file(self, file_obj): try: # We have to check if file is already in the clipboard as otherwise # polymorphic complains self.files.get(pk=file_obj.pk) return False except filemodels.File.DoesNotExist: newitem = ClipboardItem(file=file_obj, clipboard=self) newitem.save() return True def __str__(self): return "Clipboard %s of %s" % (self.id, self.user) class Meta: app_label = 'media' verbose_name = _('clipboard') verbose_name_plural = _('clipboards') class ClipboardItem(models.Model): file = models.ForeignKey('media.File', verbose_name=_('file')) clipboard = models.ForeignKey(Clipboard, verbose_name=_('clipboard')) class Meta: app_label = 'media' verbose_name = _('clipboard item') verbose_name_plural = _('clipboard items')
{ "content_hash": "8d591dfdf4667b62cfcbbdd54ab9ca88", "timestamp": "", "source": "github", "line_count": 46, "max_line_length": 95, "avg_line_length": 33.30434782608695, "alnum_prop": 0.6481723237597912, "repo_name": "django-leonardo/django-leonardo", "id": "ebcaa623f0df3dc87959b69d93af4a84f3781a9b", "size": "1556", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "leonardo/module/media/models/clipboardmodels.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "33187" }, { "name": "Dockerfile", "bytes": "835" }, { "name": "HTML", "bytes": "323851" }, { "name": "JavaScript", "bytes": "264957" }, { "name": "Makefile", "bytes": "1390" }, { "name": "Python", "bytes": "705902" }, { "name": "SCSS", "bytes": "68482" }, { "name": "Shell", "bytes": "5569" } ], "symlink_target": "" }
""" This script uses yum and rpm to generate in-toto material provenance and writes the resulting JSON to stdout or to argv[0] if provided. """ import dnf import json import sys import urllib.parse in_toto_data = list() in_toto_fmt = "pkg:rpm/{origin}/{name}@{epoch}{version}-{release}?arch={arch}" with dnf.Base() as db: db.fill_sack() q = db.sack.query() for pkg in q.installed(): in_toto_data.append( { "uri": in_toto_fmt.format( origin=urllib.parse.quote(pkg.vendor), name=pkg.name, epoch=str(pkg.epoch) + ':' if pkg.epoch != 0 else '', version=pkg.version, release=pkg.release, arch=pkg.arch ), "digest": { # The DNF documentation says: # The checksum is returned only for packages from # repository. The checksum is not returned for # installed package or packages from commandline # repository. # Which is super lame, so we use the header checksum to # have _something_. 'sha1': pkg.hdr_chksum[1].hex() } } ) if len(sys.argv) > 1: with open(sys.argv[1], 'w') as f: json.dump(in_toto_data, f) else: print(json.dumps(in_toto_data))
{ "content_hash": "6f9e20eb37bf80fda80ce4034ed0e10c", "timestamp": "", "source": "github", "line_count": 46, "max_line_length": 78, "avg_line_length": 31.956521739130434, "alnum_prop": 0.5027210884353741, "repo_name": "PowerDNS/pdns-builder", "id": "507ccb606f88909ca2c37da9d45fd443140de5ed", "size": "1493", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "helpers/generate-dnf-provenance.py", "mode": "33261", "license": "mit", "language": [ { "name": "Lua", "bytes": "588" }, { "name": "Python", "bytes": "4197" }, { "name": "Shell", "bytes": "43128" } ], "symlink_target": "" }
import os import re import sys import tempfile import textwrap import fixtures import mock import pkg_resources import six from testtools import matchers from pbr import git from pbr import packaging from pbr.tests import base class TestRepo(fixtures.Fixture): """A git repo for testing with. Use of TempHomeDir with this fixture is strongly recommended as due to the lack of config --local in older gits, it will write to the users global configuration without TempHomeDir. """ def __init__(self, basedir): super(TestRepo, self).__init__() self._basedir = basedir def setUp(self): super(TestRepo, self).setUp() base._run_cmd(['git', 'init', '.'], self._basedir) base._config_git() base._run_cmd(['git', 'add', '.'], self._basedir) def commit(self, message_content='test commit'): files = len(os.listdir(self._basedir)) path = self._basedir + '/%d' % files open(path, 'wt').close() base._run_cmd(['git', 'add', path], self._basedir) base._run_cmd(['git', 'commit', '-m', message_content], self._basedir) def uncommit(self): base._run_cmd(['git', 'reset', '--hard', 'HEAD^'], self._basedir) def tag(self, version): base._run_cmd( ['git', 'tag', '-sm', 'test tag', version], self._basedir) class GPGKeyFixture(fixtures.Fixture): """Creates a GPG key for testing. It's recommended that this be used in concert with a unique home directory. """ def setUp(self): super(GPGKeyFixture, self).setUp() tempdir = self.useFixture(fixtures.TempDir()) gnupg_version_re = re.compile('^gpg\s.*\s([\d+])\.([\d+])\.([\d+])') gnupg_version = base._run_cmd(['gpg', '--version'], tempdir.path) for line in gnupg_version[0].split('\n'): gnupg_version = gnupg_version_re.match(line) if gnupg_version: gnupg_version = (int(gnupg_version.group(1)), int(gnupg_version.group(2)), int(gnupg_version.group(3))) break else: if gnupg_version is None: gnupg_version = (0, 0, 0) config_file = tempdir.path + '/key-config' f = open(config_file, 'wt') try: if gnupg_version[0] == 2 and gnupg_version[1] >= 1: f.write(""" %no-protection %transient-key """) f.write(""" %no-ask-passphrase Key-Type: RSA Name-Real: Example Key Name-Comment: N/A Name-Email: example@example.com Expire-Date: 2d Preferences: (setpref) %commit """) finally: f.close() # Note that --quick-random (--debug-quick-random in GnuPG 2.x) # does not have a corresponding preferences file setting and # must be passed explicitly on the command line instead if gnupg_version[0] == 1: gnupg_random = '--quick-random' elif gnupg_version[0] >= 2: gnupg_random = '--debug-quick-random' else: gnupg_random = '' base._run_cmd( ['gpg', '--gen-key', '--batch', gnupg_random, config_file], tempdir.path) class TestPackagingInGitRepoWithCommit(base.BaseTestCase): scenarios = [ ('preversioned', dict(preversioned=True)), ('postversioned', dict(preversioned=False)), ] def setUp(self): super(TestPackagingInGitRepoWithCommit, self).setUp() repo = self.useFixture(TestRepo(self.package_dir)) repo.commit() def test_authors(self): self.run_setup('sdist', allow_fail=False) # One commit, something should be in the authors list with open(os.path.join(self.package_dir, 'AUTHORS'), 'r') as f: body = f.read() self.assertNotEqual(body, '') def test_changelog(self): self.run_setup('sdist', allow_fail=False) with open(os.path.join(self.package_dir, 'ChangeLog'), 'r') as f: body = f.read() # One commit, something should be in the ChangeLog list self.assertNotEqual(body, '') def test_manifest_exclude_honoured(self): self.run_setup('sdist', allow_fail=False) with open(os.path.join( self.package_dir, 'pbr_testpackage.egg-info/SOURCES.txt'), 'r') as f: body = f.read() self.assertThat( body, matchers.Not(matchers.Contains('pbr_testpackage/extra.py'))) self.assertThat(body, matchers.Contains('pbr_testpackage/app.py')) def test_install_writes_changelog(self): stdout, _, _ = self.run_setup( 'install', '--root', self.temp_dir + 'installed', allow_fail=False) self.expectThat(stdout, matchers.Contains('Generating ChangeLog')) class TestPackagingInGitRepoWithoutCommit(base.BaseTestCase): def setUp(self): super(TestPackagingInGitRepoWithoutCommit, self).setUp() self.useFixture(TestRepo(self.package_dir)) self.run_setup('sdist', allow_fail=False) def test_authors(self): # No commits, no authors in list with open(os.path.join(self.package_dir, 'AUTHORS'), 'r') as f: body = f.read() self.assertEqual(body, '\n') def test_changelog(self): # No commits, nothing should be in the ChangeLog list with open(os.path.join(self.package_dir, 'ChangeLog'), 'r') as f: body = f.read() self.assertEqual(body, 'CHANGES\n=======\n\n') class TestPackagingInPlainDirectory(base.BaseTestCase): def setUp(self): super(TestPackagingInPlainDirectory, self).setUp() def test_authors(self): self.run_setup('sdist', allow_fail=False) # Not a git repo, no AUTHORS file created filename = os.path.join(self.package_dir, 'AUTHORS') self.assertFalse(os.path.exists(filename)) def test_changelog(self): self.run_setup('sdist', allow_fail=False) # Not a git repo, no ChangeLog created filename = os.path.join(self.package_dir, 'ChangeLog') self.assertFalse(os.path.exists(filename)) def test_install_no_ChangeLog(self): stdout, _, _ = self.run_setup( 'install', '--root', self.temp_dir + 'installed', allow_fail=False) self.expectThat( stdout, matchers.Not(matchers.Contains('Generating ChangeLog'))) class TestPresenceOfGit(base.BaseTestCase): def testGitIsInstalled(self): with mock.patch.object(git, '_run_shell_command') as _command: _command.return_value = 'git version 1.8.4.1' self.assertEqual(True, git._git_is_installed()) def testGitIsNotInstalled(self): with mock.patch.object(git, '_run_shell_command') as _command: _command.side_effect = OSError self.assertEqual(False, git._git_is_installed()) class TestNestedRequirements(base.BaseTestCase): def test_nested_requirement(self): tempdir = tempfile.mkdtemp() requirements = os.path.join(tempdir, 'requirements.txt') nested = os.path.join(tempdir, 'nested.txt') with open(requirements, 'w') as f: f.write('-r ' + nested) with open(nested, 'w') as f: f.write('pbr') result = packaging.parse_requirements([requirements]) self.assertEqual(result, ['pbr']) class TestVersions(base.BaseTestCase): scenarios = [ ('preversioned', dict(preversioned=True)), ('postversioned', dict(preversioned=False)), ] def setUp(self): super(TestVersions, self).setUp() self.repo = self.useFixture(TestRepo(self.package_dir)) self.useFixture(GPGKeyFixture()) self.useFixture(base.DiveDir(self.package_dir)) def test_capitalized_headers(self): self.repo.commit() self.repo.tag('1.2.3') self.repo.commit('Sem-Ver: api-break') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('2.0.0.dev1')) def test_capitalized_headers_partial(self): self.repo.commit() self.repo.tag('1.2.3') self.repo.commit('Sem-ver: api-break') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('2.0.0.dev1')) def test_tagged_version_has_tag_version(self): self.repo.commit() self.repo.tag('1.2.3') version = packaging._get_version_from_git('1.2.3') self.assertEqual('1.2.3', version) def test_untagged_version_has_dev_version_postversion(self): self.repo.commit() self.repo.tag('1.2.3') self.repo.commit() version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('1.2.4.dev1')) def test_untagged_pre_release_has_pre_dev_version_postversion(self): self.repo.commit() self.repo.tag('1.2.3.0a1') self.repo.commit() version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('1.2.3.0a2.dev1')) def test_untagged_version_minor_bump(self): self.repo.commit() self.repo.tag('1.2.3') self.repo.commit('sem-ver: deprecation') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('1.3.0.dev1')) def test_untagged_version_major_bump(self): self.repo.commit() self.repo.tag('1.2.3') self.repo.commit('sem-ver: api-break') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('2.0.0.dev1')) def test_untagged_version_has_dev_version_preversion(self): self.repo.commit() self.repo.tag('1.2.3') self.repo.commit() version = packaging._get_version_from_git('1.2.5') self.assertThat(version, matchers.StartsWith('1.2.5.dev1')) def test_untagged_version_after_pre_has_dev_version_preversion(self): self.repo.commit() self.repo.tag('1.2.3.0a1') self.repo.commit() version = packaging._get_version_from_git('1.2.5') self.assertThat(version, matchers.StartsWith('1.2.5.dev1')) def test_untagged_version_after_rc_has_dev_version_preversion(self): self.repo.commit() self.repo.tag('1.2.3.0a1') self.repo.commit() version = packaging._get_version_from_git('1.2.3') self.assertThat(version, matchers.StartsWith('1.2.3.0a2.dev1')) def test_preversion_too_low_simple(self): # That is, the target version is either already released or not high # enough for the semver requirements given api breaks etc. self.repo.commit() self.repo.tag('1.2.3') self.repo.commit() # Note that we can't target 1.2.3 anymore - with 1.2.3 released we # need to be working on 1.2.4. err = self.assertRaises( ValueError, packaging._get_version_from_git, '1.2.3') self.assertThat(err.args[0], matchers.StartsWith('git history')) def test_preversion_too_low_semver_headers(self): # That is, the target version is either already released or not high # enough for the semver requirements given api breaks etc. self.repo.commit() self.repo.tag('1.2.3') self.repo.commit('sem-ver: feature') # Note that we can't target 1.2.4, the feature header means we need # to be working on 1.3.0 or above. err = self.assertRaises( ValueError, packaging._get_version_from_git, '1.2.4') self.assertThat(err.args[0], matchers.StartsWith('git history')) def test_get_kwargs_corner_cases(self): # No tags: git_dir = self.repo._basedir + '/.git' get_kwargs = lambda tag: packaging._get_increment_kwargs(git_dir, tag) def _check_combinations(tag): self.repo.commit() self.assertEqual(dict(), get_kwargs(tag)) self.repo.commit('sem-ver: bugfix') self.assertEqual(dict(), get_kwargs(tag)) self.repo.commit('sem-ver: feature') self.assertEqual(dict(minor=True), get_kwargs(tag)) self.repo.uncommit() self.repo.commit('sem-ver: deprecation') self.assertEqual(dict(minor=True), get_kwargs(tag)) self.repo.uncommit() self.repo.commit('sem-ver: api-break') self.assertEqual(dict(major=True), get_kwargs(tag)) self.repo.commit('sem-ver: deprecation') self.assertEqual(dict(major=True, minor=True), get_kwargs(tag)) _check_combinations('') self.repo.tag('1.2.3') _check_combinations('1.2.3') def test_invalid_tag_ignored(self): # Fix for bug 1356784 - we treated any tag as a version, not just those # that are valid versions. self.repo.commit() self.repo.tag('1') self.repo.commit() # when the tree is tagged and its wrong: self.repo.tag('badver') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('1.0.1.dev1')) # When the tree isn't tagged, we also fall through. self.repo.commit() version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('1.0.1.dev2')) # We don't fall through x.y versions self.repo.commit() self.repo.tag('1.2') self.repo.commit() self.repo.tag('badver2') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('1.2.1.dev1')) # Or x.y.z versions self.repo.commit() self.repo.tag('1.2.3') self.repo.commit() self.repo.tag('badver3') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('1.2.4.dev1')) # Or alpha/beta/pre versions self.repo.commit() self.repo.tag('1.2.4.0a1') self.repo.commit() self.repo.tag('badver4') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('1.2.4.0a2.dev1')) # Non-release related tags are ignored. self.repo.commit() self.repo.tag('2') self.repo.commit() self.repo.tag('non-release-tag/2014.12.16-1') version = packaging._get_version_from_git() self.assertThat(version, matchers.StartsWith('2.0.1.dev1')) def test_valid_tag_honoured(self): # Fix for bug 1370608 - we converted any target into a 'dev version' # even if there was a distance of 0 - indicating that we were on the # tag itself. self.repo.commit() self.repo.tag('1.3.0.0a1') version = packaging._get_version_from_git() self.assertEqual('1.3.0.0a1', version) def test_skip_write_git_changelog(self): # Fix for bug 1467440 self.repo.commit() self.repo.tag('1.2.3') os.environ['SKIP_WRITE_GIT_CHANGELOG'] = '1' version = packaging._get_version_from_git('1.2.3') self.assertEqual('1.2.3', version) def tearDown(self): super(TestVersions, self).tearDown() os.environ.pop('SKIP_WRITE_GIT_CHANGELOG', None) class TestRequirementParsing(base.BaseTestCase): def test_requirement_parsing(self): tempdir = self.useFixture(fixtures.TempDir()).path requirements = os.path.join(tempdir, 'requirements.txt') with open(requirements, 'wt') as f: f.write(textwrap.dedent(six.u("""\ bar quux<1.0; python_version=='2.6' requests-aws>=0.1.4 # BSD License (3 clause) Routes>=1.12.3,!=2.0,!=2.1;python_version=='2.7' requests-kerberos>=0.6;python_version=='2.7' # MIT """))) setup_cfg = os.path.join(tempdir, 'setup.cfg') with open(setup_cfg, 'wt') as f: f.write(textwrap.dedent(six.u("""\ [metadata] name = test_reqparse [extras] test = foo baz>3.2 :python_version=='2.7' # MIT bar>3.3 :python_version=='2.7' # MIT # Apache """))) # pkg_resources.split_sections uses None as the title of an # anonymous section instead of the empty string. Weird. expected_requirements = { None: ['bar', 'requests-aws>=0.1.4'], ":(python_version=='2.6')": ['quux<1.0'], ":(python_version=='2.7')": ['Routes>=1.12.3,!=2.0,!=2.1', 'requests-kerberos>=0.6'], 'test': ['foo'], "test:(python_version=='2.7')": ['baz>3.2', 'bar>3.3'] } setup_py = os.path.join(tempdir, 'setup.py') with open(setup_py, 'wt') as f: f.write(textwrap.dedent(six.u("""\ #!/usr/bin/env python import setuptools setuptools.setup( setup_requires=['pbr'], pbr=True, ) """))) self._run_cmd(sys.executable, (setup_py, 'egg_info'), allow_fail=False, cwd=tempdir) egg_info = os.path.join(tempdir, 'test_reqparse.egg-info') requires_txt = os.path.join(egg_info, 'requires.txt') with open(requires_txt, 'rt') as requires: generated_requirements = dict( pkg_resources.split_sections(requires)) self.assertEqual(expected_requirements, generated_requirements)
{ "content_hash": "1a5c6a9d17d2ee8f6fd0aee7cdc7c32f", "timestamp": "", "source": "github", "line_count": 475, "max_line_length": 79, "avg_line_length": 37.64, "alnum_prop": 0.5846523854801723, "repo_name": "rosudrag/Freemium-winner", "id": "32e9f562e0297ae4f80c780ba0d5a9b421db6a0f", "size": "19731", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "VirtualEnvironment/Lib/site-packages/pbr/tests/test_packaging.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1079" }, { "name": "C", "bytes": "6349" }, { "name": "CSS", "bytes": "12216" }, { "name": "Groff", "bytes": "17679" }, { "name": "HTML", "bytes": "13547" }, { "name": "JavaScript", "bytes": "35679" }, { "name": "PowerShell", "bytes": "1506" }, { "name": "Python", "bytes": "12351458" }, { "name": "Tcl", "bytes": "24447" } ], "symlink_target": "" }
