Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,43 +1,143 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
dtype: string
|
10 |
-
- name: images
|
11 |
-
list:
|
12 |
-
- name: attachment_type
|
13 |
-
dtype: string
|
14 |
-
- name: large_image_url
|
15 |
-
dtype: string
|
16 |
-
- name: medium_image_url
|
17 |
-
dtype: string
|
18 |
-
- name: small_image_url
|
19 |
-
dtype: string
|
20 |
-
- name: asin
|
21 |
-
dtype: string
|
22 |
-
- name: parent_asin
|
23 |
-
dtype: string
|
24 |
-
- name: user_id
|
25 |
-
dtype: string
|
26 |
-
- name: timestamp
|
27 |
-
dtype: int64
|
28 |
-
- name: helpful_vote
|
29 |
-
dtype: int64
|
30 |
-
- name: verified_purchase
|
31 |
-
dtype: bool
|
32 |
-
splits:
|
33 |
-
- name: full
|
34 |
-
num_bytes: 16256753028
|
35 |
-
num_examples: 29475453
|
36 |
-
download_size: 9687898981
|
37 |
-
dataset_size: 16256753028
|
38 |
-
configs:
|
39 |
-
- config_name: default
|
40 |
-
data_files:
|
41 |
-
- split: full
|
42 |
-
path: data/full-*
|
43 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- recommendation
|
6 |
+
- reviews
|
7 |
+
size_categories:
|
8 |
+
- 100M<n<1B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
+
# Amazon Reviews 2023 (Books Only)
|
11 |
+
|
12 |
+
**This is a subset of Amazon Review 2023 dataset. Please visit [amazon-reviews-2023.github.io/](https://amazon-reviews-2023.github.io/) for more details, loading scripts, and preprocessed benchmark files.**
|
13 |
+
|
14 |
+
**[April 18, 2024]** Update
|
15 |
+
|
16 |
+
1. This dataset was created and pushed for the first time.
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
<!-- Provide a quick summary of the dataset. -->
|
21 |
+
|
22 |
+
This is a large-scale **Amazon Reviews** dataset, collected in **2023** by [McAuley Lab](https://cseweb.ucsd.edu/~jmcauley/), and it includes rich features such as:
|
23 |
+
1. **User Reviews** (*ratings*, *text*, *helpfulness votes*, etc.);
|
24 |
+
2. **Item Metadata** (*descriptions*, *price*, *raw image*, etc.);
|
25 |
+
|
26 |
+
## What's New?
|
27 |
+
|
28 |
+
In the Amazon Reviews'23, we provide:
|
29 |
+
|
30 |
+
1. **Larger Dataset:** We collected 571.54M reviews, 245.2% larger than the last version;
|
31 |
+
2. **Newer Interactions:** Current interactions range from May. 1996 to Sep. 2023;
|
32 |
+
3. **Richer Metadata:** More descriptive features in item metadata;
|
33 |
+
4. **Fine-grained Timestamp:** Interaction timestamp at the second or finer level;
|
34 |
+
5. **Cleaner Processing:** Cleaner item metadata than previous versions;
|
35 |
+
6. **Standard Splitting:** Standard data splits to encourage RecSys benchmarking.
|
36 |
+
|
37 |
+
## Basic Statistics
|
38 |
+
|
39 |
+
> We define the <b>#R_Tokens</b> as the number of [tokens](https://pypi.org/project/tiktoken/) in user reviews and <b>#M_Tokens</b> as the number of [tokens](https://pypi.org/project/tiktoken/) if treating the dictionaries of item attributes as strings. We emphasize them as important statistics in the era of LLMs.
|
40 |
+
|
41 |
+
> We count the number of items based on user reviews rather than item metadata files. Note that some items lack metadata.
|
42 |
+
|
43 |
+
|
44 |
+
### Grouped by Category
|
45 |
+
|
46 |
+
| Category | #User | #Item | #Rating | #R_Token | #M_Token | Download |
|
47 |
+
| ------------------------ | ------: | ------: | --------: | -------: | -------: | ------------------------------: |
|
48 |
+
| Books | 10.3M | 4.4M | 29.5M | 2.9B | 3.7B | <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/review_categories/Books.jsonl.gz' download> review</a>, <a href='https://datarepo.eng.ucsd.edu/mcauley_group/data/amazon_2023/raw/meta_categories/meta_Books.jsonl.gz' download> meta </a> |
|
49 |
+
meta </a> |
|
50 |
+
> Check Pure ID files and corresponding data splitting strategies in <b>[Common Data Processing](https://amazon-reviews-2023.github.io/data_processing/index.html)</b> section.
