File size: 8,495 Bytes
717eb0c 26f3a83 717eb0c feba2d4 717eb0c feba2d4 717eb0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""CodeSearchNet corpus: proxy dataset for semantic code search"""
# TODO: add licensing info in the examples
# TODO: log richer informations (especially while extracting the jsonl.gz files)
# TODO: enable custom configs; such as: "java+python"
# TODO: enable fetching examples with a given license, eg: "java_MIT"
import json
import os
import datasets
_CITATION = """\
@article{husain2019codesearchnet,
title={{CodeSearchNet} challenge: Evaluating the state of semantic code search},
author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
journal={arXiv preprint arXiv:1909.09436},
year={2019}
}
"""
_DESCRIPTION = """\
CodeSearchNet corpus contains about 6 million functions from open-source code \
spanning six programming languages (Go, Java, JavaScript, PHP, Python, and Ruby). \
The CodeSearchNet Corpus also contains automatically generated query-like \
natural language for 2 million functions, obtained from mechanically scraping \
and preprocessing associated function documentation.
"""
_HOMEPAGE = "https://github.com/github/CodeSearchNet"
_LICENSE = "Various"
_S3_BUCKET_URL = "https://s3.amazonaws.com/code-search-net/CodeSearchNet/v2/"
_AVAILABLE_LANGUAGES = ["python", "java", "javascript", "go", "ruby", "php"]
_URLs = {language: _S3_BUCKET_URL + f"{language}.zip" for language in _AVAILABLE_LANGUAGES}
# URLs for "all" are just the concatenation of URLs for all languages
_URLs["all"] = _URLs.copy()
class CodeSearchNet(datasets.GeneratorBasedBuilder):
""" "CodeSearchNet corpus: proxy dataset for semantic code search."""
VERSION = datasets.Version("1.0.0", "Add CodeSearchNet corpus dataset")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="all",
version=VERSION,
description="All available languages: Java, Go, Javascript, Python, PHP, Ruby",
),
datasets.BuilderConfig(
name="java",
version=VERSION,
description="Java language",
),
datasets.BuilderConfig(
name="go",
version=VERSION,
description="Go language",
),
datasets.BuilderConfig(
name="python",
version=VERSION,
description="Pyhton language",
),
datasets.BuilderConfig(
name="javascript",
version=VERSION,
description="Javascript language",
),
datasets.BuilderConfig(
name="ruby",
version=VERSION,
description="Ruby language",
),
datasets.BuilderConfig(
name="php",
version=VERSION,
description="PHP language",
),
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"repository_name": datasets.Value("string"),
"func_path_in_repository": datasets.Value("string"),
"func_name": datasets.Value("string"),
"whole_func_string": datasets.Value("string"),
"language": datasets.Value("string"),
"func_code_string": datasets.Value("string"),
"func_code_tokens": datasets.Sequence(datasets.Value("string")),
"func_documentation_string": datasets.Value("string"),
"func_documentation_tokens": datasets.Sequence(datasets.Value("string")),
"split_name": datasets.Value("string"),
"func_code_url": datasets.Value("string"),
# TODO - add licensing info in the examples
}
),
# No default supervised keys
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators.
Note: The original data is stored in S3, and follows this unusual directory structure:
```
.
βββ <language_name> # e.g. python
βΒ Β βββ final
βΒ Β βββ jsonl
βΒ Β βββ test
βΒ Β βΒ Β βββ <language_name>_test_0.jsonl.gz
βΒ Β βββ train
βΒ Β βΒ Β βββ <language_name>_train_0.jsonl.gz
βΒ Β βΒ Β βββ <language_name>_train_1.jsonl.gz
βΒ Β βΒ Β βββ ...
βΒ Β βΒ Β βββ <language_name>_train_n.jsonl.gz
βΒ Β βββ valid
βΒ Β βββ <language_name>_valid_0.jsonl.gz
βββ <language_name>_dedupe_definitions_v2.pkl
βββ <language_name>_licenses.pkl
```
"""
data_urls = _URLs[self.config.name]
if isinstance(data_urls, str):
data_urls = {self.config.name: data_urls}
# Download & extract the language archives
data_dirs = [
os.path.join(directory, lang, "final", "jsonl")
for lang, directory in dl_manager.download_and_extract(data_urls).items()
]
split2dirs = {
split_name: [os.path.join(directory, split_name) for directory in data_dirs]
for split_name in ["train", "test", "valid"]
}
split2paths = dl_manager.extract(
{
split_name: [
os.path.join(directory, entry_name)
for directory in split_dirs
for entry_name in os.listdir(directory)
]
for split_name, split_dirs in split2dirs.items()
}
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": split2paths["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": split2paths["test"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": split2paths["valid"],
},
),
]
def _generate_examples(self, filepaths):
"""Yields the examples by iterating through the available jsonl files."""
for file_id_, filepath in enumerate(filepaths):
with open(filepath, encoding="utf-8") as f:
for row_id_, row in enumerate(f):
# Key of the example = file_id + row_id,
# to ensure all examples have a distinct key
id_ = f"{file_id_}_{row_id_}"
data = json.loads(row)
yield id_, {
"repository_name": data["repo"],
"func_path_in_repository": data["path"],
"func_name": data["func_name"],
"whole_func_string": data["original_string"],
"language": data["language"],
"func_code_string": data["code"],
"func_code_tokens": data["code_tokens"],
"func_documentation_string": data["docstring"],
"func_documentation_tokens": data["docstring_tokens"],
"split_name": data["partition"],
"func_code_url": data["url"],
}
|