import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._api_revision_operations import build_list_by_service_request from .._vendor import ApiManagementClientMixinABC if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ApiRevisionOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.apimanagement.aio.ApiManagementClient`'s :attr:`api_revision` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list_by_service( self, resource_group_name: str, service_name: str, api_id: str, filter: Optional[str] = None, top: Optional[int] = None, skip: Optional[int] = None, **kwargs: Any ) -> AsyncIterable["_models.ApiRevisionContract"]: """Lists all revisions of an API. :param resource_group_name: The name of the resource group. Required. :type resource_group_name: str :param service_name: The name of the API Management service. Required. :type service_name: str :param api_id: API identifier. Must be unique in the current API Management service instance. Required. :type api_id: str :param filter: | Field | Usage | Supported operators | Supported functions |</br>|-------------|-------------|-------------|-------------|</br>| apiRevision | filter | ge, le, eq, ne, gt, lt | substringof, contains, startswith, endswith |</br>. Default value is None. :type filter: str :param top: Number of records to return. Default value is None. :type top: int :param skip: Number of records to skip. Default value is None. :type skip: int :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ApiRevisionContract or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.apimanagement.models.ApiRevisionContract] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) # type: Literal["2021-08-01"] cls = kwargs.pop("cls", None) # type: ClsType[_models.ApiRevisionCollection] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_by_service_request( resource_group_name=resource_group_name, service_name=service_name, api_id=api_id, subscription_id=self._config.subscription_id, filter=filter, top=top, skip=skip, api_version=api_version, template_url=self.list_by_service.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) # type: ignore request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("ApiRevisionCollection", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list_by_service.metadata = {"url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ApiManagement/service/{serviceName}/apis/{apiId}/revisions"} # type: ignore
{ "content_hash": "3021ff4ec7df392bb7436219dc793190", "timestamp": "", "source": "github", "line_count": 165, "max_line_length": 203, "avg_line_length": 44.018181818181816, "alnum_prop": 0.61737574005232, "repo_name": "Azure/azure-sdk-for-python", "id": "f2d3a0e416f32d2a6e455422a588caf8dd7d7a0a", "size": "7763", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/apimanagement/azure-mgmt-apimanagement/azure/mgmt/apimanagement/aio/operations/_api_revision_operations.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
from collections import deque import numpy as np import argparse import imutils import cv2 import time import socket from internetcheck import ServerConnection # construct the argument parse and parse the arguments # v4l2-ctl --set-ctrl brightness=130 #cmd commands: #source ~/.profile #workon cv #python '/home/pi/Documents/PythonProjects/pyImage.py' or wherever u have pyImage saved from threading import Thread import cv2 class WebcamVideoStream: def __init__(self, src=0): # initialize the video camera stream and read the first frame # from the stream self.stream = cv2.VideoCapture(src) #self.stream.set(3, 1920) #self.stream.set(4, 1080) #self.stream.set(15,-100) (self.grabbed, self.frame) = self.stream.read() # initialize the variable used to indicate if the thread should # be stopped self.stopped = False def start(self): # start the thread to read frames from the video stream Thread(target=self.update, args=()).start() return self def update(self): # keep looping infinitely until the thread is stopped while True: # if the thread indicator variable is set, stop the thread if self.stopped: self.stream.release() return # otherwise, read the next frame from the stream (self.grabbed, self.frame) = self.stream.read() def read(self): # return the frame most recently read return self.frame def stop(self): # indicate that the thread should be stopped self.stopped = True def contourArea(contours): area = [] for i in range(0,len(contours)): area.append([cv2.contourArea(contours[i]),i]) area.sort() if(area[len(area) - 1] >= 7 * area[0]): return area[len(area)-1] else: return 0 def onmouse(k, x, y, s, p): global hsv if k == 1: # left mouse, print pixel at x,y print(hsv[y, x]) if __name__ == "__main__": ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to the (optional) video file") ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size") args = vars(ap.parse_args()) # define the lower and upper boundaries of the "green" # ball in the HSV color space, then initialize the # list of tracked points #lower_green = (70, 120, 120) #upper_green = (120, 200, 255) #changed from 70 to 55 for hue; hue is basically the only one that matters lower_green = (55, 50, 120) upper_green = (90, 250, 256) UDP_IP = '192.168.1.111' #UDP_IP = '10.140.123.54' #UDP_IP = '10.54.65.79' UDP_PORT = 5465 BUFFER_SIZE = 1024 MESSAGE1 = 'Y' MESSAGE2 = 'N' sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) numframes = 0 #connection = ServerConnection() #connection.start() time.sleep(1) camera = WebcamVideoStream(src=1).start() start_time = time.time() while True: frame = camera.read() # resize the frame, blur it, and convert it to the HSV # color space frame = imutils.resize(frame, width=600) img = cv2.GaussianBlur(frame, (5, 5), 0) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # construct a mask for the color "green", then perform # a series of dilations and erosions to remove any small # blobs left in the mask mask = cv2.inRange(hsv, lower_green, upper_green) edged = cv2.Canny(mask, 35, 125) # find contours in the mask and initialize the current # (x, y) center of the ball im2, cnts, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) if(numframes == 0): print(img.shape) if (len(cnts) > 1): area,place = contourArea(cnts) if(area != 0): c = cnts[place] #cv2.drawContours(frame, c, -1, (0, 0, 255), 3) M = cv2.moments(c) cx = int(M['m10'] / M['m00']) # Center of MASS Coordinates cy = int(M['m01'] / M['m00']) rect = cv2.minAreaRect(c) length = rect[1][1] sock.sendto(('Y ' + str(cx) + ' ' + str(cy) + ' '+ "{0:.2f}".format(length)).encode(),(UDP_IP,UDP_PORT)) #sock.sendto(('Y').encode(),(UDP_IP,UDP_PORT)) else: sock.sendto('N'.encode(),(UDP_IP,UDP_PORT)) cv2.namedWindow("Image w Contours") cv2.setMouseCallback("Image w Contours", onmouse) cv2.imshow('Image w Contours', frame) key = cv2.waitKey(1) & 0xFF # if the 'q' key is pressed, stop the loop if key == ord("q"): break #if(numframes == 0): print(frame.shape) numframes+=1 #if numframes >= 200: #break camera.stop() totTime = time.time() - start_time print("--- %s seconds ---" % (totTime)) print('----%s fps ----' % (numframes / totTime)) print(numframes) # cleanup the camera and close any open windows cv2.destroyAllWindows() #connection.stop() #sock.sendto('D'.encode(),(UDP_IP,UDP_PORT))
{ "content_hash": "6e5f5ff7aa640a1203a0e56e545b8a94", "timestamp": "", "source": "github", "line_count": 182, "max_line_length": 120, "avg_line_length": 29.873626373626372, "alnum_prop": 0.5655692477469193, "repo_name": "SachinKonan/Windows-RPI-Vision-Framework", "id": "fa42d304684f220248434357306c14392775d9c6", "size": "5437", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "VisionCode/pyImage.py", "mode": "33188", "license": "mit", "language": [ { "name": "C++", "bytes": "189" }, { "name": "Jupyter Notebook", "bytes": "20480" }, { "name": "Python", "bytes": "140014" } ], "symlink_target": "" }
import os # 3rd party # Flask from flask_appbuilder.security.manager import AUTH_OID, AUTH_REMOTE_USER, AUTH_DB, AUTH_LDAP, AUTH_OAUTH basedir = os.path.abspath(os.path.dirname(__file__)) # Your App secret key SECRET_KEY = '\2\1thisismyscretkey\1\2\e\y\y\h' # The SQLAlchemy connection string. SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir, 'app.db') #SQLALCHEMY_DATABASE_URI = 'mysql://myapp@localhost/myapp' #SQLALCHEMY_DATABASE_URI = 'postgresql://root:password@localhost/myapp' # Flask-WTF flag for CSRF CSRF_ENABLED = True #------------------------------ # GLOBALS FOR APP Builder #------------------------------ # Uncomment to setup Your App name #APP_NAME = "My App Name" # Uncomment to setup Setup an App icon #APP_ICON = "static/img/logo.jpg" #---------------------------------------------------- # AUTHENTICATION CONFIG #---------------------------------------------------- # The authentication type # AUTH_OID : Is for OpenID # AUTH_DB : Is for database (username/password() # AUTH_LDAP : Is for LDAP # AUTH_REMOTE_USER : Is for using REMOTE_USER from web server AUTH_TYPE = AUTH_DB # Uncomment to setup Full admin role name #AUTH_ROLE_ADMIN = 'Admin' # Uncomment to setup Public role name, no authentication needed #AUTH_ROLE_PUBLIC = 'Public' # Will allow user self registration #AUTH_USER_REGISTRATION = True # The default user self registration role #AUTH_USER_REGISTRATION_ROLE = "Public" # When using LDAP Auth, setup the ldap server #AUTH_LDAP_SERVER = "ldap://ldapserver.new" # Uncomment to setup OpenID providers example for OpenID authentication #OPENID_PROVIDERS = [ # { 'name': 'Yahoo', 'url': 'https://me.yahoo.com' }, # { 'name': 'AOL', 'url': 'http://openid.aol.com/<username>' }, # { 'name': 'Flickr', 'url': 'http://www.flickr.com/<username>' }, # { 'name': 'MyOpenID', 'url': 'https://www.myopenid.com' }] #--------------------------------------------------- # Babel config for translations #--------------------------------------------------- # Setup default language BABEL_DEFAULT_LOCALE = 'en' # Your application default translation path BABEL_DEFAULT_FOLDER = 'translations' # The allowed translation for you app LANGUAGES = { 'en': {'flag':'gb', 'name':'English'}, 'pt': {'flag':'pt', 'name':'Portuguese'}, 'pt_BR': {'flag':'br', 'name': 'Pt Brazil'}, 'es': {'flag':'es', 'name':'Spanish'}, 'de': {'flag':'de', 'name':'German'}, 'zh': {'flag':'cn', 'name':'Chinese'}, 'ru': {'flag':'ru', 'name':'Russian'}, 'pl': {'flag':'pl', 'name':'Polish'} } #--------------------------------------------------- # Image and file configuration #--------------------------------------------------- # The file upload folder, when using models with files UPLOAD_FOLDER = basedir + '/app/static/uploads/' # The image upload folder, when using models with images IMG_UPLOAD_FOLDER = basedir + '/app/static/uploads/' # The image upload url, when using models with images IMG_UPLOAD_URL = '/static/uploads/' # Setup image size default is (300, 200, True) #IMG_SIZE = (300, 200, True) # Theme configuration # these are located on static/appbuilder/css/themes # you can create your own and easily use them placing them on the same dir structure to override #APP_THEME = "bootstrap-theme.css" # default bootstrap #APP_THEME = "cerulean.css" #APP_THEME = "amelia.css" #APP_THEME = "cosmo.css" #APP_THEME = "cyborg.css" #APP_THEME = "flatly.css" #APP_THEME = "journal.css" #APP_THEME = "readable.css" #APP_THEME = "simplex.css" #APP_THEME = "slate.css" #APP_THEME = "spacelab.css" #APP_THEME = "united.css" #APP_THEME = "yeti.css"
{ "content_hash": "4216fb63facfbbf8dc9f0405ee7e4c70", "timestamp": "", "source": "github", "line_count": 108, "max_line_length": 104, "avg_line_length": 33.50925925925926, "alnum_prop": 0.6145344017684443, "repo_name": "approximatelylinear/trans-passports-docker", "id": "b033240afd2ad1ebb152d42451acb9403425d2f6", "size": "3653", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "code/trans_passports/trans_passports/app/config.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "6477" }, { "name": "HTML", "bytes": "128" }, { "name": "Makefile", "bytes": "9526" }, { "name": "Nginx", "bytes": "1133" }, { "name": "Python", "bytes": "1548921" }, { "name": "Shell", "bytes": "1604" } ], "symlink_target": "" }
""" Copyright (c) 2013, G Roberts All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ __all__ = ['make_facet_id', 'flatten_facet', 'all_permutations', 'Daemon', 'QueueDaemon', 'unixtime', 'to_utf8_str', 'split_facet'] from base64 import b64encode from time import time as unixtime import hashlib, marshal, signal, json, logging LOG = logging.getLogger(__name__) class DataObject(object): """ http://www.saltycrane.com/blog/2012/08/python-data-object-motivated-desire-mutable-namedtuple-default-values/ An object to hold data. Motivated by a desire for a mutable namedtuple with default values. To use, subclass, and define __slots__. The default default value is None. To set a default value other than None, set the `default_value` class variable. Example: class Jello(DataObject): default_value = 'no data' __slots__ = ( 'request_date', 'source_id', 'year', 'group_id', 'color', # ... ) """ __slots__ = () default_value = None def __init__(self, *args, **kwargs): # Set default values for att in self.__slots__: setattr(self, att, self.default_value) # Set attributes passed in as arguments for k, v in zip(self.__slots__, args): setattr(self, k, v) for k, v in kwargs.items(): setattr(self, k, v) def asdict(self): return dict( (att, getattr(self, att)) for att in self.__slots__) n def astuple(self): return tuple(getattr(self, att) for att in self.__slots__) def __repr__(self): return '{}({})'.format( self.__class__.__name__, ', '.join('{}={}'.format( att, repr(getattr(self, att))) for att in self.__slots__)) def to_utf8_str(obj): """ Converts argument into a utf-8 byte string """ if isinstance(obj, basestring): if isinstance(obj, unicode): return obj.encode('utf-8', 'ignore') # Otherwise.. must be a str() which is already bytes return obj elif isinstance(obj, int): return "%d" % (obj,) elif isinstance(obj, float): return "%f" % (obj) raise TypeError, "Cannot convert type '%s' to utf-8 string" % (type(obj),) def split_facet(facet): """ Returns a dictionary of the following elements: - id: Hashed facet ID - parent_id: ID of the parent facet - child: Full value of the last item from the facet """ assert type(facet) in [list, set] facet = flatten_facet(facet) facet_id = make_facet_id(facet) facet_parent = facet[:-1] if len(facet_parent) == len(facet): facet_child = '' else: facet_child = to_utf8_str(facet[-1]) facet_parent_id = make_facet_id(facet_parent) return { 'id': facet_id, 'parent_id': facet_parent_id, 'child': facet_child } def make_facet_id(facet): """ Unique ID for the facet """ if type(facet) not in [list, tuple]: facet = [facet] hasher = hashlib.new('sha1') for value in facet: hasher.update(to_utf8_str(value)) return b64encode(hasher.digest()[:9]) def flatten_facet(facets_to_flatten): """ Flattens a list of lists into a single list. [['derp', 123], ['merp', 456]] becomes ['derp', 123, 'merp', 456] """ out = [] for facet in facets_to_flatten: out += facet return out def power_set(inputs, minlength=1): count = len(inputs) members = int(pow(2, count)) # Ewww... we're formatting the number into binary to work out which # entries to output bstr = '{' + "0:0{}b".format(count) + '}' ret = [] for i in range(0, members): b = bstr.format(i) out = [] for j in range(0, count): if b[j] == '1': out.append(inputs[j]) if len(out) >= minlength: ret.append(out) return ret def permute(dims, i=0, chain=None): if chain is None: chain = [] if i >= len(dims): return [chain] chains = [] for l in dims[i]: chains += permute(dims, i + 1, chain + [l]) return chains def all_permutations(inputs): """ All permutations of the input dictionary. {'derp': [123, 456], 'merp': 987} Will create output like: [['derp', 123, 456], ['derp', 123], ['merp', 987], ['merp', 987, 'derp', 123], ['merp', 987, 'derp', 123, 456]] Values can be floats, ints and strings. Or they can be lists of ints, floats and strings. """ sets = {} if type(inputs) == dict: inputs = inputs.items() for key, levels in inputs: combos = [] for level in levels: combos.append(level) if key not in sets: sets[key] = [] sets[key].append([key] + combos) all_points = power_set(sets.values()) ret = [] for lol in all_points: ret += permute(lol) return ret class Daemon(object): """ This daemon takes records from the `queue` list in Redis and inserts into HyperDex. """ def __init__(self): self._stop = False self._status = { 'last': unixtime(), 'interval': 2 } self._stats = {} signal.signal(signal.SIGINT, self._signal_handler) def is_stopping(self): """ Break the run() loop at the next possible opportunity """ return self._stop def _signal_handler(self, _sig, _frame=None): """ Stop daemon gracefully """ print "SIGINT caught, stopping gracefully" self._stop = True def incr_stats(self, name, value=1): """ Increment the named counter """ self._stats[name] = self._stats.get(name, 0) + value def show_status(self): """ Display a summary line """ status = self._status stats = self._stats now = unixtime() if (now - status['last']) > status['interval']: status['last'] = now print 'now:', ' | '.join(['%s:%d' % (key, value) for key, value in stats.items()]) self._stats = {key: 0 for key in stats.keys()} class QueueDaemon(Daemon): """ Waits for entries on a Redis queue and hands the recors to the process() funtion. The records must be a 'marshal' encoded dictionary with both 'id' and 'ttl' keys. """ def __init__(self, rdb): """ :param rdb: StrictRedis instance """ assert rdb is not None super(QueueDaemon, self).__init__() self._rdb = rdb @property def redis(self): return self._rdb def process(self, record): """ Process a single record :param record: Dictionary """ raise NotImplementedError def _handle(self, data): """ Grunt work, wrapper for the 'process' method. Handles re-queueing of items which couldn't be processed. """ self.incr_stats('popped') try: record = marshal.loads(data) except ValueError: record = None if record is None: self.incr_stats('invalid') return is_processed = False try: is_processed = self.process(record) except Exception: LOG.error("Failed to process", exc_info=True) # Failed processing for some reason if not is_processed: # Put the CDR back in queue for processing if process fails record['ttl'] = record.get('ttl', 0) + 1 if record['ttl'] > 3: # But only 3-4 times... then it's 'fucked' # XXX: how do we handle 'fucked' items? self.redis.rpush('queue_fucked', json.dumps(record)) self.incr_stats('fucked') else: self.redis.rpush('queue', json.dumps(record)) self.incr_stats('retry') self.incr_stats('redis.ops.rpush') self.incr_stats('redis.ops') else: # TODO: insert the 'cost' of processing this record self.redis.rpush(record['id'], unixtime()) self.redis.expire(record['id'], 2) self.incr_stats('processed') self.incr_stats('redis.ops.rpush') self.incr_stats('redis.ops.expire') self.incr_stats('redis.ops', 2) def run(self, queue_name): """ Listen for messages on the 'cdrpickup' channel and process them. Loops forever. """ while not self.is_stopping(): # TODO: blpoprpush onto a 'working' list # then move to a 'done' list # must be uber reliable! msg = self.redis.blpop([queue_name], timeout=1) self.incr_stats('redis.ops.blpop') self.incr_stats('redis.ops') if msg is not None and len(msg) == 2: self._handle(msg[1]) self.show_status() print "stopped"