|
51 |
+
## Quick Start
|
52 |
+
### Load User Reviews
|
53 |
+
```python
|
54 |
+
from datasets import load_dataset
|
55 |
+
|
56 |
+
dataset = load_dataset("cogsci13/Amazon-Reviews-2023-Books", "raw_review_Books", trust_remote_code=True)
|
57 |
+
print(dataset["full"][0])
|
58 |
+
```
|
59 |
+
```json
|
60 |
+
{'rating': 5.0,
|
61 |
+
'title': 'Such a lovely scent but not overpowering.',
|
62 |
+
'text': "This spray is really nice. It smells really good, goes on really fine, and does the trick. I will say it feels like you need a lot of it though to get the texture I want. I have a lot of hair, medium thickness. I am comparing to other brands with yucky chemicals so I'm gonna stick with this. Try it!",
|
63 |
+
'images': [],
|
64 |
+
'asin': 'B00YQ6X8EO',
|
65 |
+
'parent_asin': 'B00YQ6X8EO',
|
66 |
+
'user_id': 'AGKHLEW2SOWHNMFQIJGBECAF7INQ',
|
67 |
+
'timestamp': 1588687728923,
|
68 |
+
'helpful_vote': 0,
|
69 |
+
'verified_purchase': True}
|
70 |
+
```
|
71 |
+
### Load Item Metadata
|
72 |
+
```python
|
73 |
+
dataset = load_dataset("cogsci13/Amazon-Reviews-2023-Books", "raw_meta_Books", split="full", trust_remote_code=True)
|
74 |
+
print(dataset[0])
|
75 |
+
```
|
76 |
+
```json
|
77 |
+
{'main_category': 'All Beauty',
|
78 |
+
'title': 'Howard LC0008 Leather Conditioner, 8-Ounce (4-Pack)',
|
79 |
+
'average_rating': 4.8,
|
80 |
+
'rating_number': 10,
|
81 |
+
'features': [],
|
82 |
+
'description': [],
|
83 |
+
'price': 'None',
|
84 |
+
'images': {'hi_res': [None,
|
85 |
+
'https://m.media-amazon.com/images/I/71i77AuI9xL._SL1500_.jpg'],
|
86 |
+
'large': ['https://m.media-amazon.com/images/I/41qfjSfqNyL.jpg',
|
87 |
+
'https://m.media-amazon.com/images/I/41w2yznfuZL.jpg'],
|
88 |
+
'thumb': ['https://m.media-amazon.com/images/I/41qfjSfqNyL._SS40_.jpg',
|
89 |
+
'https://m.media-amazon.com/images/I/41w2yznfuZL._SS40_.jpg'],
|
90 |
+
'variant': ['MAIN', 'PT01']},
|
91 |
+
'videos': {'title': [], 'url': [], 'user_id': []},
|
92 |
+
'store': 'Howard Products',
|
93 |
+
'categories': [],
|
94 |
+
'details': '{"Package Dimensions": "7.1 x 5.5 x 3 inches; 2.38 Pounds", "UPC": "617390882781"}',
|
95 |
+
'parent_asin': 'B01CUPMQZE',
|
96 |
+
'bought_together': None,
|
97 |
+
'subtitle': None,
|
98 |
+
'author': None}
|
99 |
+
```
|
100 |
+
> Check data loading examples and Huggingface datasets APIs in <b>[Common Data Loading](https://amazon-reviews-2023.github.io/data_loading/index.html)</b> section.
|
101 |
+
## Data Fields
|
102 |
+
### For User Reviews
|
103 |
+
| Field | Type | Explanation |
|
104 |
+
| ----- | ---- | ----------- |
|
105 |
+
| rating | float | Rating of the product (from 1.0 to 5.0). |
|
106 |
+
| title | str | Title of the user review. |
|
107 |
+
| text | str | Text body of the user review. |
|
108 |
+
| images | list | Images that users post after they have received the product. Each image has different sizes (small, medium, large), represented by the small_image_url, medium_image_url, and large_image_url respectively. |
|
109 |
+
| asin | str | ID of the product. |
|
110 |
+
| parent_asin | str | Parent ID of the product. Note: Products with different colors, styles, sizes usually belong to the same parent ID. The “asin” in previous Amazon datasets is actually parent ID. <b>Please use parent ID to find product meta.</b> |
|
111 |
+
| user_id | str | ID of the reviewer |
|
112 |
+
| timestamp | int | Time of the review (unix time) |
|
113 |
+
| verified_purchase | bool | User purchase verification |
|
114 |
+
| helpful_vote | int | Helpful votes of the review |
|
115 |
+
### For Item Metadata
|
116 |
+
| Field | Type | Explanation |
|
117 |
+
| ----- | ---- | ----------- |
|
118 |
+
| main_category | str | Main category (i.e., domain) of the product. |
|
119 |
+
| title | str | Name of the product. |
|
120 |
+
| average_rating | float | Rating of the product shown on the product page. |
|
121 |
+
| rating_number | int | Number of ratings in the product. |
|
122 |
+
| features | list | Bullet-point format features of the product. |
|
123 |
+
| description | list | Description of the product. |
|
124 |
+
| price | float | Price in US dollars (at time of crawling). |
|
125 |
+
| images | list | Images of the product. Each image has different sizes (thumb, large, hi_res). The “variant” field shows the position of image. |
|
126 |
+
| videos | list | Videos of the product including title and url. |
|
127 |
+
| store | str | Store name of the product. |
|
128 |
+
| categories | list | Hierarchical categories of the product. |
|
129 |
+
| details | dict | Product details, including materials, brand, sizes, etc. |
|
130 |
+
| parent_asin | str | Parent ID of the product. |
|
131 |
+
| bought_together | list | Recommended bundles from the websites. |
|
132 |
+
## Citation
|
133 |
+
```bibtex
|
134 |
+
@article{hou2024bridging,
|
135 |
+
title={Bridging Language and Items for Retrieval and Recommendation},
|
136 |
+
author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian},
|
137 |
+
journal={arXiv preprint arXiv:2403.03952},
|
138 |
+
year={2024}
|
139 |
+
}
|
140 |
+
```
|
141 |
+
## Contact Us
|
142 |
+
- **Report Bugs**: To report bugs in the dataset, please file an issue on our [GitHub](https://github.com/hyp1231/AmazonReviews2023/issues/new).
|
143 |
+
- **Others**: For research collaborations or other questions, please email **yphou AT ucsd.edu**.
|