File size: 6,596 Bytes
f65a6d4
4b1249c
 
f65a6d4
4b1249c
 
cc78864
 
 
 
 
 
 
9ff6251
cc78864
 
 
 
 
 
 
4b1249c
5b39e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17153e6
 
 
 
 
 
 
 
f97a941
 
17153e6
 
f97a941
17153e6
 
f97a941
17153e6
 
f97a941
17153e6
f97a941
 
c05a213
4b1249c
 
 
 
 
 
 
42daad1
 
4b1249c
 
9c7630f
 
4b1249c
9c7630f
 
4b1249c
9c7630f
 
 
 
c05a213
 
 
 
 
 
 
 
fb2dc54
 
c05a213
 
fb2dc54
c05a213
 
fb2dc54
c05a213
 
fb2dc54
c05a213
fb2dc54
 
4b1249c
5b39e5b
 
 
 
 
 
 
 
17153e6
 
 
 
 
 
 
 
4b1249c
 
 
 
 
 
 
 
c05a213
 
 
 
 
 
 
 
f65a6d4
cc78864
 
 
0d597c9
cc78864
 
 
 
53e74b2
 
 
 
 
cc78864
53e74b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8faf1e8
53e74b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc78864
 
9ff6251
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
---
language:
- en
license: unknown
size_categories:
- 10K<n<100K
task_categories:
- feature-extraction
- text-classification
- image-classification
- image-feature-extraction
- zero-shot-classification
- zero-shot-image-classification
pretty_name: multimodal-sarcasm-dataset
tags:
- sarcasm
- sarcasm-detection
- mulitmodal-sarcasm-detection
- sarcasm detection
- multimodao sarcasm detection
- tweets
dataset_info:
- config_name: mmsd-clean
  features:
  - name: image
    dtype: image
  - name: text
    dtype: string
  - name: label
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 1797951865.232
    num_examples: 19557
  - name: validation
    num_bytes: 259504817.817
    num_examples: 2387
  - name: test
    num_bytes: 261609842.749
    num_examples: 2373
  download_size: 2668004199
  dataset_size: 2319066525.798
- config_name: mmsd-original
  features:
  - name: image
    dtype: image
  - name: text
    dtype: string
  - name: label
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 1816845826.384
    num_examples: 19816
  - name: validation
    num_bytes: 260077790.0
    num_examples: 2410
  - name: test
    num_bytes: 262679920.717
    num_examples: 2409
  download_size: 2690517598
  dataset_size: 2339603537.101
- config_name: mmsd-v1
  features:
  - name: image
    dtype: image
  - name: text
    dtype: string
  - name: label
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 1816845826.384
    num_examples: 19816
  - name: validation
    num_bytes: 260077790.0
    num_examples: 2410
  - name: test
    num_bytes: 262679920.717
    num_examples: 2409
  download_size: 2690517598
  dataset_size: 2339603537.101
- config_name: mmsd-v2
  features:
  - name: image
    dtype: image
  - name: text
    dtype: string
  - name: label
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train
    num_bytes: 1816541209.384
    num_examples: 19816
  - name: validation
    num_bytes: 260043003.0
    num_examples: 2410
  - name: test
    num_bytes: 262641462.717
    num_examples: 2409
  download_size: 2690267623
  dataset_size: 2339225675.101
configs:
- config_name: mmsd-clean
  data_files:
  - split: train
    path: mmsd-clean/train-*
  - split: validation
    path: mmsd-clean/validation-*
  - split: test
    path: mmsd-clean/test-*
- config_name: mmsd-original
  data_files:
  - split: train
    path: mmsd-original/train-*
  - split: validation
    path: mmsd-original/validation-*
  - split: test
    path: mmsd-original/test-*
- config_name: mmsd-v1
  data_files:
  - split: train
    path: mmsd-v1/train-*
  - split: validation
    path: mmsd-v1/validation-*
  - split: test
    path: mmsd-v1/test-*
- config_name: mmsd-v2
  data_files:
  - split: train
    path: mmsd-v2/train-*
  - split: validation
    path: mmsd-v2/validation-*
  - split: test
    path: mmsd-v2/test-*
---

# MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System

This is a copy of the dataset uploaded on Hugging Face for easy access. The original data comes from this [work](https://aclanthology.org/2023.findings-acl.689/), which is an improvement upon a [previous study](https://aclanthology.org/P19-1239).

## Usage

```python
from typing import TypedDict, cast

import pytorch_lightning as pl
from datasets import Dataset, load_dataset
from torch import Tensor
from torch.utils.data import DataLoader
from transformers import CLIPProcessor


class MMSDModelInput(TypedDict):
    pixel_values: Tensor
    input_ids: Tensor
    attention_mask: Tensor
    label: Tensor
    id: list[str]


class MMSDDatasetModule(pl.LightningDataModule):

    def __init__(
        self,
        clip_ckpt_name: str = "openai/clip-vit-base-patch32",
        dataset_version: str = "mmsd-v2",
        max_length: int = 77,
        train_batch_size: int = 32,
        val_batch_size: int = 32,
        test_batch_size: int = 32,
        num_workers: int = 19,
    ) -> None:
        super().__init__()
        self.clip_ckpt_name = clip_ckpt_name
        self.dataset_version = dataset_version
        self.train_batch_size = train_batch_size
        self.val_batch_size = val_batch_size
        self.test_batch_size = test_batch_size
        self.num_workers = num_workers
        self.max_length = max_length

    def setup(self, stage: str) -> None:
        processor = CLIPProcessor.from_pretrained(self.clip_ckpt_name)

        def preprocess(example):
            inputs = processor(
                text=example["text"],
                images=example["image"],
                return_tensors="pt",
                padding="max_length",
                truncation=True,
                max_length=self.max_length,
            )

            return {
                "pixel_values": inputs["pixel_values"],
                "input_ids": inputs["input_ids"],
                "attention_mask": inputs["attention_mask"],
                "label": example["label"],
            }

        self.raw_dataset = cast(
            Dataset,
            load_dataset("coderchen01/MMSD2.0", name=self.dataset_version),
        )
        self.dataset = self.raw_dataset.map(
            preprocess,
            batched=True,
            remove_columns=["text", "image"],
        )

    def train_dataloader(self) -> DataLoader:
        return DataLoader(
            self.dataset["train"],
            batch_size=self.train_batch_size,
            shuffle=True,
            num_workers=self.num_workers,
        )

    def val_dataloader(self) -> DataLoader:
        return DataLoader(
            self.dataset["validation"],
            batch_size=self.val_batch_size,
            num_workers=self.num_workers,
        )

    def test_dataloader(self) -> DataLoader:
        return DataLoader(
            self.dataset["test"],
            batch_size=self.test_batch_size,
            num_workers=self.num_workers,
        )

```

## References

[1] Yitao Cai, Huiyu Cai, and Xiaojun Wan. 2019. Multi-Modal Sarcasm Detection in Twitter with Hierarchical Fusion Model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2506–2515, Florence, Italy. Association for Computational Linguistics.

[2] Libo Qin, Shijue Huang, Qiguang Chen, Chenran Cai, Yudi Zhang, Bin Liang, Wanxiang Che, and Ruifeng Xu. 2023. MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System. In Findings of the Association for Computational Linguistics: ACL 2023, pages 10834–10845, Toronto, Canada. Association for Computational Linguistics.