{ "content_hash": "ee3fc2e6c13bc83bd07c66705a29abde", "timestamp": "", "source": "github", "line_count": 343, "max_line_length": 113, "avg_line_length": 31.38192419825073, "alnum_prop": 0.5674470457079153, "repo_name": "HarryR/HyperStats", "id": "3b7b6860a8e22a4f874bf31a9ec5df6d4e0552af", "size": "10764", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "hyperstats/common.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "36210" } ], "symlink_target": "" }
from pants.backend.jvm.targets.jar_dependency import JarDependency from pants.backend.jvm.targets.jar_library import JarLibrary from pants_test.tasks.task_test_base import TaskTestBase from squarepants.plugins.link_resources_jars.targets.resources_jar import ResourcesJar from squarepants.plugins.link_resources_jars.tasks.link_resources_jars import LinkResourcesJars class CopyResourcesTest(TaskTestBase): @classmethod def task_type(cls): return LinkResourcesJars def test_resources_jar_target(self): jar = JarDependency(org='foo', name='bar', rev='1.2.3') lib = self.make_target(spec='test/foo-library', target_type=JarLibrary, jars=[jar]) resource_jar = self.make_target(spec='test/copy-resources', target_type=ResourcesJar, dependencies=[lib], dest='foo.jar') self.assertEquals('foo.jar', resource_jar.payload.dest)
{ "content_hash": "c4c90df005fc7d5fe97717c000ac2bdb", "timestamp": "", "source": "github", "line_count": 20, "max_line_length": 95, "avg_line_length": 42.85, "alnum_prop": 0.7736289381563594, "repo_name": "ericzundel/mvn2pants", "id": "a0b4e94b3b4a3e4439a5b84940a160611b866816", "size": "1063", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test/python/squarepants_test/plugins/test_link_resources_jars.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Java", "bytes": "283" }, { "name": "Python", "bytes": "641401" }, { "name": "Shell", "bytes": "240" } ], "symlink_target": "" }
from robot.utils import is_string, py2to3, PY3 from .comments import Comment if PY3: unicode = str @py2to3 class Setting(object): def __init__(self, setting_name, parent=None, comment=None): self.setting_name = setting_name self.parent = parent self._set_initial_value() self._set_comment(comment) self._populated = False def _set_initial_value(self): self.value = [] def _set_comment(self, comment): self.comment = Comment(comment) def reset(self): self.__init__(self.setting_name, self.parent) @property def source(self): return self.parent.source if self.parent is not None else None @property def directory(self): return self.parent.directory if self.parent is not None else None def populate(self, value, comment=None): """Mainly used at parsing time, later attributes can be set directly.""" if not self._populated: self._populate(value) self._set_comment(comment) self._populated = True else: self._set_initial_value() self._set_comment(None) self.report_invalid_syntax("Setting '%s' used multiple times." % self.setting_name, 'ERROR') def _populate(self, value): self.value = value def is_set(self): return bool(self.value) def is_for_loop(self): return False def report_invalid_syntax(self, message, level='ERROR'): self.parent.report_invalid_syntax(message, level) def _string_value(self, value): return value if is_string(value) else ' '.join(value) def _concat_string_with_value(self, string, value): if string: return string + ' ' + self._string_value(value) return self._string_value(value) def as_list(self): return self._data_as_list() + self.comment.as_list() def _data_as_list(self): ret = [self.setting_name] if self.value: ret.extend(self.value) return ret def __nonzero__(self): return self.is_set() def __iter__(self): return iter(self.value or ()) def __unicode__(self): return unicode(self.value or '') class StringValueJoiner(object): def __init__(self, separator): self._separator = separator def join_string_with_value(self, string, value): if string: return string + self._separator + self.string_value(value) return self.string_value(value) def string_value(self, value): if is_string(value): return value return self._separator.join(value) class Documentation(Setting): def _set_initial_value(self): self.value = '' def _populate(self, value): self.value = self._concat_string_with_value(self.value, value) def _string_value(self, value): return value if is_string(value) else ''.join(value) def _data_as_list(self): return [self.setting_name, self.value] class Template(Setting): def _set_initial_value(self): self.value = None def _populate(self, value): self.value = self._concat_string_with_value(self.value, value) def is_set(self): return self.value is not None def is_active(self): return self.value and self.value.upper() != 'NONE' def _data_as_list(self): ret = [self.setting_name] if self.value: ret.append(self.value) return ret class Fixture(Setting): # `keyword`, `is_comment` and `assign` make the API compatible with Step. @property def keyword(self): return self.name or '' def is_comment(self): return False def _set_initial_value(self): self.name = None self.args = [] self.assign = () def _populate(self, value): if not self.name: self.name = value[0] if value else '' value = value[1:] self.args.extend(value) def is_set(self): return self.name is not None def is_active(self): return self.name and self.name.upper() != 'NONE' def _data_as_list(self): ret = [self.setting_name] if self.name or self.args: ret.append(self.name or '') if self.args: ret.extend(self.args) return ret class Timeout(Setting): def _set_initial_value(self): self.value = None self.message = '' def _populate(self, value): if not self.value: self.value = value[0] if value else '' value = value[1:] self.message = self._concat_string_with_value(self.message, value) # TODO: Remove custom timeout message support in RF 3.1. if value and self.parent: self.parent.report_invalid_syntax( 'Using custom timeout messages is deprecated since Robot ' 'Framework 3.0.1 and will be removed in future versions. ' "Message that was used is '%s'." % self.message, level='WARN') def is_set(self): return self.value is not None def _data_as_list(self): ret = [self.setting_name] if self.value or self.message: ret.append(self.value or '') if self.message: ret.append(self.message) return ret class Tags(Setting): def _set_initial_value(self): self.value = None def _populate(self, value): self.value = (self.value or []) + value def is_set(self): return self.value is not None def __add__(self, other): if not isinstance(other, Tags): raise TypeError('Tags can only be added with tags') tags = Tags('Tags') tags.value = (self.value or []) + (other.value or []) return tags class Arguments(Setting): pass class Return(Setting): pass class Metadata(Setting): setting_name = 'Metadata' def __init__(self, parent, name, value, comment=None, joined=False): self.parent = parent self.name = name joiner = StringValueJoiner('' if joined else ' ') self.value = joiner.join_string_with_value('', value) self._set_comment(comment) def reset(self): pass def is_set(self): return True def _data_as_list(self): return [self.setting_name, self.name, self.value] class _Import(Setting): def __init__(self, parent, name, args=None, alias=None, comment=None): self.parent = parent self.name = name self.args = args or [] self.alias = alias self._set_comment(comment) def reset(self): pass @property def type(self): return type(self).__name__ def is_set(self): return True def _data_as_list(self): return [self.type, self.name] + self.args def report_invalid_syntax(self, message, level='ERROR', parent=None): parent = parent or getattr(self, 'parent', None) if parent: parent.report_invalid_syntax(message, level) else: from robot.api import logger logger.write(message, level) class Library(_Import): def __init__(self, parent, name, args=None, alias=None, comment=None): if args and not alias: args, alias = self._split_alias(args, parent) _Import.__init__(self, parent, name, args, alias, comment) def _split_alias(self, args, parent): if len(args) > 1 and is_string(args[-2]): with_name = args[-2] if with_name.upper() == 'WITH NAME': # TODO: Require all uppercase 'WITH NAME' in RF 3.1. # https://github.com/robotframework/robotframework/issues/2263 if with_name != 'WITH NAME': self._deprecation_warning(with_name, parent) return args[:-2], args[-1] return args, None def _deprecation_warning(self, with_name, parent): message = ("Using 'WITH NAME' syntax when importing libraries case " "insensitively like '%s' is deprecated. Use all upper case " "format 'WITH NAME' instead." % with_name) self.report_invalid_syntax(message, 'WARN', parent) def _data_as_list(self): data = ['Library', self.name] + self.args if self.alias: data += ['WITH NAME', self.alias] return data class Resource(_Import): def __init__(self, parent, name, invalid_args=None, comment=None): if invalid_args: name += ' ' + ' '.join(invalid_args) _Import.__init__(self, parent, name, comment=comment) class Variables(_Import): def __init__(self, parent, name, args=None, comment=None): _Import.__init__(self, parent, name, args, comment=comment) class _DataList(object): def __init__(self, parent): self._parent = parent self.data = [] def add(self, meta): self._add(meta) def _add(self, meta): self.data.append(meta) def _parse_name_and_value(self, value): name = value[0] if value else '' return name, value[1:] def __getitem__(self, index): return self.data[index] def __setitem__(self, index, item): self.data[index] = item def __len__(self): return len(self.data) def __iter__(self): return iter(self.data) class ImportList(_DataList): def populate_library(self, data, comment): self._populate(Library, data, comment) def populate_resource(self, data, comment): self._populate(Resource, data, comment) def populate_variables(self, data, comment): self._populate(Variables, data, comment) def _populate(self, item_class, data, comment): name, value = self._parse_name_and_value(data) self._add(item_class(self._parent, name, value, comment=comment)) class MetadataList(_DataList): def populate(self, name, value, comment): self._add(Metadata(self._parent, name, value, comment, joined=True))
{ "content_hash": "95f98efc60545e4390408709232432c5", "timestamp": "", "source": "github", "line_count": 378, "max_line_length": 80, "avg_line_length": 26.833333333333332, "alnum_prop": 0.5860199152124618, "repo_name": "alexandrul-ci/robotframework", "id": "fb51cd3cf88cb31dc0566a8c25ee0f4053b8a144", "size": "10787", "binary": false, "copies": "3", "ref": "refs/heads/master", "path": "src/robot/parsing/settings.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Batchfile", "bytes": "245" }, { "name": "CSS", "bytes": "27452" }, { "name": "HTML", "bytes": "140980" }, { "name": "Java", "bytes": "58264" }, { "name": "JavaScript", "bytes": "161259" }, { "name": "Python", "bytes": "2271402" }, { "name": "RobotFramework", "bytes": "2096190" }, { "name": "Shell", "bytes": "281" } ], "symlink_target": "" }
from ensetuptools.utilities import * import unittest import os, sys class FindEggsTest(unittest.TestCase): def test_find_eggs_in_scipy(self): # a 'hard' download page to parse url = 'http://sourceforge.net/project/showfiles.php?group_id=27747&package_id=19531' # should be something here self.assertNotEqual(find_eggs_in_url(url), []) if __name__ == '__main__': unittest.main()
{ "content_hash": "18bc9c6f7f21494d4ecaec5ab2f226ad", "timestamp": "", "source": "github", "line_count": 13, "max_line_length": 92, "avg_line_length": 32.30769230769231, "alnum_prop": 0.6714285714285714, "repo_name": "cournape/ensetuptools", "id": "6ef1b38468e4b13a6b47d7b20857bde2682bb05d", "size": "420", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ensetuptools/tests/utilities_test.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "C", "bytes": "13592" }, { "name": "Python", "bytes": "654383" } ], "symlink_target": "" }
import webtest from .. common import BaseTest, WPS_TEST_SERVICE, dummy_request from twitcher.store import ServiceStore class FunctionalTest(BaseTest): def test_app(self): app = webtest.TestApp( self.config.make_wsgi_app(), extra_environ={'db.session': self.session, 'tm.active': True}) return app def init_store(self): # add public wps service service_store = ServiceStore( dummy_request(dbsession=self.session)) service_store.save_service( name="wps", url=WPS_TEST_SERVICE, type="wps", auth='token', verify=False, purl="http://purl/wps") # add secured wps service service_store.save_service( name="wps_secured", url=WPS_TEST_SERVICE, type="wps", auth='token', verify=False, purl="http://purl/wps_secured")
{ "content_hash": "b718f875ca5272ddc2e7d6c4ea918891", "timestamp": "", "source": "github", "line_count": 33, "max_line_length": 74, "avg_line_length": 28.96969696969697, "alnum_prop": 0.5575313807531381, "repo_name": "bird-house/pywps-proxy", "id": "1b4bb6a143643603b374cc2a8e73cf35c669c386", "size": "956", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/functional/base.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "10665" }, { "name": "Nginx", "bytes": "1306" }, { "name": "Python", "bytes": "64846" }, { "name": "Shell", "bytes": "2644" } ], "symlink_target": "" }
import csv import pkg_resources import re from lxml import etree import StringIO LEFT_WHITE_SPACE_RE = re.compile('\A[ \n\t].*\Z', re.DOTALL) RIGHT_WHITE_SPACE_RE = re.compile('\A.*[ \n\t]\Z', re.DOTALL) INNER_XML_RE = re.compile(u'\A[ \n\t]*<[^>]+?>(?P<body>.*)</[^>]+?>[ \n\t]*\Z') def strip_text(text): """ Takes a bunch of test and removes all possible "indentation gunk" from it. >>> example_noisy_text = ''' ... hey guys ... it looks like ... I am all over the place''' >>> strip_text(example_noisy_text) u'hey guys it looks like I am all over the place' """ if text: return u' '.join( [line.strip() for line in text.splitlines() if line.strip()]) else: # return whatever text was, there's nothing to do # (prolly None or empty string) return text def strip_xml(element): """ Recursively strip clean indentation from xml. Especially useful if you're using a template. For example, this is a bit of a mess: >>> xml_mess = ''' ... <help> How did ... ... <person>I ... </person> ... get to be so <cleanliness ... xmlns:clean="http://example.org/howclean/#" ... clean:cleanliness="filthy">messy</cleanliness>? ... </help> ''' strip_xml requires that you pass in an element though, so let's get the root node and pass it in: >>> from lxml import etree >>> import StringIO >>> etree_mess = etree.parse(StringIO.StringIO(xml_mess)) >>> cleaned_root_mess = strip_xml(etree_mess.getroot()) >>> etree.tostring(cleaned_root_mess) '<help>How did <person>I</person> get to be so <cleanliness xmlns:clean="http://example.org/howclean/#" clean:cleanliness="filthy">messy</cleanliness>?</help>' Note that strip_xml operates on the mutability of the argument `element`, so the object returned is the same object that's passed in. >>> cleaned_root_mess is etree_mess.getroot() True """ def _recursive_strip(elt, childpos, childrenlen): orig_text = elt.text or '' orig_tail = elt.tail or '' children = list(elt) new_childrenlen = len(children) elt.text = strip_text(elt.text) elt.tail = strip_text(elt.tail) # We have to do a lot of stuff here to put whitespace in the # right places and make it look pretty, as if a human wrote # it. ########## #### whitespace re-appending ########## #### ## left of the .text #### # pretty much never #### ## right of the .text #### # if there are children and is presently whitespace if elt.text \ and new_childrenlen \ and RIGHT_WHITE_SPACE_RE.match(orig_text): elt.text = elt.text + ' ' #### ## left of the .tail #### # any time there is presently whitespace if elt.tail and LEFT_WHITE_SPACE_RE.match(orig_tail): elt.tail = ' ' + elt.tail #### ## right of the .tail #### # if there is presently whitespace and not the last child if elt.tail \ and RIGHT_WHITE_SPACE_RE.match(orig_tail) \ and childpos != childrenlen - 1: elt.tail = elt.tail + ' ' for i in range(new_childrenlen): child = children[i] _recursive_strip(child, i, new_childrenlen) _recursive_strip(element, 0, 1) return element def inner_xml(xml_text): """ Get the inner xml of an element. >>> inner_xml('<div>This is some <i><b>really</b> silly</i> text!</div>') u'This is some <i><b>really</b> silly</i> text!' """ return unicode(INNER_XML_RE.match(xml_text).groupdict()['body']) def stripped_inner_xml(xml_string): """ Take a string of xml and both strip whitespace and return its inner elements. This is a convenience function so you don't have to run strip_xml and inner_xml manually. >>> stripped_inner_xml(''' ... <div> ... This is some <i><b>really</b> ... silly</i> text!</div>''') u'This is some <i><b>really</b> silly</i> text!' """ et = etree.parse(StringIO.StringIO(xml_string)) strip_xml(et.getroot()) return inner_xml(etree.tostring(et)) def remove_blank_lines(string): new_lines = [] for line in string.splitlines(): if line.strip(): new_lines.append(line) return '\n'.join(new_lines) def unicode_cleaner(string): if isinstance(string, unicode): return string try: return string.decode('utf-8') except UnicodeError: try: return string.decode('latin-1') except UnicodeError: return string.decode('utf-8', 'ignore') def escape(string): """ Escape a string into something safe to insert into HTML. """ # Simplest escaping possible, kinda borrowed from jinja2. return ( unicode(string) .replace('&', '&amp;') .replace('>', '&gt;') .replace('<', '&lt;') .replace("'", '&#39;') .replace('"', '&#34;')) def locale_dict_fetch_with_fallbacks(data_dict, locale): """ Take a dictionary with various locales as keys and translations as values and a locale, and try to find a value that matches with good fallbacks. """ # try returning the locale as-is if data_dict.has_key(locale): return data_dict[locale] # nope? try just returning the language... if '-' in locale: language, country = locale.split('-', 1) if data_dict.has_key(language): return data_dict[language] # still nope? okay, try returning 'en', our default... if data_dict.has_key('en'): return data_dict['en'] # still no?? last attempt! return data_dict[None] ### ## ISO 3166 -- country names to country code utilities ### CODE_COUNTRY_LIST = sorted([ (unicode_cleaner(code), unicode_cleaner(country)) for code, country in csv.reader( file(pkg_resources.resource_filename('cc.license', 'iso3166.csv')))], key=lambda country: country[1]) CODE_COUNTRY_MAP = dict(CODE_COUNTRY_LIST)
