Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
code
Size:
100K - 1M
License:
from tqdm import tqdm | |
from datasets import load_dataset, Dataset | |
import hashlib | |
import re | |
import time | |
from datasets import load_dataset | |
PATTERN = re.compile(r"\s+") | |
def parse_data(ds): | |
"""Parse data into markdown-code pairs""" | |
markdowns = [] | |
code_snippets = [] | |
paths = [] | |
repo_names = [] | |
licenses = [] | |
for i in tqdm(range(len(ds))): | |
inner_markdowns = [] | |
inner_code_snippets = [] | |
types = ds[i]["types"] | |
path = ds[i]["path"] | |
repo = ds[i]["repo_name"] | |
license = ds[i]["license"] | |
if types[0] == "code": | |
# drop first cell of code to have the notebook start with markdown | |
cells = ds[i]["cells"][1:] | |
types = types[1:] | |
else: | |
# drop first the two cells of markdown followed by code | |
# the first markown cell of a notebook is often a long description of the whole notebook | |
cells = ds[i]["cells"][2:] | |
types = ds[i]["types"][2:] | |
if len(cells) % 2 == 0: | |
inner_markdowns = [cells[j] for j in range(len(cells)) if j % 2 == 0] | |
inner_code_snippets = [cells[j+1] for j in range(len(cells) - 1) if j % 2 == 0] | |
else: | |
# delete last markdown cell that has no code next | |
inner_markdowns = [cells[j] for j in range(len(cells) - 1) if j % 2 == 0] | |
inner_code_snippets = [cells[j+1] for j in range(len(cells) - 2) if j % 2 == 0] | |
markdowns.extend(inner_markdowns) | |
code_snippets.extend(inner_code_snippets) | |
paths.extend([path] * len(inner_markdowns)) | |
repo_names.extend([repo] * len(inner_markdowns)) | |
licenses.extend([license] * len(inner_markdowns)) | |
return markdowns, code_snippets, paths, repo_names, licenses | |
def get_hash(example): | |
"""Get hash of content field.""" | |
text = example["markdown"] + example["code"] | |
return {"hash": hashlib.md5(re.sub(PATTERN, "", text).encode("utf-8")).hexdigest()} | |
def preprocess(example): | |
"""Chain all preprocessing steps into one function to not fill cache.""" | |
results = dict() | |
results.update(get_hash(example)) | |
return results | |
def check_uniques(example, uniques): | |
"""Check if current hash is still in set of unique hashes and remove if true.""" | |
if example["hash"] in uniques: | |
uniques.remove(example["hash"]) | |
return True | |
else: | |
return False | |
def filter(example, uniques): | |
if not check_uniques(example, uniques): | |
return False | |
else: | |
return True | |
if __name__ == "__main__": | |
ds = load_dataset("codeparrot/github-jupyter-parsed", split="train") | |
print("Parsing data...") | |
markdowns, code_snippets, paths, repo_names, licenses = parse_data(ds) | |
data = {"markdown": markdowns, "code": code_snippets, "path": paths, "repo_name": repo_names, "license": licenses} | |
parsed_data = Dataset.from_dict(data) | |
print("Deduplication...") | |
parsed_data = parsed_data.map(preprocess) | |
# Deduplicate hashes | |
uniques = set(parsed_data.unique("hash")) | |
frac = len(uniques) / len(parsed_data) | |
print(f"Fraction of duplicates: {1-frac:.2%}") | |
ds_filter = parsed_data.filter(filter, fn_kwargs={"uniques": uniques}) | |
ds_filter.push_to_hub("codeparrot/github-jupyter-text-code-pairs") | |