{ "content_hash": "d559fe72f45e3be149466670b960a1f1", "timestamp": "", "source": "github", "line_count": 223, "max_line_length": 165, "avg_line_length": 28.390134529147982, "alnum_prop": 0.573053230137419, "repo_name": "creativecommons/cc.license", "id": "6266fa99d97b4d4b3e712247ba41dbdea0bf5391", "size": "6331", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "cc/license/util.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1742" }, { "name": "Python", "bytes": "172412" } ], "symlink_target": "" }
""" ulid/providers/provider ~~~~~~~~~~~~~~~~~~~~~~~ Contains provider abstract classes. """ import abc import typing from .. import hints #: Type hint that defines a two item tuple of bytes returned by the provider. TimestampRandomnessBytes = typing.Tuple[hints.Bytes, hints.Bytes] # pylint: disable=invalid-name class Provider(metaclass=abc.ABCMeta): """ Abstract class that defines providers that yield timestamp and randomness values. """ def new(self) -> TimestampRandomnessBytes: """ Create a new timestamp and randomness value. :return: Two item tuple containing timestamp and randomness values as :class:`~bytes`. :rtype: :class:`~tuple` """ timestamp = self.timestamp() randomness = self.randomness(timestamp) return timestamp, randomness @abc.abstractmethod def timestamp(self) -> hints.Bytes: """ Create a new timestamp value. :return: Timestamp value in bytes. :rtype: :class:`~bytes` """ raise NotImplementedError('Method must be implemented by derived class') @abc.abstractmethod def randomness(self, timestamp: hints.Bytes) -> hints.Bytes: """ Create a new randomness value. :param timestamp: Timestamp in milliseconds :type timestamp: :class:`~bytes` :return: Randomness value in bytes. :rtype: :class:`~bytes` """ raise NotImplementedError('Method must be implemented by derived class')
{ "content_hash": "3df0c53912bc2c07d37f32a447bd0c74", "timestamp": "", "source": "github", "line_count": 51, "max_line_length": 97, "avg_line_length": 30.07843137254902, "alnum_prop": 0.6421121251629727, "repo_name": "ahawker/ulid", "id": "7fe6758ad241681372db552183fde39f6520a99a", "size": "1534", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ulid/providers/base.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Makefile", "bytes": "3387" }, { "name": "PowerShell", "bytes": "7195" }, { "name": "Python", "bytes": "93605" } ], "symlink_target": "" }
__author__ = 'Patrizio Tufarolo' __email__ = 'patrizio.tufarolo@studenti.unimi.it' from testagent.probe import Probe import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), "Search-Scan/")) print("PROXY:" , os.getenv("http_proxy")); _searchscan = __import__('Search-scan', globals(), locals(), [], -1); ''' add every class u want to import to the list in the fourth argument, then call it by asking for _searchscan.* ''' globals().update(vars(_searchscan)); class SearchScanPublicInterface(_searchscan.PublicInterface): def __init__(self, testinstances): self.time = testinstances["parameters"]["Time"] self.category = testinstances["parameters"]["Category"] print("CATEGORY", self.category) self.cvss = float(testinstances["parameters"]["CVSS"]) self.mongoHost = testinstances["mongo"]["host"] self.mongoPort = int(testinstances["mongo"]["port"]) self.nessusHost = testinstances["nessus"]["host"] self.nessusLogin = testinstances["nessus"]["login"] self.nessusPassword = testinstances["nessus"]["password"] self.nessusPolicyName = 'Test_Policy_%s' % self.category self.nessusScanName = 'Scan_%s' % self.category self.nessusTarget = testinstances["nessus"]["Target"] self.sshUser = testinstances["credentials"]["ssh_user"] self.sshPassword = testinstances["credentials"]["ssh_pass"] self.file = testinstances["credentials"]["PrivateKeyPath"] self.certUser = testinstances["credentials"]["certUser"] self.certPass = testinstances["credentials"]["certPass"] self.mongoUser = testinstances["credentials"]["MongoDB_user"] self.mongoPassword = testinstances["credentials"]["MongoDB_pass"] self.mongoDB = testinstances["credentials"]["MongoDB"] self.mysqlUser= testinstances["credentials"]["MySQL_user"] self.mysqlPassword = testinstances["credentials"]["MySQL_pass"] self.checkRequirements() self.final_status = False Engine(self) def outputs(self, Scan): Scan.scan_results() self.myScanResults = Scan.download_scan(export_format='nessus'); def certification(self): if not self.myScanResults: raise Exception("No scan results yet") rpt = dotnessus_parser.Report() rpt.parse(self.myScanResults, True) if len(rpt.targets) is not 0: for t in rpt.targets: for v in t.vulns: if v.get('risk_factor') != 'None': print("Certification not possible: plugin %s return a positive match!" %v.get('plugin_name')) self.final_status = False return False else: print("No vulnerability found on the target, certification ok!") self.final_status = True return True else: print('Error, no target found in report!') self.final_status = False return False def returnFinalStatus(self): print self.final_status return self.final_status class SearchScanProbe(Probe): #ricordati di ereditare da Probe poi def main(self, inputs): print(self.testinstances) return SearchScanPublicInterface(self.testinstances).returnFinalStatus() def nullRollback (self, inputs): return def appendAtomics(self): self.appendAtomic(self.main, self.nullRollback) probe = SearchScanProbe
{ "content_hash": "b088ce9f2569e7661032122ec93cdabe", "timestamp": "", "source": "github", "line_count": 81, "max_line_length": 187, "avg_line_length": 44.333333333333336, "alnum_prop": 0.6229462545252019, "repo_name": "SESARLab/mooncloud_probe_vuln", "id": "6780c0afdc0490cc5ec45eb823be83c8609a7cf0", "size": "3591", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "probe_searchscan.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "119064" }, { "name": "Shell", "bytes": "1361" } ], "symlink_target": "" }
from distutils.core import setup try: from setuptools import setup except: pass setup( name = "pev", version = "0.1.0", author = "Stanislav Feldman", description = ("Python EVenter library"), url = "https://github.com/stanislavfeldman/pev", keywords = "eventer pubsub publish subscribe", packages=['pev'], classifiers=[ "Topic :: Software Development" ], )
{ "content_hash": "b5ef2c28c72f04d9abde4fab8f7c37b2", "timestamp": "", "source": "github", "line_count": 18, "max_line_length": 52, "avg_line_length": 22.444444444444443, "alnum_prop": 0.6435643564356436, "repo_name": "stanislavfeldman/pev", "id": "86fd2908dcdfe9b1ab2012cd1772f839f4344141", "size": "404", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "1592" } ], "symlink_target": "" }
import replace as r import re # rename files first, REMEMBER to refer to them later as their new names r.rename_file('chromium.spec', 'chromium-browser.spec'); r.rename_file('chromium.changes', 'chromium-browser.changes'); # change the master_preferences file to use SLEish settings instead of # openSUSEish settings r.replace_line('master_preferences', ' "http://www.opensuse.org",', ' "http://www.novell.com/linux",') r.replace_line('master_preferences', ' "homepage": "http://www.opensuse.org",', ' "homepage": "http://www.novell.com/linux",') # replace necessary lines in spec file r.replace_line('chromium-browser.spec', 'Name: chromium', 'Name: chromium-browser') r.remove_line('chromium-browser.spec', 'Provides: chromium-browser = %{version}') r.remove_line('chromium-browser.spec', 'Obsoletes: chromium-browser < %{version}') # don't forget the desktop file r.replace_line('chromium.desktop', 'Exec=chromium %u', 'Exec=chromium-browser %u') r.replace_line('chromium.desktop', 'Icon=chromium', 'Icon=chromium-browser') # fix patch r.replace_line('chromium-master-prefs-path.patch', '+ master_prefs = FilePath("/etc/chromium");', '+ master_prefs = FilePath("/etc/chromium-browser");') # rename the decompressed src directory from chromium to chromium-browser, # also rename the tarball and compressed lzma r.rename_src('chromium', 'chromium-browser')
{ "content_hash": "acc40fe97420a6438a231cd1bdbe1570", "timestamp": "", "source": "github", "line_count": 41, "max_line_length": 74, "avg_line_length": 39.48780487804878, "alnum_prop": 0.6195182211241507, "repo_name": "bgmerrell/novellium", "id": "6bf620b87b12b6368866474885d06f8fd25e397a", "size": "1777", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "SLEize.py", "mode": "33261", "license": "mit", "language": [ { "name": "Python", "bytes": "4780" } ], "symlink_target": "" }
import logging import os.path from ask_amy.core.exceptions import FileExistsError logger = logging.getLogger() class CodeGenerator(object): def __init__(self, skill_name, aws_role='', intent_schema=None): self._skill_name = skill_name self._aws_role = aws_role self._intent_schema = intent_schema self._method_names = [] self._slot_names = [] def create_cli_config(self): # cwd = os.getcwd() CLI_CONFIG='./cli_config.json' if os.path.isfile(CLI_CONFIG) : raise FileExistsError("Attempting to OVERWRITE {}".format(CLI_CONFIG)) with open(CLI_CONFIG, 'w') as f: f.write('{\n') f.write(' "skill_name": "{}",\n'.format(self._skill_name)) f.write(' "skill_home_dir": ".",\n') f.write(' "aws_region": "us-east-1",\n') f.write(' "aws_profile": "default",\n') f.write(' "aws_role": "{}",\n\n'.format(self._aws_role)) f.write(' "lambda_runtime": "python3.6",\n'.format('','')) f.write(' "lambda_handler": "ask_amy.lambda_function.lambda_handler",\n') f.write(' "lambda_timeout": "5",\n') f.write(' "lambda_memory": "128",\n') f.write(' "lambda_zip": "alexa_skill.zip",\n\n') f.write(' "ask_amy_dev": false,\n') f.write(' "ask_amy_home_dir": ""\n') f.write('}\n') def create_skill_config(self): SKILL_CONFIG='./skill_config.json' if os.path.isfile(SKILL_CONFIG) : raise FileExistsError("Attempting to OVERWRITE {}".format(SKILL_CONFIG)) with open(SKILL_CONFIG, 'w') as file_ptr: file_ptr.write('{\n') file_ptr.write(' "Skill" : {\n') file_ptr.write(' "version": "1.0",\n') file_ptr.write(' "class_name": "{}.{}",\n'.format(self._skill_name,self.class_name())) file_ptr.write(' "logging_level": "debug"\n') file_ptr.write(' },\n') file_ptr.write(' "Session": {\n') file_ptr.write(' "persistence": false\n') file_ptr.write(' },\n') file_ptr.write(' "Dialog": {\n') self.intent_control(file_ptr) self.slots(file_ptr) self.intent_methods(file_ptr) file_ptr.write(' "help_intent": {\n') file_ptr.write(' "method_name": "handle_default_intent",\n') file_ptr.write(' "speech_out_text": "help intent",\n') file_ptr.write(' "should_end_session": true\n') file_ptr.write(' }\n') file_ptr.write(' }\n') file_ptr.write('}\n') def class_name(self): name = self._skill_name.replace("_", " ") name = name.title() name = name.replace(" ", "") return name def intent_control(self,file_ptr): file_ptr.write(' "intent_control": {\n') if 'intents' in self._intent_schema: for intent_item in self._intent_schema['intents']: if 'intent' in intent_item: intent_nm =intent_item['intent'] method_name = self.process_intent_nm(intent_nm) if method_name is not None: file_ptr.write(' "{}": "{}",\n'.format(intent_nm, method_name)) file_ptr.write(' "AMAZON.HelpIntent": "help_intent",\n') file_ptr.write(' "AMAZON.CancelIntent": "default_cancel_intent",\n') file_ptr.write(' "AMAZON.StopIntent": "default_stop_intent"\n') file_ptr.write(' },\n') def method_name(self, intent_nm): method_nm = intent_nm[0].lower() for c in intent_nm[1:]: if c.isupper(): method_nm += '_'+c.lower() else: method_nm += c return method_nm def process_intent_nm(self, intent_nm, for_dialog=True): method_nm = None if intent_nm.startswith('AMAZON.'): if intent_nm == "AMAZON.HelpIntent" or \ intent_nm == "AMAZON.CancelIntent" or \ intent_nm == "AMAZON.StopIntent": intent_nm = None else: intent_nm = intent_nm[7:] if intent_nm is not None: method_nm = self.method_name(intent_nm) if for_dialog: self._method_names.append(method_nm) return method_nm def slots(self, file_ptr): add_close_comma = False file_ptr.write(' "slots": {\n') if 'intents' in self._intent_schema: for intent_item in self._intent_schema['intents']: intent_nm =intent_item['intent'] if 'slots' in intent_item: slots =intent_item['slots'] for slot in slots: slot_nm = slot['name'] if slot_nm not in self._slot_names: self._slot_names.append(slot_nm) method_name = self.process_intent_nm(intent_nm, for_dialog=False) if add_close_comma: file_ptr.write(',\n') add_close_comma= True file_ptr.write(' "{}":\n'.format(slot_nm)) file_ptr.write(' {\n') file_ptr.write(' "speech_out_text": "Please provide the {}",\n'.format(slot_nm)) file_ptr.write(' "re_prompt_text": "Sorry I did not hear that.",\n') file_ptr.write(' "expected_intent": "{}"\n'.format(method_name)) file_ptr.write(' }') file_ptr.write('\n },\n') def intent_methods(self, file_ptr): for method_nm in self._method_names: file_ptr.write(' "{}": '.format(method_nm)) file_ptr.write('{\n') file_ptr.write(' "speech_out_text": "you have called the {}",\n'.format(method_nm.replace("_", " "))) file_ptr.write(' "should_end_session": true\n') file_ptr.write(' },\n') def create_skill_py(self): SKILL_PY='./'+self._skill_name+'.py' if os.path.isfile(SKILL_PY) : raise FileExistsError("Attempting to OVERWRITE {}".format(SKILL_PY)) with open(SKILL_PY, 'w') as file_ptr: file_ptr.write('from ask_amy.state_mgr.stack_dialog_mgr import StackDialogManager\n') file_ptr.write('from ask_amy.core.reply import Reply\n') file_ptr.write('import logging\n') file_ptr.write('\n') file_ptr.write('logger = logging.getLogger()\n') file_ptr.write('\n') file_ptr.write('class {}(StackDialogManager):\n'.format(self.class_name())) file_ptr.write('\n') self.create_intent_methods(file_ptr) def create_intent_methods(self,file_ptr): if 'intents' in self._intent_schema: for intent_item in self._intent_schema['intents']: if 'intent' in intent_item: intent_nm =intent_item['intent'] method_name = self.process_intent_nm(intent_nm) if method_name is not None: file_ptr.write(' def {}(self):\n'.format(method_name)) file_ptr.write(' logger.debug("**************** entering {}.{}".format(' 'self.__class__.__name__, self.intent_name))\n') file_ptr.write(' return self.handle_default_intent()\n') file_ptr.write('\n')
{ "content_hash": "817d5277cd376ce9dbcec3e4da67cca5", "timestamp": "", "source": "github", "line_count": 176, "max_line_length": 122, "avg_line_length": 44.64204545454545, "alnum_prop": 0.48911798396334477, "repo_name": "dphiggs01/ask_amy", "id": "db27c569c893b59511b55ef2b8579abc3241848e", "size": "7857", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "ask_amy/cli/code_gen/code_generator.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "CSS", "bytes": "7300" }, { "name": "HTML", "bytes": "2620" }, { "name": "Makefile", "bytes": "607" }, { "name": "Python", "bytes": "109419" }, { "name": "Shell", "bytes": "152" } ], "symlink_target": "" }
import rwdb def test_basic(): class Test(rwdb.Document): pass # TODO write actual tests
{ "content_hash": "d251b49bd3c21e43be88605123d21edd", "timestamp": "", "source": "github", "line_count": 6, "max_line_length": 33, "avg_line_length": 18.166666666666668, "alnum_prop": 0.6146788990825688, "repo_name": "FlorianLudwig/rwdb", "id": "08593479c9645ec81c050c213050755b8b3e3539", "size": "109", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "test/test_rwdb.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "Python", "bytes": "17445" } ], "symlink_target": "" }
subreddit = 'ChristmasCake' t_channel = '@r_christmascake' def send_post(submission, r2t): return r2t.send_simple(submission)
{ "content_hash": "0955098602db522a41752d2ff392967e", "timestamp": "", "source": "github", "line_count": 6, "max_line_length": 38, "avg_line_length": 22, "alnum_prop": 0.7348484848484849, "repo_name": "Fillll/reddit2telegram", "id": "0ddd98148fd93bae192b19f406477a0a2a8b294e", "size": "149", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "reddit2telegram/channels/~inactive/r_christmascake/app.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "301463" }, { "name": "Shell", "bytes": "153" } ], "symlink_target": "" }
""" Support the ISY-994 controllers. For configuration details please visit the documentation for this component at https://home-assistant.io/components/isy994/ """ import logging from future.moves.urllib.parse import urlparse from homeassistant.const import ( CONF_HOST, CONF_PASSWORD, CONF_USERNAME, EVENT_HOMEASSISTANT_STOP) from homeassistant.helpers import validate_config, discovery from homeassistant.helpers.entity import ToggleEntity DOMAIN = "isy994" ISY = None SENSOR_STRING = 'Sensor' HIDDEN_STRING = '{HIDE ME}' CONF_TLS_VER = 'tls' _LOGGER = logging.getLogger(__name__) def setup(hass, config): """Setup ISY994 component. This will automatically import associated lights, switches, and sensors. """ import PyISY # pylint: disable=global-statement # check for required values in configuration file if not validate_config(config, {DOMAIN: [CONF_HOST, CONF_USERNAME, CONF_PASSWORD]}, _LOGGER): return False # Pull and parse standard configuration. user = config[DOMAIN][CONF_USERNAME] password = config[DOMAIN][CONF_PASSWORD] host = urlparse(config[DOMAIN][CONF_HOST]) addr = host.geturl() if host.scheme == 'http': addr = addr.replace('http://', '') https = False elif host.scheme == 'https': addr = addr.replace('https://', '') https = True else: _LOGGER.error('isy994 host value in configuration file is invalid.') return False port = host.port addr = addr.replace(':{}'.format(port), '') # Pull and parse optional configuration. global SENSOR_STRING global HIDDEN_STRING SENSOR_STRING = str(config[DOMAIN].get('sensor_string', SENSOR_STRING)) HIDDEN_STRING = str(config[DOMAIN].get('hidden_string', HIDDEN_STRING)) tls_version = config[DOMAIN].get(CONF_TLS_VER, None) # Connect to ISY controller. global ISY ISY = PyISY.ISY(addr, port, user, password, use_https=https, tls_ver=tls_version, log=_LOGGER) if not ISY.connected: return False # Listen for HA stop to disconnect. hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, stop) # Load platforms for the devices in the ISY controller that we support. for component in ('sensor', 'light', 'switch'): discovery.load_platform(hass, component, DOMAIN, {}, config) ISY.auto_update = True return True def stop(event): """Cleanup the ISY subscription.""" ISY.auto_update = False class ISYDeviceABC(ToggleEntity): """An abstract Class for an ISY device.""" _attrs = {} _onattrs = [] _states = [] _dtype = None _domain = None _name = None def __init__(self, node): """Initialize the device.""" # setup properties self.node = node # track changes self._change_handler = self.node.status. \ subscribe('changed', self.on_update) def __del__(self): """Cleanup subscriptions because it is the right thing to do.""" self._change_handler.unsubscribe() @property def domain(self): """Return the domain of the entity.""" return self._domain @property def dtype(self): """Return the data type of the entity (binary or analog).""" if self._dtype in ['analog', 'binary']: return self._dtype return 'binary' if self.unit_of_measurement is None else 'analog' @property def should_poll(self): """No polling needed.""" return False @property def value(self): """Return the unclean value from the controller.""" # pylint: disable=protected-access return self.node.status._val @property def state_attributes(self): """Return the state attributes for the node.""" attr = {} for name, prop in self._attrs.items(): attr[name] = getattr(self, prop) attr = self._attr_filter(attr) return attr def _attr_filter(self, attr): """A Placeholder for attribute filters.""" # pylint: disable=no-self-use return attr @property def unique_id(self): """Return the ID of this ISY sensor.""" # pylint: disable=protected-access return self.node._id @property def raw_name(self): """Return the unclean node name.""" return str(self._name) \ if self._name is not None else str(self.node.name) @property def name(self): """Return the cleaned name of the node.""" return self.raw_name.replace(HIDDEN_STRING, '').strip() \ .replace('_', ' ') @property def hidden(self): """Suggestion if the entity should be hidden from UIs.""" return HIDDEN_STRING in self.raw_name def update(self): """Update state of the sensor.""" # ISY objects are automatically updated by the ISY's event stream pass def on_update(self, event): """Handle the update received event.""" self.update_ha_state() @property def is_on(self): """Return a boolean response if the node is on.""" return bool(self.value) @property def is_open(self): """Return boolean response if the node is open. On = Open.""" return self.is_on @property def state(self): """Return the state of the node.""" if len(self._states) > 0: return self._states[0] if self.is_on else self._states[1] return self.value def turn_on(self, **kwargs): """Turn the device on.""" if self.domain is not 'sensor': attrs = [kwargs.get(name) for name in self._onattrs] self.node.on(*attrs) else: _LOGGER.error('ISY cannot turn on sensors.') def turn_off(self, **kwargs): """Turn the device off.""" if self.domain is not 'sensor': self.node.off() else: _LOGGER.error('ISY cannot turn off sensors.') @property def unit_of_measurement(self): """Return the defined units of measurement or None.""" try: return self.node.units except AttributeError: return None
{ "content_hash": "5fbe1b5283b521675ede04f9d412a72a", "timestamp": "", "source": "github", "line_count": 216, "max_line_length": 79, "avg_line_length": 29.12037037037037, "alnum_prop": 0.6049284578696343, "repo_name": "Julian/home-assistant", "id": "c224303f8d0502c7ed7859c450949e46dceb8547", "size": "6290", "binary": false, "copies": "1", "ref": "refs/heads/py2", "path": "homeassistant/components/isy994.py", "mode": "33188", "license": "mit", "language": [ { "name": "HTML", "bytes": "1354942" }, { "name": "Python", "bytes": "2755966" }, { "name": "Ruby", "bytes": "379" }, { "name": "Shell", "bytes": "6430" } ], "symlink_target": "" }
from __future__ import print_function, unicode_literals from string import Template __author__ = "danishabdullah" ITEM_JSON = Template("""{"name": "$name", "type": "$type", "mode": "$mode"}""") RECORD_JSON = Template("""{"name": "$name", "type": "RECORD", "mode": "$mode", "fields":[$fields]}""") TABLE_JSON = Template("""[$fields]""") SPEC_JSON = Template("""$tables""") ITEM_JAVA = Template( """$path_modifier.add(new TableFieldSchema().setName("$name").setType("$type").setMode("$mode"));""") RECORD_JAVA = Template("""$path_modifier.add(new TableFieldSchema().setName("$name").setType("RECORD").setMode("$mode").setFields( new ArrayList<TableFieldSchema>() { {$fields} }));""") TABLE_JAVA = Template("""private static TableSchema $name() { List<TableFieldSchema> fields = new ArrayList<>(); $fields TableSchema schema = new TableSchema().setFields(fields); return schema; }""") SPEC_JAVA = Template("""import com.google.api.services.bigquery.model.TableFieldSchema; import com.google.api.services.bigquery.model.TableSchema; import java.util.ArrayList; import java.util.List; public class Pipeline { $tables } """)
{ "content_hash": "a128d700384cc0447d944c5f23a17acf", "timestamp": "", "source": "github", "line_count": 32, "max_line_length": 130, "avg_line_length": 36.375, "alnum_prop": 0.6666666666666666, "repo_name": "danishabdullah/BigSchema", "id": "cec660fefd0bea97c35a60d05062a32a60bc42f2", "size": "1164", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "bigschema/templates.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "18593" } ], "symlink_target": "" }
from setuptools import setup from odk_aggregation_tool import __version__ setup( name="odk_aggregation_tool", version=__version__, description="A tool for aggregating ODK XML data.", url="https://github.com/lindsay-stevens/", author="Lindsay Stevens", author_email="lindsay.stevens.au@gmail.com", packages=['odk_aggregation_tool'], test_suite='tests', include_package_data=True, license="MIT", install_requires=[ # see requirements.txt ], keywords="odk", classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.5", ], )
{ "content_hash": "46a7828856a1a5cea7825bab6425b363", "timestamp": "", "source": "github", "line_count": 24, "max_line_length": 55, "avg_line_length": 28.541666666666668, "alnum_prop": 0.635036496350365, "repo_name": "lindsay-stevens/odk_aggregation_tool", "id": "1b56ddb10d157b036182f70fd4626a063dab6a3e", "size": "685", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "setup.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "54600" } ], "symlink_target": "" }
import numpy as np # import dynamicalModels.models from dynamicalModels.models.MarkovCRF import MarkovCRF from dynamicalModels.models.MarkovSemiMarkovCRF import MarkovSemiMarkovCRF from dynamicalModels.models.SemiMarkovCRF import SemiMarkovCRF from dynamicalModels.models.CRF_Functions import *#msm_preprocess_train, msm_preprocess_test from pystruct.learners import NSlackSSVM,SubgradientSSVM import os import optparse import time from pyKinectTools.dataset_readers.MSR_DailyActivities import MSRPlayer from IPython import embed from pylab import * subjects_train = '12345' subjects_test = '678910' # subjects_train = '123456789' # subjects_test = '10' actions = '125' feature_type = 'smij' ''' Training data ''' ## Load in feature data if pre-trained filename = '/Users/colin/Desktop/msm_features/{}_a{}_s{}.npz'.format(feature_type, actions, subjects_train) data = np.load(filename) features, frame_labels, gesture_labels, n_gestures, n_frame_features, n_frames_per_gesture, BoF_dict_train = data.items()[0][1] frame_hists_train, gesture_hists_train = preprocess_features(None, features, frame_labels, n_frames_per_gesture) # Calculate per-frame unary value using an SVM frame_clf_train = chi2_classifier(kernel='rbf') frame_clf_train.fit(np.vstack(frame_hists_train), np.hstack(frame_labels)) # Calculate per-gesture unary value using an SVM gesture_clf_train = chi2_classifier(kernel='rbf') gesture_clf_train.fit(np.vstack(gesture_hists_train), np.hstack(gesture_labels)) # Calculate HMM transitions for each frame and gesture n_gestures = len(np.unique(gesture_labels)) frame_prior_train, frame_transition_matrix_train = calculate_hmm_params(frame_labels, n_gestures) gesture_prior_train, gesture_transition_matrix_train = calculate_hmm_params(gesture_labels, n_gestures) print "Unary (frame) score:", frame_clf_train.score(np.vstack(frame_hists_train), np.hstack(frame_labels)) print "Unary (gesture) score:", gesture_clf_train.score(np.vstack(gesture_hists_train), np.hstack(gesture_labels)) gesture_transition_matrix_train = np.ones([n_gestures,3])/3. # Markov CRF markovCRF = MarkovCRF(n_states=n_gestures, clf=frame_clf_train, prior=frame_prior_train, transition=frame_transition_matrix_train, inference_method='dai') markov_svm = SubgradientSSVM(markovCRF, verbose=1, C=1., n_jobs=1) markov_svm.fit(frame_hists_train, frame_labels) m_predict = markov_svm.predict(frame_hists_train) print 'Markov w:', markov_svm.w print 'Markov CRF score: {}%'.format(100*np.sum([np.sum(np.equal(m_predict[i],x)) for i,x in enumerate(frame_labels)]) / np.sum([np.size(x) for x in frame_labels], dtype=np.float)) # semi-Markov CRF sm_crf = SemiMarkovCRF(n_states=n_gestures,clf=gesture_clf_train, prior=gesture_prior_train, transition_matrix=gesture_transition_matrix_train) sm_svm = SubgradientSSVM(sm_crf, verbose=1, C=1., n_jobs=1) sm_svm.fit(frame_hists_train, frame_labels) sm_predict = sm_svm.predict(frame_hists_train) print 'Semi-Markov w:', sm_svm.w print 'Semi-Markov CRF score: {}%'.format(100*np.sum([np.sum(sm_predict[i]==x) for i,x in enumerate(frame_labels)]) / np.sum([np.size(x) for x in frame_labels], dtype=np.float)) # Markov semi-Markov CRF MarkovSemiMarkovCRF = MarkovSemiMarkovCRF(n_states=n_gestures, markov_prior=frame_prior_train, markov_transition=frame_transition_matrix_train, semi_markov_prior=gesture_prior_train, semi_markov_transition=gesture_transition_matrix_train, markov_clf=frame_clf_train,semi_markov_clf=gesture_clf_train) msm_svm = SubgradientSSVM(MarkovSemiMarkovCRF, verbose=1, C=1., n_jobs=1) msm_svm.fit(frame_hists_train, frame_labels) msm_predict = msm_svm.predict(frame_hists_train) print 'MsM w:', msm_svm.w print 'MsM-CRF score: {}%'.format(100*np.sum([np.sum(msm_predict[i]==x) for i,x in enumerate(frame_labels)]) / np.sum([np.size(x) for x in frame_labels], dtype=np.float)) for i in range(len(subjects_train)): print 'i', i print 'm ', m_predict[i] print 'sm ', sm_predict[i] print 'msm', msm_predict[i] print 'tru', np.array(frame_labels[i]) print "" print "" print "SVM Weights" print 'Markov w:', markov_svm.w print 'Semi-Markov w:', sm_svm.w print 'MsM w:', msm_svm.w print "" print "SCORES" print 'Markov CRF score: {}%'.format(100*np.sum([np.sum(np.equal(m_predict[i],x)) for i,x in enumerate(frame_labels)]) / np.sum([np.size(x) for x in frame_labels], dtype=np.float)) print 'Semi-Markov CRF score: {}%'.format(100*np.sum([np.sum(sm_predict[i]==x) for i,x in enumerate(frame_labels)]) / np.sum([np.size(x) for x in frame_labels], dtype=np.float)) print 'MsM-CRF score: {}%'.format(100*np.sum([np.sum(msm_predict[i]==x) for i,x in enumerate(frame_labels)]) / np.sum([np.size(x) for x in frame_labels], dtype=np.float)) ''' ------------------------------------------------- ''' ''' Testing data ''' filename = '/Users/colin/Desktop/msm_features/{}_a{}_s{}.npz'.format(feature_type, actions, subjects_test) data = np.load(filename) features_test, frame_labels_test, gesture_labels_test, n_gestures_test, n_frame_features_test, n_frames_per_gesture_test, BoF_dict_test = data.items()[0][1] frame_hists_test, _ = preprocess_features(None, features_test, frame_labels_test, n_frames_per_gesture_test) # Evaluate models m_predict = markov_svm.predict(frame_hists_test) sm_predict = sm_svm.predict(frame_hists_test) msm_predict = msm_svm.predict(frame_hists_test) for i in range(len(subjects_test)-1): print 'i', i print 'm ', m_predict[i] print 'sm ', sm_predict[i] print 'msm', msm_predict[i] print 'tru', np.array(frame_labels[i]) print "" print "" print "EXPERIMENT:" print "TRAIN -- Subjects {:5} -- Actions {}".format(",".join(subjects_train), ",".join(actions)) print "TEST -- Subjects {:5} -- Actions {}".format(",".join(subjects_test), ",".join(actions)) print "" print "SCORES" print 'Markov CRF score: {}%'.format(100*np.sum([np.sum(np.equal(m_predict[i],x)) for i,x in enumerate(frame_labels_test)]) / np.sum([np.size(x) for x in frame_labels_test], dtype=np.float)) print 'Semi-Markov CRF score: {}%'.format(100*np.sum([np.sum(sm_predict[i]==x) for i,x in enumerate(frame_labels_test)]) / np.sum([np.size(x) for x in frame_labels_test], dtype=np.float)) print 'MsM-CRF score: {}%'.format(100*np.sum([np.sum(msm_predict[i]==x) for i,x in enumerate(frame_labels_test)]) / np.sum([np.size(x) for x in frame_labels_test], dtype=np.float)) # Plot unaries: if 0: for i in range(5): subplot(2,5, i+1) plot(frame_unary_train[i]) subplot(2,5, i+1+5) plot(gesture_unary_train[i])
{ "content_hash": "752d2f7e9ef47fe562f5caf4d2f9a814", "timestamp": "", "source": "github", "line_count": 141, "max_line_length": 191, "avg_line_length": 46.234042553191486, "alnum_prop": 0.7200490872833256, "repo_name": "colincsl/StructuredModels", "id": "820b2b97fd5e929f4eb8b57d1b720996717ecd90", "size": "6520", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "StructuredModels/scripts/MsM_Daily_Activities.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "74622" } ], "symlink_target": "" }
import errno import logging import os from paramiko.client import SSHClient, AutoAddPolicy from paramiko.ssh_exception import AuthenticationException, SSHException, \ NoValidConnectionsError import pytest import requests import shutil def _create_or_update_symplink(target, link_name): """ Create or update a symlink """ try: os.symlink(target, link_name) except OSError as error: if error.errno == errno.EEXIST: os.remove(link_name) os.symlink(target, link_name) else: raise error def _check_sshd_service(ip_address, ssh_port): """ Ensure SSHd service running on the container """ with SSHClient() as ssh_client: ssh_client.set_missing_host_key_policy(AutoAddPolicy()) # Add Paramiko transport console logger if requested if os.environ.get('PARAMIKO_DEBUG'): paramiko_logger = logging.getLogger('paramiko.transport') console_handler = logging.StreamHandler() console_handler.setFormatter( logging.Formatter('%(asctime)s | %(levelname)-8s| PARAMIKO: ' '%(lineno)03d@%(module)-10s| %(message)s') ) paramiko_logger.addHandler(console_handler) paramiko_logger.setLevel(logging.DEBUG) # Check with bad credentials to raise an AuthenticationException try: ssh_client.connect( # nosec ip_address, port=ssh_port, username='root', password='foobar', allow_agent=False, look_for_keys=False) except AuthenticationException: return True except (SSHException, NoValidConnectionsError): return False @pytest.fixture(scope='session') def aci_ansible_target(docker_ip, docker_services): """ Ensure that "some service" is up and responsive. """ ssh_port = docker_services.port_for('aci-ansible-target', 22) # Check SSH connection before next steps docker_services.wait_until_responsive( timeout=30.0, pause=0.1, check=lambda: _check_sshd_service(docker_ip, ssh_port) ) return {'ip': docker_ip, 'ssh_port': ssh_port} @pytest.fixture(scope='session') def aci_ansible_structure(tmpdir_factory, aci_ansible_target): """ This fixture manage a basic ansible project structure with: * hosts file * private key file """ BASE_IMAGE_PRIVATE_KEY_URL = ( 'https://github.com/phusion/baseimage-docker/raw/master/image/' + 'services/sshd/keys/insecure_key') hosts_infos = 'ansible_host={} ansible_user=root ansible_port={}'.format( aci_ansible_target.get('ip'), aci_ansible_target.get('ssh_port') ) hosts_file_content = [ 'foo {}'.format(hosts_infos), 'bar {}'.format(hosts_infos), 'foobar {}'.format(hosts_infos), ] base_image_private_key = requests.get(BASE_IMAGE_PRIVATE_KEY_URL) base_dir = tmpdir_factory.mktemp('ansible_config') base_dir.join('roles').mkdir() base_dir.join('hosts').write('\n'.join(hosts_file_content)) base_dir.join('ssh_key').write(base_image_private_key.content) base_dir.join('ssh_key').chmod(0o400) shutil.copy2( os.path.join(os.getcwd(), 'tests/resources/ansible/basic_play.yml'), base_dir.join('basic_play.yml').strpath ) shutil.copy2( os.path.join(os.getcwd(), 'tests/resources/ansible/requirements.yml'), base_dir.join('requirements.yml').strpath ) return base_dir @pytest.fixture(scope='session') def aci_ansible_project(aci_ansible_structure): """ Prepare environment vars to work with aci_ansible_project fixture """ inventory_path = aci_ansible_structure.join('hosts').strpath private_key_path = aci_ansible_structure.join('ssh_key').strpath roles_path = aci_ansible_structure.join('roles').strpath os.environ['ANSIBLE_INVENTORY'] = inventory_path os.environ['ANSIBLE_HOST_KEY_CHECKING'] = str(False) os.environ['ANSIBLE_PRIVATE_KEY_FILE'] = private_key_path os.environ['ANSIBLE_ROLES_PATH'] = roles_path return aci_ansible_structure @pytest.fixture(scope='session') def aci_molecule_project(tmpdir_factory): """ This fixture manage a basic molecule scenario structure with: * create and destroy playbooks * molecule configuration file * playbook to run """ base_dir = tmpdir_factory.mktemp('molecule_config') base_dir.join('molecule').mkdir() scenario_dir = base_dir.join('molecule').join('basic-scenario') scenario_dir.mkdir() scenario_dir.join('tests').mkdir() managed_filenames = [ 'Dockerfile', 'create.yml', 'destroy.yml', 'molecule.yml', 'playbook.yml', 'requirements.yml', '.yamllint', ] for filename in managed_filenames: shutil.copy2( os.path.join( os.getcwd(), 'tests/resources/molecule/{}'.format(filename)), scenario_dir.join('{}'.format(filename)).strpath ) shutil.copy2( os.path.join( os.getcwd(), 'tests/resources/molecule/tests/test_default.py'), scenario_dir.join('tests').join('test_default.py').strpath ) _create_or_update_symplink(base_dir.join('molecule').strpath, 'molecule')
{ "content_hash": "c8cc50ffaa227a74f6b19255402f6dde", "timestamp": "", "source": "github", "line_count": 180, "max_line_length": 78, "avg_line_length": 30.205555555555556, "alnum_prop": 0.6277358837594261, "repo_name": "infOpen/ansible_customer", "id": "69ac24ec27302e9aebc0f263bb026b7ddae97397", "size": "5437", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "tests/conftest.py", "mode": "33188", "license": "mit", "language": [ { "name": "Makefile", "bytes": "2310" }, { "name": "Python", "bytes": "37298" } ], "symlink_target": "" }
from factory import Sequence, PostGenerationMethodCall from factory.alchemy import SQLAlchemyModelFactory from snapface.user.models import User from snapface.database import db class BaseFactory(SQLAlchemyModelFactory): class Meta: abstract = True sqlalchemy_session = db.session class UserFactory(BaseFactory): username = Sequence(lambda n: "user{0}".format(n)) email = Sequence(lambda n: "user{0}@example.com".format(n)) password = PostGenerationMethodCall('set_password', 'example') active = True class Meta: model = User
{ "content_hash": "ba6fab37c740ff389ae5015980c3f449", "timestamp": "", "source": "github", "line_count": 22, "max_line_length": 66, "avg_line_length": 26.363636363636363, "alnum_prop": 0.7275862068965517, "repo_name": "krekle/snapface", "id": "ce1de8d9ec686a4e789b375f565b906b3a0efac0", "size": "604", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/factories.py", "mode": "33188", "license": "bsd-3-clause", "language": [ { "name": "CSS", "bytes": "1383" }, { "name": "HTML", "bytes": "18073" }, { "name": "JavaScript", "bytes": "240956" }, { "name": "Python", "bytes": "45898" } ], "symlink_target": "" }
GENOMES_DIR = '/home/cmb-panasas2/skchoudh/genomes' OUT_DIR = '/staging/as/skchoudh/rna/Feb_02_2017_Radiation_GBM_EBV_Sept2017_ribo' SRC_DIR = '/home/cmb-panasas2/skchoudh/github_projects/clip_seq_pipeline/scripts' RAWDATA_DIR = '/home/cmb-06/as/skchoudh/dna/Luiz_radiation_data/Penalva_08242016_Run160902/Penalva_08242016' GENOME_BUILD = 'hg38' GENOME_FASTA = GENOMES_DIR + '/' + GENOME_BUILD + '/fasta/'+ GENOME_BUILD+ '.fa' STAR_INDEX = GENOMES_DIR + '/' + GENOME_BUILD + '/star_annotated' GTF = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + 'gencode.v25.annotation.without_rRNA_tRNA.gtf' GENE_NAMES = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + GENOME_BUILD+'_gene_names_stripped.tsv' GTF_UTR = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + 'gencode.v25.gffutils.modifiedUTRs.gtf' GENE_LENGTHS = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + 'gencode.v25.coding_lengths.tsv' #+ GENOME_BUILD+'_gene_lengths.tsv' DESIGN_FILE = RAWDATA_DIR + '/' + 'design.txt' HTSEQ_STRANDED = 'yes' FEATURECOUNTS_S = '-s 1' GENE_BED = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + 'gencode.24.genes.bed' #+ GENOME_BUILD+'_gene_lengths.tsv' FEATURECOUNTS_T = 'CDS' HTSEQ_MODE = 'intersection-strict' UTR5_BED = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + 'gencode.v25.gffutils.UTR5.bed' UTR3_BED = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + 'gencode.v25.gffutils.UTR3.bed' START_CODON_BED = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + 'gencode.v25.gffutils.start_codon.bed' #+ GENOME_BUILD+'_gene_lengths.tsv' STOP_CODON_BED = GENOMES_DIR + '/' + GENOME_BUILD + '/annotation/' + 'gencode.v25.gffutils.stop_codon.bed' #+ GENOME_BUILD+'_gene_lengths.tsv' PYTHON2ENV = 'python2' CDS_BED = '/home/cmb-panasas2/skchoudh/genomes/hg38/annotation/gencode.v25.gffutils.cds.bed' CHROM_SIZES = '/home/cmb-panasas2/skchoudh/genomes/hg38/fasta/hg38.chrom.sizes'
{ "content_hash": "c102bf30eaa750ec8562f17d7f7432d1", "timestamp": "", "source": "github", "line_count": 30, "max_line_length": 145, "avg_line_length": 63.36666666666667, "alnum_prop": 0.7006838506049448, "repo_name": "saketkc/ribo-seq-snakemake", "id": "3e28218ef6f76c1be4cf5dd5f17bd636968b794b", "size": "1901", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "configs/config_Feb_2017_Radiation_GBM.py", "mode": "33261", "license": "bsd-3-clause", "language": [ { "name": "Python", "bytes": "57714" }, { "name": "R", "bytes": "3539" }, { "name": "Shell", "bytes": "8205" } ], "symlink_target": "" }
''' This package contains functionality exterior to the core. This is where higher level tools, which depend on the core live. '''
{ "content_hash": "d851dea462ddf0bf2d121f61293810d6", "timestamp": "", "source": "github", "line_count": 2, "max_line_length": 115, "avg_line_length": 67, "alnum_prop": 0.746268656716418, "repo_name": "rectangletangle/nlplib", "id": "553b32021c8d92b2549990df12658aa644f5ea72", "size": "134", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "src/nlplib/exterior/__init__.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "164027" } ], "symlink_target": "" }
from pycqed.measurement.waveform_control_CC import waveform as wf try: from qcodes import Instrument except ImportError: print('could not import qcodes Instrument') def mock_control_pulse_prepare(command, **kwargs): ''' Mock function for testing purposes returns the kwargs ''' # printing to be caught in test suite print('mock called with {}'.format(kwargs)) return def QWG_pulse_prepare(operation_name, **kwargs): QWG_name = kwargs.pop('QWG_name') codeword = kwargs.pop('codeword') channels = kwargs.pop('channels') QWG = Instrument.find_instrument(QWG_name) pulse_func = getattr(wf, kwargs['pulse_type']) waveform = pulse_func(kwargs) for i, ch in enumerate(channels): wf_name = operation_name+str(ch) QWG.createWaveformReal(wf_name, waveform[i], [], []) QWG.set(codeword, ch, wf_name)
{ "content_hash": "ca840dd4db3919bc24663dddaf56d24f", "timestamp": "", "source": "github", "line_count": 36, "max_line_length": 65, "avg_line_length": 24.61111111111111, "alnum_prop": 0.6715575620767494, "repo_name": "DiCarloLab-Delft/PycQED_py3", "id": "c33f6af2bdaa1ad28e96ed5ff69d98ecd2370acd", "size": "886", "binary": false, "copies": "1", "ref": "refs/heads/develop", "path": "deprecated/pycqed/measurement/waveform_control_CC/operation_prep.py", "mode": "33188", "license": "mit", "language": [ { "name": "C", "bytes": "8748" }, { "name": "C++", "bytes": "8802" }, { "name": "Cython", "bytes": "8291" }, { "name": "OpenQASM", "bytes": "15894" }, { "name": "Python", "bytes": "7978715" }, { "name": "TeX", "bytes": "8" } ], "symlink_target": "" }
import bioinf from numpy import array, dot, arccos, rad2deg, ndarray, cross from numpy.linalg import norm from constants import * from collections import OrderedDict, namedtuple class PDBATOMFileReader(object): def __init__(self, file_or_path): self._parse_atom_lines(file_or_path) self._set_residues_and_chains_of_each_atom() self._set_chain_of_each_residue_and_add_it_to_itsown_chain() def _parse_atom_lines(self, file_or_path): if isinstance(file_or_path, basestring): f = open(file_or_path, 'r') else: f = file_or_path self._atoms = OrderedDict() self._residues = OrderedDict() self._chains = OrderedDict() for line in f: clean_line = line.strip() if clean_line.startswith('ATOM'): atom = AtomIQ(clean_line) self._atoms[atom.serial] = atom try: self._chains[atom.chainID].add_atom(atom) except KeyError: self._chains[atom.chainID] = ChainIQ(atom) try: self._residues[atom.chainID + atom.uid].add_atom(atom) except KeyError: self._residues[atom.chainID + atom.uid] = ResidueIQ(atom) f.close() def _set_residues_and_chains_of_each_atom(self): for atom in self._atoms.itervalues(): atom.set_Residue(self._residues[atom.chainID + atom.uid]) atom.set_Chain(self._chains[atom.chainID]) def _set_chain_of_each_residue_and_add_it_to_itsown_chain(self): for residue in self._residues.itervalues(): residue.set_Chain(self._chains[residue.chainID]) self._chains[residue.chainID].add_residue(residue) def __iter__(self): for atom in self._atoms: yield self._atoms[atom] class AtomIQ(object): def __init__(self, pdb_line): assert isinstance(pdb_line, basestring) pdb_atom_line = bioinf.PDBAtomLine.parse_string(pdb_line) self._res_name = pdb_atom_line.resName self._resSeq = pdb_atom_line.resSeq self._name = pdb_atom_line.name self._serial = pdb_atom_line.serial self._residue = None self._chain = None self._chainID = pdb_atom_line.chainID self._coordinates = array([ float(pdb_atom_line.x), float(pdb_atom_line.y), float(pdb_atom_line.z) ]) self._participant = \ HBondParticipant.generate_participant_by_valence(self) def set_Residue(self, residue): assert isinstance(residue, ResidueIQ) assert residue.uid == self._resSeq self._residue = residue def set_Chain(self, chain): assert isinstance(chain, ChainIQ) assert chain.chainID == self._chainID if self._chain is None: self._chain = chain else: raise TypeError('chain was already set and thus was not None') res_name = property(lambda self: self._res_name) uid = property(lambda self: self._resSeq) name = property(lambda self: self._name) chainID = property(lambda self: self._chainID) coordinates = property(lambda self: self._coordinates) serial = property(lambda self: self._serial) residue = property(lambda self: self._residue, set_Residue) chain = property(lambda self: self._chain, set_Chain) participant = property(lambda self: self._participant) class HBondParticipant(object): def __init__(self, atom, is_donor=False, H_bond_donor_radius=None, max_num_H_donations=None, is_acceptor=False, H_bond_acceptor_radius=None, max_num_H_acceptance=None, NN=None, NNN=None): assert isinstance(atom, AtomIQ) self._atom = atom self._is_acceptor = is_acceptor self._is_donor = is_donor self._H_bond_acceptor_radius = H_bond_acceptor_radius self._H_bond_donor_radius = H_bond_donor_radius self._max_num_H_acceptance = max_num_H_acceptance self._max_num_H_donations = max_num_H_donations self._NN = NN self._NNN = NNN self._acceptor_list = [] self._donor_list = [] self._backup_donors = [] self._backup_acceptors = [] @staticmethod def _atom_in_group_is_Hbond_participant(atom, currentGroup, backbone_atom_name): assert isinstance(atom, AtomIQ) assert isinstance(currentGroup, HBondGroup) assert backbone_atom_name in ('N', 'O') return ( (atom.name in currentGroup.atoms_str_tupl and atom.res_name == currentGroup.residue.upper()) or (atom.name == backbone_atom_name and currentGroup.residue == 'Peptide') ) @staticmethod def generate_participant_by_valence(atom): assert isinstance(atom, AtomIQ) backbone = namedtuple('backbone_Hbond_atom_name', ['donor','acceptor'])('N', 'O') is_acceptor = False is_donor = False H_bond_donor_radius = None max_num_H_donations = None H_bond_acceptor_radius = None max_num_H_acceptance = None for currentDonorGroup in hbond_donor_groups: if HBondParticipant._atom_in_group_is_Hbond_participant( atom, currentDonorGroup, backbone.donor): is_donor = True valence = currentDonorGroup.valence H_bond_donor_radius = currentDonorGroup.H_bond_radius max_num_H_donations = currentDonorGroup.max_num_H_bonds NN = currentDonorGroup.NN NNN = currentDonorGroup.NNN for currentAcceptorGroup in hbond_acceptor_groups: if HBondParticipant._atom_in_group_is_Hbond_participant( atom, currentAcceptorGroup, backbone.acceptor): is_acceptor = True valence = currentAcceptorGroup.valence H_bond_acceptor_radius = currentDonorGroup.H_bond_radius max_num_H_acceptance = currentDonorGroup.max_num_H_bonds NN = currentAcceptorGroup.NN NNN = currentAcceptorGroup.NNN if is_acceptor or is_donor: if valence == 'sp2': return Sp2HBondParticipant(atom, is_donor, H_bond_donor_radius, max_num_H_donations, is_acceptor, H_bond_acceptor_radius, max_num_H_acceptance, NN, NNN ) elif valence == 'sp3': return Sp3HBondParticipant(atom, is_donor, H_bond_donor_radius, max_num_H_donations, is_acceptor, H_bond_acceptor_radius, max_num_H_acceptance, NN, NNN ) else: return None def has_excessive_donors(self): return len(self._donor_list) > self._max_num_H_donations def has_excessive_acceptors(self): return len(self._acceptor_list) > self._max_num_H_donations is_acceptor = property(lambda self: self._is_acceptor) is_donor = property(lambda self: self._is_donor) H_bond_acceptor_radius = property( lambda self: self._H_bond_acceptor_radius) H_bond_donor_radius = property(lambda self: self._H_bond_donor_radius) max_num_H_acceptance = property(lambda self: self._max_num_H_acceptance) max_num_H_donations = property(lambda self: self._max_num_H_donations) atom = property(lambda self: self._atom) NN = property(lambda self: self._NN) NNN = property(lambda self: self._NNN) class AngleMinimum(namedtuple('AngleMinimum', ['as_donor', 'as_acceptor'])): def angle_as_donor(self, donor=True): return self.as_donor if donor else self.as_acceptor class PlaneAngleMaximum( namedtuple('AngleMinimum', ['as_donor', 'as_acceptor'])): def angle_as_donor(self, donor=True): return self.as_donor if donor else self.as_acceptor class Sp3HBondParticipant(HBondParticipant): _angle_min = AngleMinimum(90., 60.) def _distance_is_ok(self, partner): M = self._atom.coordinates P = partner.atom.coordinates distance = norm(M - P) if distance < self._H_bond_donor_radius + partner.H_bond_acceptor_radius: return distance else: return False @staticmethod def angle(ba, bc): assert isinstance(ba, ndarray) assert isinstance(bc, ndarray) return rad2deg(arccos(dot(bc, ba) / (norm(bc) * norm(ba)))) def angle_is_ok(self, MtP, MtMM, as_donor=True): angle = self.angle(MtP, MtMM) return angle < 180. and angle > self._angle_min.angle_as_donor(as_donor) def planarity_is_ok(self, MtP, MtMM, MMtMMM, as_donor=True): return True @staticmethod def can_bond_to_partner(myself, partner, as_donor=True): assert isinstance(myself, HBondParticipant) assert isinstance(partner, HBondParticipant) M = myself.atom.coordinates P = partner.atom.coordinates MM = myself.atom.residue.atoms[myself.NN].coordinates MtoMM = MM - M MtoP = P - M if myself.angle_is_ok(MtoP, MtoMM, as_donor): MMM = myself.atom.residue.atoms[myself.NNN].coordinates MMtoMMM = MMM - MM if myself.planarity_is_ok(MtoP, MtoMM, MMtoMMM, as_donor): return True def H_bond_is_mutual(self, partner): assert isinstance(partner, HBondParticipant) distance_or_is_ok = self._distance_is_ok(partner) if distance_or_is_ok and \ self.can_bond_to_partner(self, partner) and \ self.can_bond_to_partner(partner, self, as_donor=False): partner.append_donor_list(self) self.append_acceptor_list(partner) return distance_or_is_ok def append_donor_list(self, potential_h_donor): self.donor_list.append(potential_h_donor) def append_acceptor_list(self, potential_h_acceptor): self.acceptor_list.append(potential_h_acceptor) valence = property(lambda valence:'sp3') acceptor_list = property(lambda self: self._acceptor_list, append_acceptor_list) donor_list = property(lambda self: self._donor_list, append_donor_list) class Sp2HBondParticipant(Sp3HBondParticipant): _angle_min = AngleMinimum(90., 90.) _plane_angle_max = PlaneAngleMaximum(60., 90.) @staticmethod def planarity(ba, bc, cd): assert isinstance(ba, ndarray) assert isinstance(bc, ndarray) assert isinstance(cd, ndarray) my_plane_norm = cross(ba, bc) perndclr_bc_in_plane = cross(bc, my_plane_norm) torsion_angle_center = 0 if dot(cd, perndclr_bc_in_plane) > 0. else 180. plane_norm_w_partner = cross(-bc, cd) return abs(torsion_angle_center - Sp3HBondParticipant.angle( my_plane_norm, plane_norm_w_partner)) def planarity_is_ok(self, MtP, MtMM, MMtMMM, as_donor=True): plane_angle = self.planarity(MMtMMM, -MtMM, MtP) return plane_angle < self._plane_angle_max.angle_as_donor(as_donor) valence = property(lambda valence: 'sp2') class ResidueIQ(object): def __init__(self, atom): assert isinstance(atom, AtomIQ) self._atoms = {atom.name: atom} self._abbr = atom.res_name self._uid = atom.uid self._chainID = atom.chainID self._chain = None def add_atom(self, atom): assert isinstance(atom, AtomIQ) assert self.uid == atom.uid if atom.name not in self._atoms: self._atoms[atom.name] = atom def set_Chain(self, chain): assert isinstance(chain, ChainIQ) assert chain.chainID == self._chainID if self._chain is None: self._chain = chain else: raise TypeError('chain was already set and thus was not None') atoms = property(lambda self: self._atoms, add_atom) uid = property(lambda self: self._uid) chainID = property(lambda self: self._chainID) abbr = property(lambda self: self._abbr) chain = property(lambda self: self._chain, set_Chain) class ChainIQ(object): def __init__(self, atom): assert isinstance(atom, AtomIQ) self._chainID = atom.chainID self._atoms = OrderedDict({atom.serial: atom}) self._residues = OrderedDict({atom.uid: atom.residue}) def add_atom(self, atom): assert isinstance(atom, AtomIQ) if atom.serial not in self._atoms: self._atoms[atom.serial] = atom else: raise KeyError('%s already exists in list of atoms for chain %s' % (atom.serial, self._chainID)) def add_residue(self, residue): assert isinstance(residue, ResidueIQ) if residue.uid not in self._residues: self._residues[residue.uid] = residue atoms = property(lambda self: self._atoms, add_atom) residues = property(lambda self: self._residues, add_residue) chainID = property(lambda self: self._chainID) class ProteinIQ(object): def generate_protein_from_PDB_ATOM_File_Reader(pdb): assert isinstance(pdb, PDBATOMFileReader) donorDict = {} acceptorDict = {} atoms = {} for atom in reader: atoms[atom.serial] = atom if atom.participant: if atom.participant.is_donor: donorDict[atom.serial] = atom if atom.participant.is_acceptor: acceptorDict[atom.serial] = atom for donor in donorDict.itervalues(): for acceptor in acceptorDict.itervalues(): pass pass
{ "content_hash": "005e3fda1801bd9e19cf046d9d7b2717", "timestamp": "", "source": "github", "line_count": 371, "max_line_length": 84, "avg_line_length": 37.24797843665768, "alnum_prop": 0.6053983645705189, "repo_name": "jruhym/intrapeptideContacts", "id": "5126b8640adea1e7cabeed61f00028533816ecb6", "size": "13819", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "Contact_Report/hydrogen_bonds.py", "mode": "33188", "license": "bsd-2-clause", "language": [ { "name": "Python", "bytes": "31346" }, { "name": "Shell", "bytes": "1889" } ], "symlink_target": "" }
from elephunk.database import Row class Bloat(Row): @property def table_id(self): return (self.schemaname, self.tablename) @property def full_table_name(self): return "%s.%s" % self.table_id @staticmethod def sql(): return """ SELECT schemaname, tablename, reltuples::bigint, relpages::bigint, relpages * block_size AS usedbytes, otta, ROUND(CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages/otta::numeric END,1) AS tbloat, CASE WHEN relpages < otta THEN 0 ELSE block_size*(sml.relpages-otta)::bigint END AS wastedbytes, iname, ituples::bigint, ipages::bigint, ipages * block_size AS iusedbytes, iotta, ROUND(CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages/iotta::numeric END,1) AS ibloat, CASE WHEN ipages < iotta THEN 0 ELSE block_size*(ipages-iotta) END AS wastedibytes FROM ( SELECT schemaname, tablename, cc.reltuples, cc.relpages, block_size, CEIL((cc.reltuples*((datahdr + ma - (CASE WHEN mod(datahdr, ma) = 0 THEN ma ELSE mod(datahdr, ma) END)) + nullhdr2 + 4)) / (block_size-20::float)) AS otta, COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages, COALESCE(CEIL((c2.reltuples*(datahdr-12))/(block_size-20::float)),0) AS iotta -- very rough approximation, assumes all cols FROM ( SELECT ma,block_size,schemaname,tablename, (datawidth + (hdr + ma - (case when mod(hdr, ma) = 0 THEN ma ELSE mod(hdr, ma) END)))::numeric AS datahdr, (maxfracsum * (nullhdr + ma - (case when mod(nullhdr, ma) = 0 THEN ma ELSE mod(nullhdr, ma) END))) AS nullhdr2 FROM ( SELECT schemaname, tablename, hdr, ma, block_size, SUM((1-null_frac)*avg_width) AS datawidth, MAX(null_frac) AS maxfracsum, hdr+( SELECT 1+count(*)/8 FROM pg_stats s2 WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND s2.tablename = s.tablename ) AS nullhdr FROM pg_stats s, ( SELECT (SELECT current_setting('block_size')::numeric) AS block_size, CASE WHEN substring(v,12,3) IN ('8.0','8.1','8.2') THEN 27 ELSE 23 END AS hdr, CASE WHEN v ~ 'mingw32' THEN 8 ELSE 4 END AS ma FROM (SELECT version() AS v) AS foo ) AS constants GROUP BY 1,2,3,4,5 ) AS foo ) AS rs JOIN pg_class cc ON cc.relname = rs.tablename JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = rs.schemaname AND nn.nspname <> 'information_schema' LEFT JOIN pg_index i ON indrelid = cc.oid LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid ) AS sml ORDER BY schemaname, tablename """
{ "content_hash": "c423efaf3e06cac68e6fab24c8e91d30", "timestamp": "", "source": "github", "line_count": 71, "max_line_length": 159, "avg_line_length": 37.521126760563384, "alnum_prop": 0.6482732732732732, "repo_name": "pitluga/elephunk", "id": "039e9e9163a1403dfc8d92d1a794b0d22ce79e99", "size": "2664", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "elephunk/records/bloat.py", "mode": "33188", "license": "mit", "language": [ { "name": "CSS", "bytes": "375" }, { "name": "JavaScript", "bytes": "2840" }, { "name": "Python", "bytes": "30243" }, { "name": "Shell", "bytes": "272" } ], "symlink_target": "" }
"""A module for the main curvature optimizer class.""" from typing import Any, Callable, Iterator, Mapping, Optional, Sequence, Tuple, Union import jax import jax.lax as lax import jax.numpy as jnp import jax.random as jnr from kfac_ferminet_alpha import estimator from kfac_ferminet_alpha import tag_graph_matcher as tgm from kfac_ferminet_alpha import utils ScheduleType = Callable[[jnp.ndarray], Optional[jnp.ndarray]] Parameters = Any Batch = Any FuncState = Any State = Mapping[str, Any] @utils.Stateful.infer_class_state class Optimizer(utils.Stateful): """The default optimizer class.""" velocities: Parameters estimator: estimator.CurvatureEstimator step_counter: jnp.ndarray def __init__( self, value_and_grad_func, l2_reg: Union[float, jnp.ndarray], value_func_has_aux: bool = False, value_func_has_state: bool = False, value_func_has_rng: bool = False, learning_rate_schedule: Optional[ScheduleType] = None, momentum_schedule: Optional[ScheduleType] = None, damping_schedule: Optional[ScheduleType] = None, min_damping: Union[float, jnp.ndarray] = 1e-8, max_damping: Union[float, jnp.ndarray] = jnp.inf, norm_constraint: Optional[Union[float, jnp.ndarray]] = None, num_burnin_steps: int = 10, estimation_mode: str = "fisher_gradients", curvature_ema: Union[float, jnp.ndarray] = 0.95, inverse_update_period: int = 5, register_only_generic: bool = False, layer_tag_to_block_cls: Optional[estimator.TagMapping] = None, patterns_to_skip: Sequence[str] = (), donate_parameters: bool = False, donate_optimizer_state: bool = False, donate_batch_inputs: bool = False, donate_func_state: bool = False, batch_process_func: Optional[Callable[[Any], Any]] = None, multi_device: bool = False, use_jax_cond: bool = True, debug: bool = False, pmap_axis_name="kfac_axis", ): """Initializes the K-FAC optimizer with the given settings. Args: value_and_grad_func: Python callable. The function should return the value of the loss to be optimized and its gradients. If the argument `value_func_has_aux` is `False` then the interface should be: loss, loss_grads = value_and_grad_func(params, batch) If `value_func_has_aux` is `True` then the interface should be: (loss, aux), loss_grads = value_and_grad_func(params, batch) l2_reg: Scalar. Set this value to tell the optimizer what L2 regularization coefficient you are using (if any). Note the coefficient appears in the regularizer as coeff / 2 * sum(param**2). Note that the user is still responsible for adding regularization to the loss. value_func_has_aux: Boolean. Specifies whether the provided callable `value_and_grad_func` returns the loss value only, or also some auxiliary data. (Default: False) value_func_has_state: Boolean. Specifies whether the provided callable `value_and_grad_func` has a persistent state that is inputed and it also outputs an update version of it. (Default: False) value_func_has_rng: Boolean. Specifies whether the provided callable `value_and_grad_func` additionally takes as input an rng key. (Default: False) learning_rate_schedule: Callable. A schedule for the learning rate. This should take as input the current step number and return a single `jnp.ndarray` that represents the learning rate. (Default: None) momentum_schedule: Callable. A schedule for the momentum. This should take as input the current step number and return a single `jnp.ndarray` that represents the momentum. (Default: None) damping_schedule: Callable. A schedule for the damping. This should take as input the current step number and return a single `jnp.ndarray` that represents the learning rate. (Default: None) min_damping: Scalar. Minimum value the damping parameter can take. Note that the default value of 1e-8 is quite arbitrary, and you may have to adjust this up or down for your particular problem. If you are using a non-zero value of l2_reg you *may* be able to set this to zero. (Default: 1e-8) max_damping: Scalar. Maximum value the damping parameter can take. (Default: Infinity) norm_constraint: Scalar. If specified, the update is scaled down so that its approximate squared Fisher norm `v^T F v` is at most the specified value.(Note that here `F` is the approximate curvature matrix, not the exact.) (Default: None) num_burnin_steps: Int. At the start of optimization, e.g. the first step, before performing the actual step the optimizer will perform this many times updates to the curvature approximation without updating the actual parameters. (Default: 10) estimation_mode: String. The type of estimator to use for the curvature matrix. Can be one of: * fisher_empirical * fisher_exact * fisher_gradients * fisher_curvature_prop * ggn_exact * ggn_curvature_prop See the doc-string for CurvatureEstimator (in estimator.py) for a more detailed description of these options. (Default: 'fisher_gradients'). curvature_ema: The decay factor used when calculating the covariance estimate moving averages. (Default: 0.95) inverse_update_period: Int. The number of steps in between updating the the computation of the inverse curvature approximation. (Default: 5) register_only_generic: Boolean. Whether when running the auto-tagger to register only generic parameters, or allow it to use the graph matcher to automatically pick up any kind of layer tags. (Default: False) layer_tag_to_block_cls: Dictionary. A mapping from layer tags to block classes which to override the default choices of block approximation for that specific tag. See the doc-string for CurvatureEstimator (in estimator.py) for a more detailed description of this. patterns_to_skip: Tuple. A list of any patterns that should be skipped by the graph matcher when auto-tagging. donate_parameters: Boolean. Whether to use jax's `donate_argnums` to donate the parameter values of each call to `step`. Note that this implies that you will not be able to access the old parameter values' buffers after calling into `step`. donate_optimizer_state: Boolean. Whether to use jax's `donate_argnums` to donate the optimizer state of each call to `step`. Note that this implies that you will not be able to access the old optimizer state values' buffers after calling into `step`. donate_batch_inputs: Boolean. Whether to use jax's `donate_argnums` to donate the batch values of each call to `step`. Note that this implies that you will not be able to access the old batch values' buffers after calling into `step`. donate_func_state: Boolean. Whether to use jax's `donate_argnums` to donate the persistent function state of each call to `step`. Note that this implies that you will not be able to access the old function state values' buffers after calling into `step`. batch_process_func: Callable. A function which to be called on each batch before feeding to the KFAC on device. This could be useful for specific device input optimizations. multi_device: Boolean. Whether to use `pmap` and run the optimizer on multiple devices. (Default: False) use_jax_cond: Not used for the moment. debug: Boolean. If non of the step or init functions would be jitted. Note that this also overrides `multi_device` and prevents using `pmap`. (Default: False) pmap_axis_name: String. The name of the `pmap` axis to use when `multi_device` is set to True. (Default: curvature_axis) """ super().__init__() self.value_and_grad_func = value_and_grad_func self.value_func_has_aux = value_func_has_aux self.value_func_has_state = value_func_has_state self.value_func_has_rng = value_func_has_rng self.value_func = utils.convert_value_and_grad_to_value_func( value_and_grad_func, has_aux=value_func_has_aux) self.l2_reg = l2_reg self.learning_rate_schedule = learning_rate_schedule if momentum_schedule is not None: def schedule_with_first_step_zero(global_step: jnp.ndarray): value = momentum_schedule(global_step) check = jnp.equal(global_step, 0) return check * jnp.zeros_like(value) + (1 - check) * value self.momentum_schedule = schedule_with_first_step_zero else: self.momentum_schedule = None self.damping_schedule = damping_schedule self.min_damping = min_damping self.max_damping = max_damping self.norm_constraint = norm_constraint self.num_burnin_steps = num_burnin_steps self.estimation_mode = estimation_mode self.curvature_ema = curvature_ema self.inverse_update_period = inverse_update_period self.register_only_generic = register_only_generic self.layer_tag_to_block_cls = layer_tag_to_block_cls self.patterns_to_skip = patterns_to_skip self.donate_parameters = donate_parameters self.donate_optimizer_state = donate_optimizer_state self.donate_batch_inputs = donate_batch_inputs self.donate_func_state = donate_func_state self.batch_process_func = batch_process_func or (lambda x: x) self.multi_device = multi_device self.use_jax_cond = use_jax_cond self.debug = debug self.pmap_axis_name = pmap_axis_name if multi_device else None self._rng_split = utils.p_split if multi_device else jnr.split # Attributes filled in during self.init() self.finalized = False self.tagged_func = None self.flat_params_shapes = None self.params_treedef = None # Special attributes related to jitting/pmap self._jit_init = None self._jit_burnin = None self._jit_step = None def finalize( self, params: Parameters, rng: jnp.ndarray, batch: Batch, func_state: Optional[FuncState] = None, ) -> None: """Finalizes the optimizer by tracing the model function with the params and batch.""" if self.finalized: raise ValueError("Optimizer has already been finalized.") if self.multi_device: # We assume that the parameters and batch are replicated, while tracing # must happen with parameters for a single device call params, rng, batch = jax.tree_map(lambda x: x[0], (params, rng, batch)) if func_state is not None: func_state = jax.tree_map(lambda x: x[0], func_state) batch = self.batch_process_func(batch) # These are all tracing operations and we can run them with abstract values func_args = utils.make_func_args(params, func_state, rng, batch, self.value_func_has_state, self.value_func_has_rng) # Run all tracing with abstract values so no computation is done flat_params, self.params_treedef = jax.tree_flatten(params) self.flat_params_shapes = tuple(p.shape for p in flat_params) self.tagged_func = tgm.auto_register_tags( func=self.value_func, func_args=func_args, params_index=0, register_only_generic=self.register_only_generic, patterns_to_skip=self.patterns_to_skip) self.estimator = estimator.CurvatureEstimator( self.tagged_func, func_args, self.l2_reg, self.estimation_mode, layer_tag_to_block_cls=self.layer_tag_to_block_cls) # Arguments: params, opt_state, rng, batch, func_state donate_argnums = [] if self.donate_parameters: donate_argnums.append(0) if self.donate_optimizer_state: donate_argnums.append(1) if self.donate_batch_inputs: donate_argnums.append(3) if self.donate_func_state and self.value_func_has_state: donate_argnums.append(4) donate_argnums = tuple(donate_argnums) if self.debug: self._jit_init = self._init self._jit_burnin = self._burnin self._jit_step = self._step elif self.multi_device: self._jit_init = jax.pmap( self._init, axis_name=self.pmap_axis_name, donate_argnums=[0]) # batch size is static argnum and is at index 5 self._jit_burnin = jax.pmap( self._burnin, axis_name=self.pmap_axis_name, static_broadcasted_argnums=[5]) self._jit_step = jax.pmap( self._step, axis_name=self.pmap_axis_name, donate_argnums=donate_argnums, static_broadcasted_argnums=[5]) else: self._jit_init = jax.jit(self._init, donate_argnums=[0]) # batch size is static argnum and is at index 5 self._jit_burnin = jax.jit(self._burnin, static_argnums=[5]) self._jit_step = jax.jit( self._step, donate_argnums=donate_argnums, static_argnums=[5]) self.finalized = True def _init(self, rng: jnp.ndarray) -> State: """This is the non-jitted version of initializing the state.""" flat_velocities = [jnp.zeros(shape) for shape in self.flat_params_shapes] return dict( velocities=jax.tree_unflatten(self.params_treedef, flat_velocities), estimator=self.estimator.init(rng, None), step_counter=jnp.asarray(0)) def verify_args_and_get_step_counter( self, params: Parameters, state: State, rng: jnp.ndarray, data_iterator: Iterator[Batch], func_state: Optional[FuncState] = None, learning_rate: Optional[jnp.ndarray] = None, momentum: Optional[jnp.ndarray] = None, damping: Optional[jnp.ndarray] = None, global_step_int: Optional[int] = None, ) -> int: """Verifies that the arguments passed to `Optimizer.step` are correct.""" if not self.finalized: rng, rng_finalize = self._rng_split(rng) self.finalize(params, rng_finalize, next(data_iterator), func_state) # Verify correct arguments invocation if self.learning_rate_schedule is not None and learning_rate is not None: raise ValueError("When you have passed a `learning_rate_schedule` you " "should not pass a value to the step function.") if self.momentum_schedule is not None and momentum is not None: raise ValueError("When you have passed a `momentum_schedule` you should " "not pass a value to the step function.") if self.damping_schedule is not None and damping is not None: raise ValueError("When you have passed a `damping_schedule` you should " "not pass a value to the step function.") # Do a bunrnin on the first iteration if global_step_int is None: if self.multi_device: return int(utils.get_first(state["step_counter"])) else: return int(state["step_counter"]) return global_step_int def _burnin( self, params: Parameters, state: State, rng: jnp.ndarray, batch: Batch, func_state: Optional[FuncState], batch_size: Optional[int], ) -> Tuple[State, Optional[FuncState]]: """This is the non-jitted version of a single burnin step.""" self.set_state(state) batch = self.batch_process_func(batch) rng, func_rng = jnr.split(rng) if self.value_func_has_rng else (rng, None) func_args = utils.make_func_args(params, func_state, func_rng, batch, self.value_func_has_state, self.value_func_has_rng) # Compute batch size if batch_size is None: batch_size = jax.tree_flatten(batch)[0][0].shape[0] # Update curvature estimate ema_old, ema_new = 1.0, 1.0 / self.num_burnin_steps self.estimator.update_curvature_matrix_estimate(ema_old, ema_new, batch_size, rng, func_args, self.pmap_axis_name) if func_state is not None: out, _ = self.value_and_grad_func(*func_args) _, func_state, _ = utils.extract_func_outputs(out, self.value_func_has_aux, self.value_func_has_state) return self.pop_state(), func_state def _step( self, params: Parameters, state: State, rng: jnp.ndarray, batch: Batch, func_state: Optional[FuncState], batch_size: Optional[int], learning_rate: Optional[jnp.ndarray], momentum: Optional[jnp.ndarray], damping: Optional[jnp.ndarray], ) -> Union[Tuple[Parameters, State, FuncState, Mapping[str, jnp.ndarray]], Tuple[Parameters, State, Mapping[str, jnp.ndarray]]]: """This is the non-jitted version of a single step.""" # Unpack and set the state self.set_state(state) if damping is not None: assert self.estimator.damping is None self.estimator.damping = damping else: assert self.estimator.damping is not None # Preprocess the batch and construct correctly the function arguments batch = self.batch_process_func(batch) rng, func_rng = jnr.split(rng) if self.value_func_has_rng else (rng, None) func_args = utils.make_func_args(params, func_state, func_rng, batch, self.value_func_has_state, self.value_func_has_rng) # Compute the batch size if batch_size is None: batch_size = jax.tree_flatten(batch)[0][0].shape[0] # Compute schedules if applicable if self.learning_rate_schedule is not None: assert learning_rate is None learning_rate = self.learning_rate_schedule(self.step_counter) else: assert learning_rate is not None if self.momentum_schedule is not None: assert momentum is None momentum = self.momentum_schedule(self.step_counter) else: assert momentum is not None if self.damping_schedule is not None: assert damping is None damping = self.damping_schedule(self.step_counter) else: assert damping is not None # Compute current loss and gradients out, grads = self.value_and_grad_func(*func_args) loss, new_func_state, aux = utils.extract_func_outputs( out, self.value_func_has_aux, self.value_func_has_state) # Sync loss and grads loss, grads = utils.pmean_if_pmap((loss, grads), self.pmap_axis_name) # Update curvature estimate self.estimator.update_curvature_matrix_estimate( self.curvature_ema, 1.0, batch_size, rng, func_args, self.pmap_axis_name, ) # Optionally update the inverse estimate self.estimator.set_state( lax.cond( self.step_counter % self.inverse_update_period == 0, lambda s: self.estimator.update_curvature_estimate_inverse( # pylint: disable=g-long-lambda self.pmap_axis_name, s), lambda s: s, self.estimator.pop_state())) # Compute proposed directions vectors = self.propose_directions( grads, self.velocities, learning_rate, momentum, ) # The learning rate is defined as the negative of the coefficient by which # we multiply the gradients, while the momentum is the coefficient by # which we multiply the velocities. neg_learning_rate = -learning_rate # pytype: disable=unsupported-operands # trace-all-classes # Compute the coefficients of the update vectors assert neg_learning_rate is not None and momentum is not None coefficients = (neg_learning_rate, momentum) # Update velocities and compute new delta self.velocities, delta = self.velocities_and_delta( self.velocities, vectors, coefficients, ) # Update parameters: params = params + delta params = jax.tree_map(jnp.add, params, delta) # Optionally compute the reduction ratio and update the damping self.estimator.damping = None rho = jnp.nan # Statistics with useful information stats = dict() stats["step"] = self.step_counter stats["loss"] = loss stats["learning_rate"] = -coefficients[0] stats["momentum"] = coefficients[1] stats["damping"] = damping stats["rho"] = rho if self.value_func_has_aux: stats["aux"] = aux self.step_counter = self.step_counter + 1 if self.value_func_has_state: return params, self.pop_state(), new_func_state, stats else: assert new_func_state is None return params, self.pop_state(), stats def init( self, params: Parameters, rng: jnp.ndarray, batch: Batch, func_state: Optional[FuncState] = None, ) -> State: """Initializes the optimizer and returns the appropriate optimizer state.""" if not self.finalized: self.finalize(params, rng, batch, func_state) return self._jit_init(rng) def step( self, params: Parameters, state: Mapping[str, Any], rng: jnp.ndarray, data_iterator: Iterator[Any], func_state: Any = None, learning_rate: Optional[jnp.ndarray] = None, momentum: Optional[jnp.ndarray] = None, damping: Optional[jnp.ndarray] = None, batch_size: Optional[int] = None, global_step_int: Optional[int] = None, ) -> Union[Tuple[Parameters, State, FuncState, Mapping[str, jnp.ndarray]], Tuple[Parameters, State, Mapping[str, jnp.ndarray]]]: """Performs a single update step using the optimizer. Args: params: The parameters of the model. state: The state of the optimizer. rng: A Jax PRNG key. data_iterator: An iterator that returns a batch of data. func_state: Any function state that gets passed in and returned. learning_rate: This must be provided when `use_adaptive_learning_rate=False` and `learning_rate_schedule=None`. momentum: This must be provided when `use_adaptive_momentum=False` and `momentum_schedule=None`. damping: This must be provided when `use_adaptive_damping=False` and `damping_schedule=None`. batch_size: The batch size to use for KFAC. The default behaviour when it is None is to use the leading dimension of the first data array. global_step_int: The global step as a python int. Note that this must match the step inte rnal to the optimizer that is part of its state. Returns: (params, state, stats) where: params: The updated model parameters. state: The updated optimizer state. stats: A dictionary of key statistics provided to be logged. """ step_counter_int = self.verify_args_and_get_step_counter( params=params, state=state, rng=rng, data_iterator=data_iterator, func_state=func_state, learning_rate=learning_rate, momentum=momentum, damping=damping, global_step_int=global_step_int) if step_counter_int == 0: for _ in range(self.num_burnin_steps): rng, rng_burn = self._rng_split(rng) batch = next(data_iterator) state, func_state = self._jit_burnin(params, state, rng_burn, batch, func_state, batch_size) # On the first step we always treat the momentum as 0.0 if self.momentum_schedule is None: momentum = jnp.zeros([]) if self.multi_device: momentum = utils.replicate_all_local_devices(momentum) batch = next(data_iterator) return self._jit_step(params, state, rng, batch, func_state, batch_size, learning_rate, momentum, damping) def propose_directions( self, grads: Parameters, velocities: Parameters, learning_rate: Optional[jnp.ndarray], momentum: Optional[jnp.ndarray], ) -> Tuple[Parameters, Parameters]: """Computes the vector proposals for the next step.""" del momentum # not used in this, but could be used in subclasses preconditioned_grads = self.estimator.multiply_matpower(grads, -1) if self.norm_constraint is not None: assert learning_rate is not None sq_norm_grads = utils.inner_product(preconditioned_grads, grads) sq_norm_scaled_grads = sq_norm_grads * learning_rate**2 # We need to sync the norms here, because reduction can be # non-deterministic. They specifically are on GPUs by default for better # performance. Hence although grads and preconditioned_grads are synced, # the inner_product operation can still produce different answers on # different devices. sq_norm_scaled_grads = utils.pmean_if_pmap(sq_norm_scaled_grads, self.pmap_axis_name) max_coefficient = jnp.sqrt(self.norm_constraint / sq_norm_scaled_grads) coefficient = jnp.minimum(max_coefficient, 1) preconditioned_grads = utils.scalar_mul(preconditioned_grads, coefficient) return preconditioned_grads, velocities def velocities_and_delta( self, velocities: Parameters, vectors: Sequence[Parameters], coefficients: Sequence[jnp.ndarray], ) -> Sequence[Parameters]: """Computes the new velocities and delta (update to parameters).""" del velocities assert len(vectors) == len(coefficients) delta = utils.scalar_mul(vectors[0], coefficients[0]) for vi, wi in zip(vectors[1:], coefficients[1:]): delta = jax.tree_map(jnp.add, delta, utils.scalar_mul(vi, wi)) return delta, delta
{ "content_hash": "33609bb019e87564e8b754bdd99469b4", "timestamp": "", "source": "github", "line_count": 597, "max_line_length": 104, "avg_line_length": 43.32998324958124, "alnum_prop": 0.6567960414411629, "repo_name": "deepmind/deepmind-research", "id": "9f1973cf180501b62c8bb6daa265897c267d6c2e", "size": "26461", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "kfac_ferminet_alpha/optimizer.py", "mode": "33188", "license": "apache-2.0", "language": [ { "name": "C", "bytes": "1002" }, { "name": "C++", "bytes": "5765" }, { "name": "Jupyter Notebook", "bytes": "12330730" }, { "name": "Lua", "bytes": "76186" }, { "name": "OpenEdge ABL", "bytes": "15630" }, { "name": "PureBasic", "bytes": "8" }, { "name": "Python", "bytes": "3419119" }, { "name": "Racket", "bytes": "226692" }, { "name": "Shell", "bytes": "84450" }, { "name": "Starlark", "bytes": "3463" } ], "symlink_target": "" }
import datetime import pytz from feedgen.feed import FeedGenerator from flask import Flask app = Flask(__name__) @app.route('/') def index(): thecodingloveurl = "http://thecodinglove.com/rss" pubdate = datetime.datetime(2017, 8, 7, 21, 0, 0, 0, pytz.UTC) fg = FeedGenerator() fg.title('The coding love with images.') fg.link(href=thecodingloveurl) fg.description('The coding love with images.') fe = fg.add_entry() fe.id("Life is good.") fe.link(href=thecodingloveurl) fe.title("The original coding love now has images!") fe.pubdate(pubdate) rssfeed = fg.rss_str(pretty=True) return rssfeed if __name__ == "__main__": app.run(host='0.0.0.0')
{ "content_hash": "5dc44078a8baddbf409268b358e811dc", "timestamp": "", "source": "github", "line_count": 31, "max_line_length": 66, "avg_line_length": 22.838709677419356, "alnum_prop": 0.653954802259887, "repo_name": "chrillux/thecodingloverss", "id": "4fa7ac9826573d84c912d5030eb4c43dccf36598", "size": "708", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "thecodingloverss.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "708" } ], "symlink_target": "" }
import django import pytest from django.http import Http404 from ninja import NinjaAPI, Schema from ninja.testing import TestAsyncClient, TestClient api = NinjaAPI() class CustomException(Exception): pass @api.exception_handler(CustomException) def on_custom_error(request, exc): return api.create_response(request, {"custom": True}, status=422) class Payload(Schema): test: int @api.post("/error/{code}") def err_thrower(request, code: str, payload: Payload = None): if code == "base": raise RuntimeError("test") if code == "404": raise Http404("test") if code == "custom": raise CustomException("test") client = TestClient(api) def test_default_handler(settings): settings.DEBUG = True response = client.post("/error/base") assert response.status_code == 500 assert b"RuntimeError: test" in response.content response = client.post("/error/404") assert response.status_code == 404 assert response.json() == {"detail": "Not Found: test"} response = client.post("/error/custom", body="invalid_json") assert response.status_code == 400 assert response.json() == { "detail": "Cannot parse request body (Expecting value: line 1 column 1 (char 0))", } settings.DEBUG = False with pytest.raises(RuntimeError): response = client.post("/error/base") response = client.post("/error/custom", body="invalid_json") assert response.status_code == 400 assert response.json() == {"detail": "Cannot parse request body"} @pytest.mark.parametrize( "route,status_code,json", [ ("/error/404", 404, {"detail": "Not Found"}), ("/error/custom", 422, {"custom": True}), ], ) def test_exceptions(route, status_code, json): response = client.post(route) assert response.status_code == status_code assert response.json() == json @pytest.mark.skipif(django.VERSION < (3, 1), reason="requires django 3.1 or higher") @pytest.mark.asyncio async def test_asyncio_exceptions(): api = NinjaAPI() @api.get("/error") async def thrower(request): raise Http404("test") client = TestAsyncClient(api) response = await client.get("/error") assert response.status_code == 404 def test_no_handlers(): api = NinjaAPI() api._exception_handlers = {} @api.get("/error") def thrower(request): raise RuntimeError("test") client = TestClient(api) with pytest.raises(RuntimeError): client.get("/error")
{ "content_hash": "48c5d0eb77a61d06fc6a42cd8ecb7b4a", "timestamp": "", "source": "github", "line_count": 101, "max_line_length": 90, "avg_line_length": 24.97029702970297, "alnum_prop": 0.654639175257732, "repo_name": "vitalik/django-ninja", "id": "839863b6d9c596cc8d5e1ed069acc41712a7cf07", "size": "2522", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "tests/test_exceptions.py", "mode": "33188", "license": "mit", "language": [ { "name": "Dockerfile", "bytes": "1519" }, { "name": "HTML", "bytes": "2544" }, { "name": "Makefile", "bytes": "768" }, { "name": "Python", "bytes": "331788" }, { "name": "Shell", "bytes": "486" } ], "symlink_target": "" }
import sys from typing import Any, AsyncIterable, Callable, Dict, Optional, TypeVar import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._replication_logical_networks_operations import ( build_get_request, build_list_by_replication_fabrics_request, ) if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ReplicationLogicalNetworksOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.recoveryservicessiterecovery.aio.SiteRecoveryManagementClient`'s :attr:`replication_logical_networks` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list_by_replication_fabrics(self, fabric_name: str, **kwargs: Any) -> AsyncIterable["_models.LogicalNetwork"]: """Gets the list of logical networks under a fabric. Lists all the logical networks of the Azure Site Recovery fabric. :param fabric_name: Server Id. Required. :type fabric_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either LogicalNetwork or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.recoveryservicessiterecovery.models.LogicalNetwork] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-09-10"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.LogicalNetworkCollection] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_by_replication_fabrics_request( fabric_name=fabric_name, resource_name=self._config.resource_name, resource_group_name=self._config.resource_group_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list_by_replication_fabrics.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("LogicalNetworkCollection", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list_by_replication_fabrics.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{resourceName}/replicationFabrics/{fabricName}/replicationLogicalNetworks" } @distributed_trace_async async def get(self, fabric_name: str, logical_network_name: str, **kwargs: Any) -> _models.LogicalNetwork: """Gets a logical network with specified server id and logical network name. Gets the details of a logical network. :param fabric_name: Server Id. Required. :type fabric_name: str :param logical_network_name: Logical network name. Required. :type logical_network_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: LogicalNetwork or the result of cls(response) :rtype: ~azure.mgmt.recoveryservicessiterecovery.models.LogicalNetwork :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-09-10"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.LogicalNetwork] = kwargs.pop("cls", None) request = build_get_request( fabric_name=fabric_name, logical_network_name=logical_network_name, resource_name=self._config.resource_name, resource_group_name=self._config.resource_group_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("LogicalNetwork", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.RecoveryServices/vaults/{resourceName}/replicationFabrics/{fabricName}/replicationLogicalNetworks/{logicalNetworkName}" }
{ "content_hash": "d48bf90ce0024294663d3293dacb42f6", "timestamp": "", "source": "github", "line_count": 211, "max_line_length": 222, "avg_line_length": 43.43601895734597, "alnum_prop": 0.6454991816693945, "repo_name": "Azure/azure-sdk-for-python", "id": "bd96444d7e33e1f5b7bca48106fd99c92bff9b58", "size": "9665", "binary": false, "copies": "1", "ref": "refs/heads/main", "path": "sdk/recoveryservices/azure-mgmt-recoveryservicessiterecovery/azure/mgmt/recoveryservicessiterecovery/aio/operations/_replication_logical_networks_operations.py", "mode": "33188", "license": "mit", "language": [ { "name": "Batchfile", "bytes": "1224" }, { "name": "Bicep", "bytes": "24196" }, { "name": "CSS", "bytes": "6089" }, { "name": "Dockerfile", "bytes": "4892" }, { "name": "HTML", "bytes": "12058" }, { "name": "JavaScript", "bytes": "8137" }, { "name": "Jinja", "bytes": "10377" }, { "name": "Jupyter Notebook", "bytes": "272022" }, { "name": "PowerShell", "bytes": "518535" }, { "name": "Python", "bytes": "715484989" }, { "name": "Shell", "bytes": "3631" } ], "symlink_target": "" }
from .bins import SimpleBin, NumberBin, VolumeError from .fit import Fit, BinReduction, BinOrdering
{ "content_hash": "4d662b36ffdbdd2ebef7da0bc985b4e8", "timestamp": "", "source": "github", "line_count": 3, "max_line_length": 51, "avg_line_length": 33.666666666666664, "alnum_prop": 0.8118811881188119, "repo_name": "ibigpapa/bin_packing_problem", "id": "885dc836609f4c3a74202636155cea8d9da37087", "size": "101", "binary": false, "copies": "1", "ref": "refs/heads/master", "path": "binpackp/__init__.py", "mode": "33188", "license": "mit", "language": [ { "name": "Python", "bytes": "39251" } ], "symlink_target": "" }